
Java generics are invariant

The Java language decrees so. Hence the following code now
fails to type-check.

ArrayList<String> s = new ArrayList(10);3

ArrayList<Object> o;
o = s; // fails to type-check
o.set(5,"OK so far"); // type-checks OK
o.set(4, new Integer(42)); // type-checks OK

So generics are safer than arrays. But covariance and
contravariance can be useful.
I What if I have an immutable array, so that writes to it are

banned by the type checker, then surely it’s OK for it to be
covariant?

2Legal note: it doesn’t matter here, but to exactly match the previous
array-using code I should populate the ArrayList with 10 NULLs. Real code
would of course populate both arrays and ArrayLists with non-NULL values.

Alan Mycroft Concepts in Programming Languages 133 / 267



Java variance specifications
In Java we can have safe co-variant generics using syntax like:

ArrayList<String> s = new ArrayList(10);
ArrayList<? extends Object> o;
o = s; // now type checks again

But what about reading and writing to o?
s.set(2,"Hello");
System.out.println((String)o.get(2)+"World"); //fine
o.set(4,"seems OK"); //faulted at compile-time

The trade is that the covariant ArrayList o cannot have its
elements written to, in exchange for covariance.

I Java has use-site variance specifications: we can declare
variance at every use of a generic.

I By contrast Scala has declaration-site variance which
many find simpler (see later).

Alan Mycroft Concepts in Programming Languages 134 / 267


