Theorem 20 For every integer n, we have that $6 \mid n$ iff $2 \mid n$ and 3 | n.

PROOF: Let n be an orbitrary integer.

(=>) 6/n Then 2/n n 3/h.

(=) Assume 2 In and 3 In. N=3e for some int. k
Consider N=2k for some int. k

6(k-l) = 6k - 6l = 3n - 2n = n

Hence 6/n.

15/n (3/n 5/n)

[?) Con we generalise: 30/n (2/n 3/n 15/n)

(2/n 3/n 15/n)

(2/n 4/n)

Existential quantification

Existential statements are of the form

there exists an individual x in the universe of discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the property P(x) holds

or, in symbols,

$$\exists x. P(x)$$

Frall n

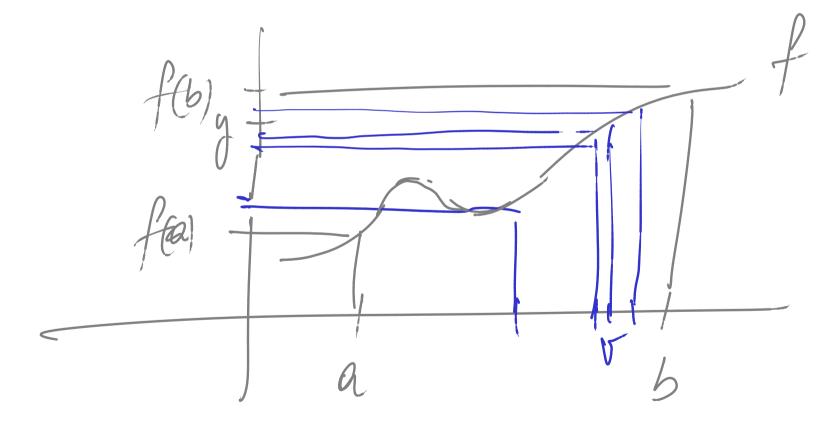
Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

Chiplication

Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval [a, b]. For every y in between f(a) and f(b), there exists v in between a and b such that f(v) = y.

Intuition:



The main proof strategy for existential statements:

To prove a goal of the form

$$\exists x. P(x)$$

find a *witness* for the existential statement; that is, a value of x, say w, for which you think P(x) will be true, and show that indeed P(w), i.e. the predicate P(x) instantiated with the value w, holds.

Proof pattern:

In order to prove

$$\exists x. P(x)$$

- 1. Write: Let $w = \dots$ (the witness you decided on).
- 2. Provide a proof of P(w).

Scratch work:

Before using the strategy

Assumptions

Goal

 $\exists x. P(x)$

•

After using the strategy

Assumptions

Goals

P(w)

i

 $w = \dots$ (the witness you decided on)

Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k = i^2 - j^2$.

PROOF: $\forall k \text{ pos. int. } \exists \text{ not. } ij. \ \forall k = i^2 - j^2.$ Letk bearbitralg. RTP: Fination. 4k=i2-j2. Take a ménesses i= k+1 and j=k-1 Then $(k+1)^2 - (k-1)^2 = \cdots = 4k$ flence we se done.

 $\exists x. P(x). \text{ Let } x_0 \text{ be}$ The use of existential statements: Such that $P(x_0)$

To use an assumption of the form $\exists x. P(x)$, introduce a new variable x_0 into the proof to stand for some individual for which the property P(x) holds. This means that you can now assume $P(x_0)$ true.

d/R = Jut.j.d.j=k. **Theorem 24** For all integers $l, m, n, if l \mid m \text{ and } m \mid n \text{ then } l \mid n.$ Hint. l, m, n. (Jinti. i.l=m n Jintj. j.m=n) => (Jint. R. R.l=n) Let l, m,n bearbitrary intepus. Assume D] i. i.l=m => io.l=m frome int b 2) Fj.j.m=n=n farmentjo $\exists k. k. l=n$ Let $k=j_0.i_0$ Then k. l=n k. l=n -102-so we see done

Unique existence

The notation

$$\exists ! x. P(x)$$

stands for

the *unique existence* of an x for which the property P(x) holds.

Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

$$P \lor Q$$

The main proof strategy for disjunction:

To prove a goal of the form

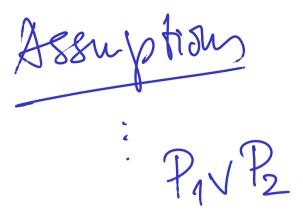
 $P \lor Q$

you may

- 1. try to prove P (if you succeed, then you are done); or
- 2. try to prove Q (if you succeed, then you are done); otherwise
- 3. break your proof into cases; proving, in each case, either P or Q.

Proposition 25 For all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

PROOF: $\forall int n \cdot (n^2 = 0 \text{ (mod 4)}) \vee n^2 = 1 \text{ (mod 4)})$ Let n be on arbitrary integer. n^2 $= 1 \pmod{4}$ Try to show $n^2 \equiv 0 \pmod{4}$ Try to show $n^2 \equiv 1 \pmod{4}$ Consider two cases: (1) n is even. We cover all possibilities for h. Cose 1: nin eren, That is of the fin 2k fin some int. k. $n^2 = (2k)^2 = 4k^2$ intiger Herce N = 0 (mod 4) Con2 nis odd, that is of the form 2kH forsome integer $n^2 = (2kh)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$ Hence $n^2 \equiv l \pmod{4}$.



God

The use of disjunction:

To use a disjunctive assumption

$$P_1 \vee P_2$$

to establish a goal Q, consider the following two cases in turn: (i) assume P_1 to establish Q, and (ii) assume P_2 to establish Q.

Scratch work:

Before using the strategy

Assumptions Goal Q

After using the strategy

 $\begin{array}{c|ccccc} \textbf{Assumptions} & \textbf{Goal} & \textbf{Assumptions} & \textbf{Goal} \\ & Q & & Q \\ & \vdots & & \vdots & & \vdots \\ & P_1 & & P_2 & & \end{array}$

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$$P_1 \vee P_2$$

write: We prove the following two cases in turn: (i) that assuming P_1 , we have Q; and (ii) that assuming P_2 , we have Q. Case (i): Assume P_1 . and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_2 . and provide a proof of Q from it and the other assumptions.