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Practicalities

I Course web page:
www.cl.cam.ac.uk/teaching/1516/ConceptsPL/

with lecture slides, exercise sheet and reading material.
I One exam question.
I NB. This course is under revision. I will not lecture every

slide. In particular, many of the 43 slides about Scala
describe the language rather than the concepts. However
the case study on Slides 223–229 is of more wider use
along with the variance specifiers on Slide 231.
Apologies for any inconvenience caused.

Alan Mycroft Concepts in Programming Languages 2 / 267

www.cl.cam.ac.uk/teaching/1516/ConceptsPL/


Main books

I J. C. Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

I T. W. Pratt and M. V. Zelkowitz. Programming Languages:
Design and implementation (3RD EDITION).
Prentice Hall, 1999.

? M. L. Scott. Programming language pragmatics
(4TH EDITION).
Elsevier, 2016.

I R. Harper. Practical Foundations for Programming
Languages.
Cambridge University Press, 2013.
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Context:
so many programming languages

Peter J. Landin: “The Next 700 Programming Languages”,
CACM (published in 1966!).

Some programming-language ‘family trees’ (too big for slide):
http://www.oreilly.com/go/languageposter
http://www.levenez.com/lang/
http://rigaux.org/language-study/diagram.html

http://www.rackspace.com/blog/

infographic-evolution-of-computer-languages/

Plan of this course: pick out interesting programming-language
concepts and major evolutionary trends.

Alan Mycroft Concepts in Programming Languages 4 / 267

http://www.oreilly.com/go/languageposter
http://www.levenez.com/lang/
http://rigaux.org/language-study/diagram.html
http://www.rackspace.com/blog/infographic-evolution-of-computer-languages/
http://www.rackspace.com/blog/infographic-evolution-of-computer-languages/


Topics
I. Introduction and motivation.

Part A: Meet the ancestors
II. The first procedural language: FORTRAN (1954–58).
III. The first declarative language: LISP (1958–62).
IV. Block-structured procedural languages: Algol (1958–68),

Pascal (1970).
V. Object-oriented languages—Concepts and origins:

Simula (1964–67), Smalltalk (1971–80).

Part B: Types and related ideas
VI. Types in programming languages: ML, Java.

VII. Data abstraction and modularity: SML Modules (1984–97).

Part C: Distributed concurrency, Scala, Monads
VII. Languages for concurrency and parallelism.
IX. A modern language design: Scala (2007)
X. Miscellaneous concepts: Monads, GADTs
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˜ Topic I ˜
Introduction and motivation

References:
I Chapter 1 of Concepts in programming languages by

J. C. Mitchell. CUP, 2003.
I Chapter 1 of Programming languages: Design and

implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz.
Prentice Hall, 1999.

I Chapter 1 of Programming language pragmatics
(2ND EDITION) by M. L. Scott.
Elsevier, 2006.
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Goals

I Critical thinking about programming languages.
? What is a programming language!?

I Study programming languages.
I Be familiar with basic language concepts.
I Appreciate trade-offs in language design.

I Trace history, appreciate evolution and diversity of ideas.
I Be prepared for new programming methods, paradigms.

Alan Mycroft Concepts in Programming Languages 7 / 267



Why study programming languages?

I To improve the ability to develop effective algorithms.
I To improve the use of familiar languages.
I To increase the vocabulary of useful programming

constructs.
I To allow a better choice of programming language.
I To make it easier to learn a new language.
I To make it easier to design a new language.
I To simulate useful features in languages that lack them.
I To make better use of language technology wherever it

appears.
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What makes a good language?

I Clarity, simplicity, and unity.
I Orthogonality.
I Naturalness for the application.
I Support of abstraction.
I Ease of program verification.
I Programming environments.
I Portability of programs.
I Cost of use.

I Cost of execution.
I Cost of program translation.
I Cost of program creation, testing, and use.
I Cost of program maintenance.
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What makes a language successful?

I Expressive power.
I Ease of use for the novice.
I Ease of implementation.
I Standardisation.
I Many useful libraries.
I Excellent compilers (including open-source)
I Economics, patronage, and inertia.

Note the recent trend of big companies to create/control their
own languages: C# (Microsoft), Hack (Facebook), Go (Google),
Objective-C/Swift (Apple), Rust (Mozilla) and perhaps even
Python(!) (Dropbox hired Guido van Rossum).
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Influences

I Computer capabilities.
I Applications.
I Programming methods.
I Implementation methods.
I Theoretical studies.
I Standardisation.
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Applications domains

Era Application Major languages Other languages
1960s Business COBOL Assembler

Scientific FORTRAN ALGOL, BASIC, APL
System Assembler JOVIAL, Forth
AI LISP SNOBOL

Today Business COBOL, SQL, spreadsheet C, PL/I, 4GLs
Scientific FORTRAN, C, C++ BASIC, Pascal

Maple, Mathematica
System BCPL, C, C++ Pascal, Ada, BASIC,

MODULA
AI LISP, Prolog
Publishing TEX, Postscript,

word processing
Process UNIX shell, TCL, Perl Marvel, Esterel
New paradigms Smalltalk, SML, Haskell, Java Eiffel, C#, Scala

Python, Ruby
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? Why are there so many languages?
• Evolution.
• Special purposes.
• No one language is good at expressing all

programming styles.
• Personal preference.
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Motivating applications and language design

A specific purpose provides focus for language designers;
it helps to set criteria for making design decisions.
A specific, motivating application also helps to solve one
of the hardest problems in programming language design:
deciding which features to leave out.
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Examples: Good languages designed with a specific purpose
in mind.
I LISP: symbolic computation, automated reasoning
I FP: functional programming, algebraic laws
I BCPL: compiler writing
I Simula: simulation
I C: systems programming [Unix]
I ML: theorem proving
I Smalltalk: Dynabook [1970-era tablet computer]
I Clu, SML Modules: modular programming
I C++: object orientation
I Java: Internet applications
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Program execution model

Good language design presents abstract machine.
I FORTRAN: Flat register machine; memory arranged

as linear array
I LISP: cons cells, read-eval-print loop
I Algol family: stack of activation records; heap storage
I BCPL, C: underlying machine + abstractions
I Simula: Object references
I FP, ML: functions are basic control structure
I Smalltalk: objects and methods, communicating by

messages
I Java: Java virtual machine
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Classification of programming languages

I Imperative
procedural C, Ada, Pascal, Algol, FORTRAN, . . .
object-oriented Scala, C#,Java, Smalltalk, SIMULA, . . .
scripting Perl, Python, PHP, JavaScript, . . .

I Declarative
functional Haskell, SML, Lisp, Scheme, . . .
logic Prolog
dataflow Id, Val
constraint-based spreadsheets
template-based XSLT

Alan Mycroft Concepts in Programming Languages 17 / 267



Theoretical foundations

Examples:
I Formal-language theory.
I Automata theory.
I Algorithmics.
I λ-calculus.
I Semantics.
I Formal verification.
I Type theory.
I Complexity theory.
I Logic.
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Standardisation

I Proprietary standards.
I Consensus standards.

I ANSI (American National Standards Institute)
I IEEE (Institute of Electrical and Electronics Engineers)
I BSI (British Standard Institute)
I ISO (International Standards Organisation)
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Language standardisation

Consider: int i; i = (1 && 2) + 3 ;

? Is it valid C code? If so, what’s the value of i?
? How do we answer such questions!?

! Read the reference manual.

! Try it and see!

! Read the ANSI C Standard.
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Language-standards issues

Timeliness. When do we standardise a language?
Conformance. What does it mean for a program to adhere to a

standard and for a compiler to compile a standard?
Ambiguity and freedom to optimise — Machine
dependence — Undefined behaviour.

Obsolescence. When does a standard age and how does it get
modified?
Deprecated features.
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Language standards:
Accidental misspecification

Various examples (we’ll see “function types in Algol” later).
In language PL/1 the type DEC(p,q) means a decimal number
of p digits with q digits after the decimal point.

? So what value does the following expression have:

9 + 8/3

Suggestions:
− 11.666... ?
− Overflow ?
− 1.666... ?
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In language PL/1 the type DEC(p,q) means a decimal number
of p digits with q digits after the decimal point.

Type rules for DEC in PL/1:

DEC(p1,q1) + DEC(p2,q2)
=> DEC(MIN(1+MAX(p1-q1,p2-q2)+MAX(q1,q2),15),

MAX(q1,q2))
DEC(p1,q1) / DEC(p2,q2)

=> DEC(15, 15-((p1-q1)+q2))
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For 9 + 8/3 we have:

DEC(1,0) + DEC(1,0)/DEC(1,0)
=> DEC(1,0) + DEC(15,15-((1-0)+0))
=> DEC(1,0) + DEC(15,14)
=> DEC(MIN(1+MAX(1-0,15-14)+MAX(0,14),15),

MAX(0,14))
=> DEC(15,14)

So the calculation is as follows

9 + 8/3
-> 9 + 2.66666666666666
-> 11.66666666666666 // out of range for DEC(15,14)
-> (OVERFLOW)
-> 1.66666666666666 // if OVERFLOW disabled

Argh! Be careful how you specify a language.
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Ultra-brief history
1951–55: Experimental use of expression compilers.
1956–60: FORTRAN, COBOL, LISP, Algol 60.
1961–65: APL notation, Algol 60 (revised), SNOBOL, CPL.
1966–70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA,

Algol 68, Algol-W, BCPL.
1971–75: Pascal, PL/1 (Standard), C, Scheme, Prolog.
1976–80: Smalltalk, Ada, FORTRAN 77, ML.
1981–85: Smalltalk-80, Prolog, Ada 83.
1986–90: C++, SML, Haskell.
1991–95: Ada 95, TCL, Perl.

1996–2000: Java.
2000–05: C#, Python, Ruby, Scala.

1990– : Open/MP, MPI, Posix threads, Erlang, X10,
MapReduce, Java 8 features.

For more information:
en.wikipedia.org/wiki/History_of_programming_

languages
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Language groups

I Multi-purpose languages
I Scala, C#, Java, C++, C
I Haskell, SML, Scheme, LISP
I Perl, Python, Ruby

I Special-purpose languages
I UNIX shell
I SQL
I LATEX
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Things to think about

I What makes a good language?
I The role of

1. motivating applications,
2. program execution,
3. theoretical foundations

in language design.
I Language standardisation.
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˜ Part A ˜
Meet the ancestors

Santayana 1906: “Those who cannot remember the past are
condemned to repeat it.”

Alan Mycroft Concepts in Programming Languages 28 / 267



˜ Topic II ˜
FORTRAN : A simple procedural language

References:
I Chapter 10(§1) of Programming Languages: Design and

implementation (3RD EDITION) by T. W. Pratt and

M. V. Zelkowitz. Prentice Hall, 1999.
I The History of FORTRAN I, II, and III by J. Backus. In

History of Programming Languages by R. L. Wexelblat.
Academic Press, 1981.
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FORTRAN = FORmula TRANslator
(1957)

I Developed (1950s) by an IBM team led by John Backus.
I The first high-level programming language to become

widely used. (At the time the utility of any high-level
language was open to question!)
The main complaint was the efficiency of compiled code.
This heavily influenced the design, orienting it towards
providing execution efficiency.

I Standards:
1966, 1977 (FORTRAN 77), 1990 (Fortran 90), . . .
2010 (Fortran 2008).

I Remains main language for scientific computing.
I Easier for a compiler to optimise than C.

Alan Mycroft Concepts in Programming Languages 30 / 267



John Backus

“As far as we were aware, we simply made up the
language as we went along. We did not regard
language design as a difficult problem, merely a
simple prelude to the real problem: designing a
compiler which could produce efficient programs.”2

2In R. L. Wexelblat, History of Programming Languages, Academic Press,
1981, page 30.

Alan Mycroft Concepts in Programming Languages 31 / 267



Overview
Execution model (traditional Fortran)

I FORTRAN program = main program + subprograms
I Each is compiled separately from all others.
I Translated programs are linked into final executable form

during loading.
I All storage is allocated statically before program execution

begins; no run-time storage management is provided.
I Flat register machine. No stacks, no recursion. Memory

arranged as linear array.
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Overview
Compilation

FORTRAN program

��

Compiler

��
Incomplete machine language

))

Library routines

xx

Linker

��
Machine language program
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Overview
Data types

I Numeric data: Integer, real, complex, double-precision
real.

I Boolean data. called logical

I Arrays. of fixed declared length

I Character strings. of fixed declared length
I Files.
I Fortran 90 added ‘derived data types’ (like C structs).
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Overview
Control structures

I FORTRAN 66
Relied heavily on statement labels and GOTO

statements, but did have DO (for) loops.
I FORTRAN 77

Added some modern control structures
(e.g., if-then-else blocks), but WHILE loops and
recursion had to wait for Fortran 90.

I Fortran 2008
Support for concurrency and objects
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Example

PROGRAM MAIN
PARAMETER (MaXsIz=99)
REAL A(mAxSiZ)

10 READ (5,100,END=999) K
100 FORMAT(I5)

IF (K.LE.0 .OR. K.GT.MAXSIZ) STOP
READ *,(A(I),I=1,K)
PRINT *,(A(I),I=1,K)
PRINT *,’SUM=’,SUM(A,K)
GO TO 10

999 PRINT *, "All Done"
STOP
END
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Example (continued)

C SUMMATION SUBPROGRAM
FUNCTION SUM(V,N)

REAL V(N)
SUM = 0.0
DO 20 I = 1,N

SUM = SUM + V(I)
20 CONTINUE

RETURN
END
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Example
Commentary

I Originally columns and lines were relevant, and blanks and
upper/lower case are ignored except in strings. Fortran 90
added free-form and forbade blanks in identifiers (use the
.f90 file extension on Linux).

I Variable names are from 1 to 6 characters long
(31 since Fortran 90), letters, digits, underscores only.

I Variables need not be declared: implicit naming convention
determines their type (good programming style uses
IMPLICIT NONE to disable this).

I Programmer-defined constants (PARAMETER)
I Arrays: subscript ranges can be declared as (lwb : upb)

with (size) meaning (1 : size).
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I Data formats for I/O.
I Historically functions are compiled separately from the

main program. Failure may arise when the loader tries to
merge subprograms with main program.
Fortran 90 provides a module system.

I Function parameters are uniformly transmitted by
reference (or value-result). Traditionally all allocation is
done statically.
But Fortran 90 provides dynamic allocation.

I A value is returned in a FORTRAN function by assigning a
value to the name of a function.
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Types

I Traditional FORTRAN had no user-defined types.
Fortran 90 added ‘derived data types’ (like C structs).

I Static type checking is used in FORTRAN, but the
checking is traditionally incomplete.
Constructs that could not be statically checked were often
left unchecked at run time.
(An early preference for speed over ease-of-bug-finding
still visible in languages like C.)
Fortran 90 added a module system which enables
checking across separately compiled subprograms.
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Storage
Representation and Management

I Storage representation in FORTRAN is sequential.
I Only two levels of referencing environment are provided,

global and local.
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The sequential storage representation is critical in the definition
of the EQUIVALENCE and COMMON declarations.
I EQUIVALENCE

REAL X
INTEGER Y
EQUIVALENCE (X,Y)

I COMMON
COMMON/BLK/X,Y,K(25) in MAIN

COMMON/BLK/U,V,I(5),M(4,5) in SUB
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Aliasing

Aliasing occurs when two names or expressions
refer to the same object or location.

I Aliasing raises serious problems for both the user
and implementer of a language.

I Because of the problems caused by aliasing, new
language designs sometimes attempt to restrict or
eliminate altogether features that allow aliases to
be constructed.
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Parameters

There are two concepts that must be clearly distinguished.
I The parameter names used in a function declaration

are called formal parameters.
I When a function is called, expressions called actual

parameters are used to compute the parameter values
for that call.
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FORTRAN subroutines and functions

I Actual parameters may be simple variables, literals,
array names, subscripted variables, subprogram
names, or arithmetic or logical expressions.
The interpretation of a formal parameter as an array
is done by the called subroutine.

I Traditionally each subroutine is compiled independently
and no checking is done for compatibility between the
subroutine declaration and its call.
Fortran 90 fixed this, including allowing IN and OUT

specifiers on parameters.

Alan Mycroft Concepts in Programming Languages 45 / 267



I The language specifies that if a formal parameter is
assigned to, the actual parameter must be a variable. This
is a traditional source of bugs as this needs cross-module
compilation checking:
Example:

SUBROUTINE SUB(X,Y)
X = Y
END

CALL SUB(-1.0,1.0)

Solution: use the Fortran 90 features.
I Parameter passing is uniformly by reference.
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FORTRAN lives!

I Fortran is one of the first languages, and the only early
language still in mainstream use (LISP dialects also
survive, e.g. Scheme).

I Lots of CS people will tell you about all the diseases of
Fortran based on Fortran 66, or Fortran 77.

I Modern Fortran still admits (most) old code for backwards
compatibility, but also has most of the things you expect in
a modern language (objects, modules, dynamic allocation,
parallel constructs). There’s even a proposal for “units of
measure” to augment types.
(Language evolution is preferable to extinction!)

I Don’t be put off by the syntax—or what ill-informed people
say.
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˜ Topic III ˜
LISP : functions, recursion, and lists

References:
I Chapter 3 of Concepts in programming languages by

J. C. Mitchell. CUP, 2003.
I Chapters 5(§4.5) and 13(§1) of Programming languages:

Design and implementation (3RD EDITION) by T. W. Pratt
and M. V. Zelkowitz.
Prentice Hall, 1999.
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LISP = LISt Processing
(±1960)

I Developed in the late 1950s and early 1960s by a team led
by John McCarthy in MIT.

I McCarthy described LISP as a “a scheme for representing
the partial recursive functions of a certain class of symbolic
expressions”.

I Motivating problems: Symbolic computation (symbolic
differentiation), logic (Advice taker), experimental
programming.

I Software embedding LISP: Emacs (text editor),
GTK (Linux graphical toolkit), Sawfish (window manager),
GnuCash (accounting software).
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Programming-language phrases

I Expressions. A syntactic entity that may be evaluated to
determine its value.

I Statement. A command that alters the state of the machine
in some explicit way.

I Declaration. A syntactic entity that introduces a new
identifier, often specifying one or more attributes.
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Innovation in the design of LISP

I LISP is an expression-based language.
Conditional expressions that produce a value were
new in LISP.
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Some contributions of LISP

I Lists – dynamic storage allocation, hd (CAR) and tl (CDR).
I Recursive functions.
I Garbage collection.
I Programs as data.
I Self-definitional interpreter (LISP interpreter explained as a

LISP program).
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Overview

I LISP syntax is extremely simple. To make parsing easy, all
operations are written in prefix form (i.e., with the operator
in front of all the operands).

I LISP programs compute with atoms and cells.
I LISP is a dynamically typed programming language.
I Most operations in LISP take list arguments and return

list values.
Example:
( cons ’(a b c) ’(d e f) ) cons-cell representation

Remark: The function (quote x), or simply ’x, just
returns the literal value of its argument.

I variables T and nil evaluate to themselves and used as
booleans.
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? How does one recognise a LISP program?

( defvar x 1 ) val x = 1 ;
( defun g(z) (+ x z) ) fun g(z) = x + z ;
( defun f(y) fun f(y)

( + ( g y ) = g(y) +
( let let

( (x y) ) val x = y
( in

g x ) g(x)
) ) ) end ;

( f (+ x 1) ) f(x+1) ;

! It is full of brackets (“Lots of Irritating Silly Parentheses”)!

Alan Mycroft Concepts in Programming Languages 54 / 267



Static and dynamic scope (or binding)

There are two main rules for finding the declaration of an
identifier:
I Static scope. A identifier refers to the declaration of that

name that is declared in the closest enclosing scope of the
program text.

I Dynamic scope. A global identifier refers to the declaration
associated with the most recent environment.

Historically, LISP was a dynamically scoped language;
[Sethi pp.162] writes: when the initial implementation of Lisp
was found to use dynamic scope, its designer, McCarthy[1981],
“regarded this difficulty as just a bug”.
Newer dialects of LISP (such as Scheme) use static scoping.
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Abstract machines

The terminology abstract machine is generally used to refer to
an idealised computing device that can execute a specific
programming language directly. Systems people use virtual
machine (as in JVM) for a similar concept.

I The original Fortran abstract machine can be seen as
having only static storage (as there was no recursion),
allocated before execution. Even the ‘call stack’ could be
held in static storage (indeed early machines lacked index
registers).
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LISP abstract machine

In retrospect, LISP encapsulated the modern idea of having
separate stack and heap data areas.

However, interpreters of the day often stored chains of variable
bindings (‘association lists’) on the heap instead of using the
stack, and indeed the program itself was often held as as a
heap-allocated data structure.

Indeed ‘everything is a list’ was the core principle.
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Garbage collection

. . . When a free register is wanted, and there is none
left on the free-storage list, a reclamation cycle starts.

In computing, garbage refers to memory locations that are
not accessible to a program.
Garbage collection is the process of detecting garbage
during the execution of a program and making it available.
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Programs as data

I One feature that sets LISP apart from many other
languages is that it is possible for a program to build a data
structure that represents an expression and then evaluates
the expression as if it were written as part of
the program. This is done with the function eval.
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Parameter passing in LISP
The actual parameters in a function call are always
expressions, represented as list structures.
LISP provides two main methods of parameter passing:
I Pass/Call-by-value. The most-common method is to

evaluate the expressions in the actual-parameter list, and
pass the resulting values.

I Pass/Call-by-text. A less-common method (needed to
express QUOTE, COND and the like) is to transmit the
expression in the actual parameter list as text, so the called
function can evaluate them as needed using eval.
This “call-by-unevaluated-argument” resembles
call-by-name (see later) but is only equivalent if the eval

can evaluate the argument in the environment of the
function call!
Some LISPs used nlambda in place of lambda in the
function definition to indicate the latter.
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Strict and pseudo-lazy evaluation

Example: Consider the following function definitions with
parameter-passing by value.

( defun CountFrom(n) ( CountFrom(+ n 1) ) )

( defun FunnyOr(x y)
( cond (x 1) (T y ) )

)

( defun FunnyOrelse(x y)
( cond ((eval x) 1) (T (eval y) ) )

)
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? What happens in the following calls?

( FunnyOr T (CountFrom 0) )
( FunnyOr nil T )

( FunnyOrelse ’T ’(CountFrom 0) )
( FunnyOrelse ’nil ’T )

These are like call-by-name, but note that eval is using the
‘wrong’ environment (dynamic) to evaluate variables in the
arguments to FunnyOr.
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˜ Topic IV ˜
Block -structured procedural languages

Algol and Pascal

References:
I Chapters 5 and 7, of Concepts in programming languages

by J. C. Mitchell. CUP, 2003.
I Chapters 10(§2) and 11(§1) of Programming languages:

Design and implementation (3RD EDITION) by T. W. Pratt

and M. V. Zelkowitz. Prentice Hall, 1999.
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Parameters

There are two concepts that must be distinguished:
I A formal parameter is a declaration that appears in the

declaration of the subprogram. (The computation in the
body of the subprogram is written in terms of formal
parameters.)

I An actual parameter is a value that the calling program
sends to the subprogram.
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Parameters: positional vs. named

In most languages actual parameters are matched to formals
by position but some languages additionally allow matching by
name and also allow optional parameters, e.g. Ada and to
some extent C++.

procedure Proc(Fst: Integer:=0; Snd: Character);

Proc(24,’h’);
Proc(Snd => ’h’, Fst => 24);
Proc(Snd => ’o’);

ML can simulate named parameters by passing a record
instead of a tuple.
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Parameter passing

The way that actual parameters are evaluated and passed
to procedures depends on the programming language and
the kind of parameter-passing mechanisms it uses.
The main distinction between different parameter-passing
mechanisms are:
I the time that the actual parameter is evaluated, and
I the location used to store the parameter value.

NB: The location of a variable (or expression) is called its
L-value, and the value stored in this location is called the
R-value of the variable (or expression).
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Parameter passing
Pass/Call-by-value

Note: Call-by-XXX and Pass-by-XXX are synonymous.

I In call-by-value, the actual parameter is evaluated. The
value of the actual parameter is then stored in a new
location allocated for the function parameter.

I Under call-by-value, a formal parameter corresponds to the
value of an actual parameter. That is, the formal x of a
procedure P takes on the value of the actual parameter.
The idea is to evaluate a call P(E) as follows:

x := E;
execute the body of procedure P;
if P is a function, return a result.
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Parameter passing
Pass/Call-by-reference

I In pass-by-reference, the actual parameter must have
an L-value. The L-value of the actual parameter is then
bound to the formal parameter.

I Under call-by-reference, a formal parameter becomes
a synonym for the location of an actual parameter. An
actual reference parameter must have a location.

Alan Mycroft Concepts in Programming Languages 68 / 267



Example:

program main;
begin

function f(var x, y: integer): integer;
begin

x := 2;
y := 1;
if x = 1 then f := 1 else f:= 2

end;

var z: integer;
z := 0;
writeln( f(z,z) )

end
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The difference between call-by-value and call-by-reference
is important to the programmer in several ways:
I Side effects.
I Aliasing.
I Efficiency.
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Parameter passing
Pass/Call-by-value/result

Call-by-value/result is also known as copy-in/copy-out because
the actuals are initially copied into the formals and the formals
are eventually copied back out to the actuals.
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Examples:
I A parameter in Pascal is normally passed by value. It is

passed by reference, however, if the keyword var appears
before the declaration of the formal parameter.
procedure proc(in: Integer; var out: Real);

I The only parameter-passing method in C is call-by-value;
however, the effect of call-by-reference can be achieved
using pointers. In C++ true call-by-reference is available
using reference parameters.

I Ada supports three kinds of parameters:
1. in parameters, corresponding to value parameters;
2. out parameters, corresponding to just the copy-out

phase of call-by-value/result; and
3. in out parameters, corresponding to either

reference parameters or value/result parameters,
at the discretion of the implementation.
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Parameter passing
Pass/Call-by-name

The Algol 60 report describes call-by-name.
I Such actual parameters are (re-)evaluated every time the

formal parameter is used—this evaluation takes place in
the scope of the caller.

I This is like beta-reduction in lambda calculus, but can be
very hard to understand in the presence of side-effects.

I Lazy functional languages (e.g. Haskell) use this idea, but
absence of side-effects enables re-evaluation to be
avoided in favour of caching.
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Block structure

I In a block-structured language, each program or
subprogram is organised as a set of nested blocks.
A block is a region of program text, identified by begin
and end markers, that may contain declarations local
to this region.

I Block structure was first defined in Algol. Pascal contains
nested procedures but not in-line blocks; C contains in-line
blocks but not nested procedures; Ada supports both.
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I Block-structured languages are characterised by the
following properties:

I New variables may be declared at various points in a
program.

I Each declaration is visible within a certain region
of program text, called a block.

I When a program begins executing the instructions
contained in a block at run time, memory is
allocated for the variables declared in that block.

I When a program exits a block, some or all of the
memory allocated to variables declared in that
block will be deallocated.

I An identifier that is not declared in the current
block is considered global to the block and refers
to the entity with this name that is declared in the
closest enclosing block.
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Algol

HAD A MAJOR EFFECT ON LANGUAGE DESIGN

I The main characteristics of the Algol family are:
I the familiar semicolon-separated sequence of

statements,
I block structure,
I functions and procedures, and
I static typing.

ALGOL IS DEAD BUT ITS DESCENDANTS LIVE ON!
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Algol 60
Features

I Simple statement-oriented syntax.
I Block structure.
I Recursive functions and stack storage allocation.
I Fewer ad hoc restrictions than previous languages

(e.g., general expressions inside array indices,
procedures that could be called with procedure
parameters).

I A primitive static type system, later improved in
Algol 68 and Pascal.
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Algol 60
Some trouble-spots

I The Algol 60 type discipline had some shortcomings.
For instance:

I The type of a procedure parameter to a procedure does not
include the types of parameters.

procedure myapply(p, x)
procedure p; integer x;
begin p(x);
end;

I An array parameter to a procedure is given type array,
without array bounds.

I Algol 60 was designed around two parameter-passing
mechanisms, call-by-name and call-by-value.
Call-by-name interacts badly with side effects; call-by-value
is expensive for arrays.
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Algol 68

I One contribution of Algol 68 was its regular, systematic
type system.
The types (referred to as modes in Algol 68) are either
primitive (int, real, complex, bool, char, string, bits,
bytes, semaphore, format, file) or compound (array,
structure, procedure, set, pointer).
Type constructions could be combined without restriction.
This made the type system seem more systematic than
previous languages.

I Algol 68 memory management involves a stack for local
variables and heap storage. Algol 68 data on the heap are
explicitly allocated, and are reclaimed by garbage
collection.
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I Algol 68 parameter passing is by value, with
pass-by-reference accomplished by pointer types. (This
is essentially the same design as that adopted in C.)
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Algol innovations

I Use of BNF syntax description.
I Block structure.
I Scope rules for local variables.
I Dynamic lifetimes for variables.
I Nested if-then-else expressions and statements.
I Recursive subroutines.
I Call-by-value and call-by-name arguments.
I Explicit type declarations for variables.
I Static typing.
I Arrays with dynamic bounds.
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Pascal

I Pascal is a quasi-strong, statically typed programming
language.
An important contribution of the Pascal type system is the
rich set of data-structuring concepts: e.g. enumerations,
subranges, records, variant records, sets, sequential files.

I The Pascal type system is more expressive than the
Algol 60 one (repairing some of its loopholes), and simpler
and more limited than the Algol 68 one (eliminating some
of the compilation difficulties).

I Pascal was the first language to propose index checking.
The index type (typically a sub-range of integer) of an array
is part of its type.
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Pascal variant records

Variant records have a part common to all records of that type,
and a variable part, specific to some subset of the records.

type kind = ( unary, binary) ;
type | datatype

UBtree = record | ’a UBtree = mkUB of
value: integer ; | ’a * ’a UBaux
case k: kind of | and ’a UBaux =
unary: ^UBtree ; | unary of ’a UBtree
binary: record | | binary of
left: ^UBtree ; | ’a UBtree *
right: ^UBtree | ’a UBtree ;

end
end ;
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Variant records introduce weaknesses into the type system for
a language.
I Compilers do not usually check that the value in the tag

field is consistent with the state of the record.
I Tag fields are optional. If omitted, no checking is possible

at run time to determine which variant is present when a
selection is made of a field in a variant.

C still provides this model with struct and union. Modern
languages provide safe constructs instead (think how a
compiler can check for appropriate use):
I ML provides datatype and case to express similar ideas.

In essence the constructor names provide the
discriminator k (but there are no fields preceding it, which
explains UBaux above).

I Java provides subclassing to capture variants of a class.
See also the discussion about case classes in Scala and the
‘expression problem’ there.
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˜ Topic V ˜
Object-oriented languages : Concepts and origins

SIMULA and Smalltalk

References:
? Chapters 10 and 11 of Concepts in programming

languages by J. C. Mitchell. CUP, 2003.
I Chapters 8, and 12(§§2 and 3) of Programming

languages: Design and implementation (3RD EDITION)

by T. W. Pratt and M. V. Zelkowitz. Prentice Hall, 1999.
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Objects in ML !?

exception Empty ;
fun newStack(x0)

= let val stack = ref [x0]
in ref{ push = fn(x)

=> stack := ( x :: !stack ) ,
pop = fn()

=> case !stack of
nil => raise Empty

| h::t => ( stack := t; h )
}end ;

exception Empty
val newStack = fn :

’a -> {pop:unit -> ’a, push:’a -> unit} ref
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Objects in ML !?

NB:
I ! The stack discipline of Algol for activation records fails!

I ? Is ML an object-oriented language?
! Of course not!
? Why?
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Basic concepts in
object-oriented languages

Four main language concepts for object-oriented
languages:

1. Dynamic lookup.
2. Abstraction.
3. Subtyping.
4. Inheritance.
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Dynamic lookup

I Dynamic lookup means that when an method of an object
is called, the method body to be executed is selected
dynamically, at run time, according to the implementation
of the object that receives the message (as in Java or C++
virtual methods).

I For the idea of multiple dispatch (not on the course), rather
than the Java-style (or single) dispatch, see
en.wikipedia.org/wiki/Multiple_dispatch
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Abstraction

I Abstraction means that implementation details are hidden
inside a program unit with a specific interface. For objects,
the interface usually consists of a set of methods that
manipulate hidden data.
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Subtyping

I Subtyping is a relation on types that allows values of
one type to be used in place of values of another.
Specifically, if an object a has all the functionality of another
object b, then we may use a in any context expecting b.

I The basic principle associated with subtyping is
substitutivity: If A is a subtype of B, then any expression
of type A may be used without type error in any context that
requires an expression of type B.
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Inheritance

I Inheritance is the ability to reuse the definition of one
kind of object to define another kind of object.

I The importance of inheritance is that it saves the effort
of duplicating (or reading duplicated) code and that,
when one class is implemented by inheriting from
another, changes to one affect the other. This has a
significant impact on code maintenance and
modification.

NB: although Java treats subtyping and inheritance as
synonyms, it is quite possible to have languages which have
one but not the other.
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History of objects
SIMULA and Smalltalk

I Objects were invented in the design of SIMULA and
refined in the evolution of Smalltalk.

I SIMULA: The first object-oriented language.
The object model in SIMULA was based on procedures
activation records, with objects originally described as
procedures that return a pointer to their own activation
record.

I Smalltalk: A dynamically typed object-oriented language.
Many object-oriented ideas originated or were
popularised by the Smalltalk group, which built on Alan
Kay’s then-futuristic idea of the Dynabook (Wikipedia
shows Kay’s 1972 sketch of essentially a modern tablet
computer).
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SIMULA

I Extremely influential as the first language with classes
objects, dynamic lookup, subtyping, and inheritance.

I Originally designed for the purpose of simulation by
O.-J. Dahl and K. Nygaard at the Norwegian Computing
Center, Oslo, in the 1960s.

I SIMULA was designed as an extension and modification of
Algol 60. The main features added to Algol 60 were:
class concepts and reference variables (pointers to
objects); pass-by-reference; input-output features;
coroutines (a mechanism for writing concurrent programs).
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I A generic event-based simulation program
Q := make_queue(initial_event);
repeat

select event e from Q
simulate event e
place all events generated by e on Q

until Q is empty

naturally requires:
I A data structure that may contain a variety of kinds

of events.  subtyping
I The selection of the simulation operation according to

the kind of event being processed.  dynamic lookup
I Ways in which to structure the implementation of

related kinds of events.  inheritance
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SIMULA
Object-oriented features

I Objects: A SIMULA object is an activation record produced
by call to a class.

I Classes: A SIMULA class is a procedure that returns
a pointer to its activation record. The body of a class
may initialise the objects it creates.

I Dynamic lookup: Operations on an object are selected
from the activation record of that object.

I Abstraction: Hiding was not provided in SIMULA 67 but
was added later and used as the basis for C++.

Alan Mycroft Concepts in Programming Languages 96 / 267



I Subtyping: Objects are typed according to the classes
that create them. Subtyping is determined by class
hierarchy.

I Inheritance: A SIMULA class may be defined, by class
prefixing, as an extension of a class that has already
been defined including the ability to redefine parts of a
class in a subclass.
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SIMULA
Sample code

CLASS POINT(X,Y); REAL X, Y;
COMMENT***CARTESIAN REPRESENTATION

BEGIN
BOOLEAN PROCEDURE EQUALS(P); REF(POINT) P;

IF P =/= NONE THEN
EQUALS := ABS(X-P.X) + ABS(Y-P.Y) < 0.00001;

REAL PROCEDURE DISTANCE(P); REF(POINT) P;
IF P == NONE THEN ERROR ELSE

DISTANCE := SQRT( (X-P.X)**2 + (Y-P.Y)**2 );
END***POINT***
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CLASS LINE(A,B,C); REAL A,B,C;
COMMENT***Ax+By+C=0 REPRESENTATION

BEGIN
BOOLEAN PROCEDURE PARALLELTO(L); REF(LINE) L;

IF L =/= NONE THEN
PARALLELTO := ABS( A*L.B - B*L.A ) < 0.00001;

REF(POINT) PROCEDURE MEETS(L); REF(LINE) L;
BEGIN REAL T;
IF L =/= NONE and ~PARALLELTO(L) THEN
BEGIN

...
MEETS :- NEW POINT(...,...);

END;
END;***MEETS***
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SIMULA
Subclasses and inheritance

SIMULA syntax for a class C1 with subclasses C2 and C3 is

CLASS C1
<DECLARATIONS1>;

C1 CLASS C2
<DECLARATIONS2>;

C1 CLASS C3
<DECLARATIONS3>;

When we create a C2 object, for example, we do this by first
creating a C1 object (activation record) and then appending a
C2 object (activation record).
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Example:

POINT CLASS COLOREDPOINT(C); COLOR C;
BEGIN

BOOLEAN PROCEDURE EQUALS(Q); REF(COLOREDPOINT) Q;
...;

END***COLOREDPOINT**

REF(POINT) P; REF(COLOREDPOINT) CP;
P :- NEW POINT(1.0,2.5);
CP :- NEW COLOREDPOINT(2.5,1.0,RED);

NB: SIMULA 67 did not hide fields. Thus,

CP.C := BLUE;

changes the color (colour) of the point referenced by CP.
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SIMULA
Object types and subtypes

I All instances of a class are given the same type. The name
of this type is the same as the name of the class.

I The class names (types of objects) are arranged in a
subtype hierarchy corresponding exactly to the subclass
hierarchy.
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Subtyping Examples – essentially like Java:
1. CLASS A; A CLASS B;

REF(A) a; REF(B) b;

a :- b; COMMENT***legal since B is

***a subclass of A
...

b :- a; COMMENT***also legal, but checked at

***run time to make sure that

***a points to a B object, so

***as to avoid a type error

2. inspect a
when B do b :- a
otherwise ...
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Smalltalk

I Extended and refined the object metaphor.
I Used some ideas from SIMULA; but it was a completely

new language, with new terminology and an original syntax.
I Abstraction via private instance variables (data associated

with an object) and public methods (code for performing
operations).

I Everything is an object; even a class. All operations are
messages to objects.

I Objects and classes were shown useful organising
concepts for building an entire programming environment
and system.

I Very influential, but we’ll regard it as a object-oriented
analogue of LISP. (Why: dynamically typed, good at
symbolic computation, compared to Algol (for LISP) or
SIMULA (for Smalltalk).

There are more details in previous versions of this course.
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˜ Part B ˜
Types and related ideas

Safety, static and dynamic types, forms of polymorphism,
modules
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˜ Topic VI ˜
Types in programming languages

References:
I Chapter 6 of Concepts in programming languages

by J. C. Mitchell. CUP, 2003.
I Sections 4.9 and 8.6 of Programming languages:

Concepts & constructs by R. Sethi (2ND EDITION).
Addison-Wesley, 1996.
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Types in programming

I A type is a collection of computational entities that share
some common property.

I There are three main uses of types in programming
languages:

1. naming and organising concepts,
2. making sure that bit sequences in computer memory are

interpreted consistently,
3. providing information to the compiler about data

manipulated by the program.
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I Using types to organise a program makes it easier
for someone to read, understand, and maintain the
program. Types can serve an important purpose in
documenting the design and intent of the program.

I Type information in programs can be used for many
kinds of optimisations.
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Type systems

A type system for a language is a set of rules for associating a
type with phrases in the language.
Terms strong and weak refer to the effectiveness with which
a type system prevents errors. A type system is strong if it
accepts only safe phrases. In other words, phrases that are
accepted by a strong type system are guaranteed to evaluate
without type error. A type system is weak if it is not strong.
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Type safety

A programming language is type safe if no program is
allowed to violate its type distinctions.

Safety Example language Explanation
Not safe C, C++ Type casts,

pointer arithmetic
Almost safe Pascal Explicit deallocation;

dangling pointers
Safe LISP, SML, Smalltalk, Java Type checking
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Type checking

A type error occurs when a computational entity is used in a
manner that is inconsistent with the concept it represents.
Type checking is used to prevent some or all type errors,
ensuring that the operations in a program are applied properly.
Some questions to be asked about type checking in a
language:
I Is the type system strong or weak?
I Is the checking done statically or dynamically?
I How expressive is the type system; that is, amongst safe

programs, how many does it accept?
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Static and dynamic type checking

Run-time type checking: The compiler generates code
so that, when an operation is performed, the code
checks to make sure that the operands have the
correct types.
Examples: LISP, Smalltalk.

Compile-time type checking: The compiler checks the program
text for potential type errors.
Example: SML.

NB: Most programming languages use some combination
of compile-time and run-time type checking.
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Java Downcasts
Consider the following Java program:

class A { ... }; A a;
class B extends A { ... }; B b;

I Variable a has Java type A whose valid values are all those
of class A along with those of all classes subtyping class A

(here just class B).
I Subtyping determines when a variable of one type can be

used as another (here used by assignment):
a = b;

√
(upcast)

a = (A)b;
√

(explicit upcast)
b = a; ×(implicit downcast—illegal Java)
b = (B)a;

√
(but needs run-time type-check)

I Mixed static and dynamic type checking!

See also the later discussion of subtype polymorphism.
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Static vs. dynamic type checking

Main trade-offs between compile-time and run-time checking:

Form of type Advantages Disadvantages
checking
Run-time Prevents type errors Slows program

execution
Compile-time Prevents type errors May restrict

Eliminates run-time programming
tests because tests

Finds type errors before are conservative
execution and run-time
tests
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Scripting languages
I Nowadays there are many ‘scripting’ languages. Usually

this means various dynamically typed languages originally
intended to glue larger components of typed languages
together, but it can include languages like Python aimed at
readability or easy of use. Similarly, Javascript placed on
web sites to be executed in browsers in spite of the
potential security holes (not to mention efficiency issues).

I Examples: Javascript, PHP, Ruby, Lua, Python
I The main problem is that small programs can be very clear

(and be finished before a Java programmer has even
designed the class hierarchy), but programs grow – and
the absence of typing then becomes problematic.

I Facebook invented ‘Hack’ because it found it had 1 000 000
lines of PHP!

These languages are commercially important, but we won’t
discuss them further.
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Type equality

The question of type compatibility arises during type checking
(e.g. can this function be applied to this argument).
? What does it mean for two types to be equal!?

Structural equality. Two type expressions are structurally equal
if and only if they are equivalent under the
following three rules.
SE1. A type name is structurally equal to itself.
SE2. Two types are structurally equal if they are

formed by applying the same type constructor
to structurally equal types.

SE3. After a type declaration, say type n = T, the
type name n is structurally equal to T.
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Name equality:
Pure name equality. A type name is equal to

itself, but no constructed type is equal
to any other constructed type.

Transitive name equality. A type name is equal to
itself and can be declared equal to
other type names.

Type-expression equality. A type name is equal
only to itself. Two type expressions
are equal if they are formed by
applying the same constructor to
equal expressions. In other words,
the expressions have to be identical.
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Examples:
I Type equality in Pascal/Modula-2. Type equality was

left ambiguous in Pascal. Its successor, Modula-2, avoided
ambiguity by defining two types to be compatible if

1. they are the same name, or
2. they are s and t, and s = t is a type declaration, or
3. one is a subrange of the other, or
4. both are subranges of the same basic type.

I Type equality in C/C++. C uses structural equivalence
for all types except for struct and union types. Such
types are named in C and C++ and the name is treated as
a type, equal only to itself. This constraint saves C from
having to deal with recursive types.

I Type equality in ML. ML works very similarly to C/C++,
structural equality except for datatype names which are
only equivalent to themselves.
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Type declarations

There are two basic forms of type declarations:
Transparent. An alternative name is given to a type that can

also be expressed without this name.
Opaque. A new type is introduced into the program that is

not equal to any other type.
Exercise: classify type declarations for languages you know
into transparent or opaque.
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Polymorphism

Polymorphism [Greek: “having multiple forms”] refers to
constructs that can take on different types as needed. There
are three main forms in contemporary programming languages:

I Parametric (or generic) polymorphism. A function may
be applied to any arguments whose types match a type
expression involving type variables.
Subcases: ML has implicit polymorphism, other languages
have explicit polymorphism where the user must specify
the instantiation (e.g. C++ templates, and the type system
of “System F”).

I Subtype polymorphism. A function expecting a given
class may be applied to a subclass instead. E.g. Java,
passing a String to a function expecting an Object.
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I Ad hoc polymorphism or overloading. Two or more
implementations with different types are referred to by the
same name. E.g. Java, also addition is overloaded in SML
(which is why fn x => x+x does not type-check).
(Remark: Haskell’s type classes enable rich overloading
specifications. These allow functions be to implicitly
applied to a range of types specified by a Haskell type
constraint.)

Although we’ve discussed these for function application, it’s
important to note that Java generics and ML parameterised
datatypes (e.g. Map<Key,Val> and ’a list) use the same
idea for type constructors.
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Type inference

I Type inference is the process of determining the types
of phrases based on the constructs that appear in them.

I An important language innovation.
I A cool algorithm.
I Gives some idea of how other static analysis algorithms

work.
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Type inference in ML – idea

Idea: give every expression a new type variable and then emit
constraints α ≈ β whenever two types have to be equal.
These constraints can then be solved with Prolog-style
unification.
For more detail see Part II course: “Types”.

Typing rule:

Γ ` x : τ
if x : τ in Γ

Inference rule:

Γ ` x : γ
γ ≈ α if x : α in Γ
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Typing rule:
Γ ` f : σ −> τ Γ ` e : σ

Γ ` f (e) : τ

Inference rule:
Γ ` f : α Γ ` e : β

Γ ` f (e) : γ
α ≈ β −> γ

Alan Mycroft Concepts in Programming Languages 124 / 267



Typing rule:
Γ, x : σ ` e : τ

Γ ` (fn x => e) : σ −> τ

Inference rule:
Γ, x : α ` e : β

Γ ` (fn x => e) : γ
γ ≈ α −> β
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Example:

√

f : α1, x : α3 ` f : α5

√

f : α1, x : α3 ` f : α7

√

f : α1, x : α3 ` x : α8

f : α1, x : α3 ` f (x) : α6

f : α1, x : α3 ` f (f (x)) : α4

f : α1 ` fn x => f (f (x)) : α2

` fn f => fn x => f (f (x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1
α7 ≈ α8−> α6 , α7 ≈ α1 , α8 ≈ α3

Solution: α0 = (α3−> α3)−> α3−> α3
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let-polymorphism

I The ‘obvious’ way to type-check let val x = e in e′ end
is to treat it as (fn x => e′)(e).

I But Milner invented a more generous way to type
let-expressions (involving type schemes—types qualified
with ∀ which are renamed with new type variables at every
use).

I For instance
let val f = fn x => x in f(f) end

type checks, whilst
(fn f => f(f)) (fn x => x)

does not.
I Exercise: invent ML expressions e and e′ above so that

both forms type-check but have different types.
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Surprises/issues in ML typing
The mutable type ’a ref essentially has three operators
ref : ’a -> ’a ref
(!) : ’a ref -> ’a
(:=) : ’a ref * ’a -> unit

Seems harmless. But think about:
val x = ref []; (* x : (’a list) ref *)
x := 3 :: (!x);
x := true :: (!x);
print x;

We expect it to type-check, but it doesn’t and trying to execute
the code shows us it shouldn’t type-check!

I ML type checking needs tweaks around the corners when
dealing with non-pure functional code. See also the
exception example on the next slide.

I This is related to the issues of variance in languages
mixing subtyping with generics (e.g. Java).
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Polymorphic exceptions

Example: Depth-first search for finitely-branching trees.

datatype
’a FBtree = node of ’a * ’a FBtree list ;

fun dfs P (t: ’a FBtree)
= let

exception Ok of ’a;
fun auxdfs( node(n,F) )

= if P n then raise Ok n
else foldl (fn(t,_) => auxdfs t) NONE F ;

in
auxdfs t handle Ok n => SOME n

end ;

val dfs = fn : (’a -> bool) -> ’a FBtree -> ’a option

This use of a polymorphic exception is OK.
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But what about the following nonsense:
exception Poly of ’a ; (*** ILLEGAL!!! ***)
(raise Poly true) handle Poly x => x+1 ;

When a polymorphic exception is declared, SML ensures that it
is used with only one type (and not instantiated at multiple
types). A similar rule (the ‘value restriction’) is applied to the
declaration

val x = ref [];

thus forbidding the code on Slide 128.

I This is related to the issue of variance in languages like
Java to which we now turn.

Alan Mycroft Concepts in Programming Languages 130 / 267



Interaction of subtyping and generics—variance

In Java, we have that String is a subtype of Object.
I But should String[] be a subtype of Object[]?
I And should ArrayList<String> be a subtype of
ArrayList<Object>?

I What about Function<Object,String> being a subtype
of Function<String,Object>?

Given generic G we say it is
I covariant if G<String> is a subtype of G<Object>.
I contravariant if G<Object> is a subtype of G<String>.
I invariant if neither hold.
I variance is a per-argument property for generics taking

multiple arguments .
But what are the rules?
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Java arrays are covariant

The Java language decrees so. Hence the following code
type-checks.

String[] s = new String[10];
Object[] o;
o = s; // decreed to be subtype
o[5] = "OK so far";
o[4] = Integer(42); // whoops!

However, it surely can’t run! Indeed it raises exception
ArrayStoreException at the final line. Why?
I The last line would be unsound, so all writes into a Java

array need to check that the item stored is a subtype of the
array they are stored into. The type checker can’t help.

I Note that there is no problem with reads.
I this is like the ML polymorphic ref and exception issue.
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Java generics are invariant

The Java language decrees so. Hence the following code now
fails to type-check.

ArrayList<String> s = new ArrayList(10);
ArrayList<Object> o;
o = s; // fails to type-check
o[5] = "OK so far"; // type-checks OK
o[4] = Integer(42); // type-checks OK

So generics are safer than arrays. But covariance and
contravariance can be useful.
I What if I have an immutable array, so that writes to it are

banned by the type checker, then surely it’s OK for it to be
covariant.
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Java variance specifications
In Java we can have safe co-variant generics using syntax like:

ArrayList<String> s = new ArrayList(10);
ArrayList<? extends Object> o;
o = s; // now type checks again

But what about reading and writing to o?
s[2] = "Hello";
System.out.println((String)o[2]+"World"); //fine
o[4] = "seems OK"; //faulted at compile-time

The trade is that the covariant ArrayList o cannot have its
elements written to, in exchange for covariance.

I Java has use-site variance specifications: we can declare
variance at every use of a generic.

I By contrast Scala has declaration-site variance which
many find simpler (see later).
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Java variance specifications (2)

Yes, there is a contravariant specification too (which allows
writes but not reads):

ArrayList<? super String> ss;

So ss can be assigned values of type ArrayList<String> and
ArrayList<Object> only.
For more information (beyond the current course) see:
en.wikipedia.org/wiki/Covariance_and_
contravariance_(computer_science)
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˜ Topic VII ˜
Data abstraction and modularity

SML Modules3

References:

I Chapter 7 of ML for the working programmer (2ND

EDITION) by L. C. Paulson.
CUP, 1996.

3Largely based on an Introduction to SML Modules by Claudio Russo
<http://research.microsoft.com/~crusso>.
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The Core and Modules languages

SML consists of two sub-languages:
I The Core language is for programming in the small, by

supporting the definition of types and expressions denoting
values of those types.

I The Modules language is for programming in the large,
by grouping related Core definitions of types and
expressions into self-contained units, with descriptive
interfaces.

The Core expresses details of data structures and
algorithms. The Modules language expresses software
architecture. Both languages are largely independent.
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The Modules language

Writing a real program as an unstructured sequence of Core
definitions quickly becomes unmanageable.

type nat = int
val zero = 0
fun succ x = x + 1
fun iter b f i =

if i = zero then b
else f (iter b f (i-1))

...
(* thousands of lines later *)
fun even (n:nat) = iter true not n

The SML Modules language lets one split large programs into
separate units with descriptive interfaces.
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SML Modules
Signatures and structures

An abstract data type is a type equipped with a set of
operations, which are the only operations applicable to that
type.
Its representation can be changed without affecting the rest
of the program.

I Structures let us package up declarations of related
types, values, and functions.

I Signatures let us specify what components a structure
must contain.

Signatures are to structures what types are to values.
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Structures

In Modules, one can encapsulate a sequence of Core type and
value definitions into a unit called a structure.
We enclose the definitions in between the keywords

struct . . . end.
Example: A structure representing the natural numbers, as
positive integers.
struct

type nat = int
val zero = 0
fun succ x = x + 1
fun iter b f i = if i = zero then b

else f (iter b f (i-1))
end

Alan Mycroft Concepts in Programming Languages 140 / 267



The dot notation

The structure keyword binds a structure to an identifier:
structure IntNat =
struct

type nat = int
...
fun iter b f i = ...

end

Components of a structure are accessed with dot notation.
fun even (n:IntNat.nat) = IntNat.iter true not n

NB: Type IntNat.nat is statically equal to int.
Value IntNat.iter dynamically evaluates to a closure.
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Nested structures

Structures can be nested inside other structures, in a hierarchy.
structure IntNatAdd =

struct
structure Nat = IntNat
fun add n m = Nat.iter m Nat.succ n

end
...

fun mult n m =
IntNatAdd.Nat.iter IntNatAdd.Nat.zero

(IntNatAdd.add m)
n

Nesting and dot notation provides name-space control.
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Concrete signatures

Signature expressions specify the types of structures by
listing the specifications of their components.
A signature expression consists of a sequence of
component specifications, enclosed in between the
keywords sig . . . end.

sig type nat = int
val zero : nat
val succ : nat -> nat
val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

This signature fully describes the type of IntNat.
The specification of type nat is concrete: it must be int.
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Opaque signatures

On the other hand, the following signature
sig type nat

val zero : nat
val succ : nat -> nat
val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

specifies structures that are free to use any implementation for
type nat (perhaps int, or word, or some recursive datatype).
This specification of type nat is opaque.
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Example: Polymorphic functional stacks.

signature STACK =
sig

exception E
type ’a reptype (* <-- INTERNAL REPRESENTATION *)

val new: ’a reptype
val push: ’a -> ’a reptype -> ’a reptype
val pop: ’a reptype -> ’a reptype
val top: ’a reptype -> ’a

end ;
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structure MyStack: STACK =
struct

exception E ;
type ’a reptype = ’a list ;
val new = [] ;
fun push x s = x::s ;
fun split( h::t ) = ( h , t )

| split _ = raise E ;
fun pop s = #2( split s ) ;
fun top s = #1( split s ) ;

end ;
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val e = MyStack.new ;
val s0 = MyStack.push 0 e ;
val s01 = MyStack.push 1 s0 ;
val s0’ = MyStack.pop s01 ;
MyStack.top s0’ ;

val e = [] : ’a MyStack.reptype
val s0 = [0] : int MyStack.reptype
val s01 = [1,0] : int MyStack.reptype
val s0’ = [0] : int MyStack.reptype
val it = 0 : int
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Named and nested signatures

The keyword signature names signatures (cf. structure):
signature NAT =

sig type nat
val zero : nat
val succ : nat -> nat
val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

Nested signatures specify named sub-structures:
signature Add =
sig structure Nat: NAT (* references NAT *)

val add: Nat.nat -> Nat.nat -> Nat.nat
end
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Signature matching

Q: When does a structure satisfy a signature?
A: The type of a structure matches a signature whenever it

implements at least the components of the signature.
• The structure must realise (i.e. define) all of the opaque

type components in the signature.
• The structure must enrich this realised signature,

component-wise:
? every concrete type must be implemented equivalently;
? every specified value must have a more general type

scheme;
? every specified structure must be enriched by a

substructure.
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Properties of signature matching

I The components of a structure can be defined in a different
order than in the signature; names matter but ordering
does not.

I A structure may contain more components, or
components of more general types, than are specified
in a matching signature.

I Signature matching is structural. A structure can match
many signatures and there is no need to pre-declare its
matching signatures (unlike “interfaces” in Java and C#).

I Although similar to record types, signatures actually
play a number of different roles.
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Subtyping

Signature matching supports a form of subtyping not found in
the Core language:
I A structure with more type, value, and structure

components may be used where fewer components
are expected.

I A value component may have a more general type scheme
than expected.
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Using signatures to restrict access

We can use a signature constraint to provide a restricted view
of a structure. E.g.

structure ResIntNat =
IntNat : sig type nat

val succ : nat->nat
val iter : nat->(nat->nat)->nat->nat

end

NB: The constraint str:sgn prunes the structure str

according to the signature sgn. So:
I ResIntNat.zero is faulted (“not a member”)
I ResIntNat.iter is less polymorphic than IntNat.iter.
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Transparency of _ : _

Although the _:_ operator can hide names, it does not conceal
the definitions of opaque types.
Thus, the fact that ResIntNat.nat = IntNat.nat = int

remains transparent.
For instance the application ResIntNat.succ(˜3) is still
well-typed, because ˜3 has type int . . . but ˜3 is negative, so
not a valid representation of a natural number!
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SML Modules
Information hiding

In SML, we can limit outside access to the components of
a structure by constraining its signature in transparent or
opaque manners.
Further, we can hide the representation of a type by means
of an abstype declaration.
The combination of these methods yields abstract structures.
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Using signatures to hide the identity of types

Using the ‘:>’ syntax, instead of the ‘:’ syntax used earlier,
signature matching can also be used to enforce data
abstraction:

structure AbsNat = IntNat :> sig
type nat
val zero: nat
val succ: nat->nat
val ’a iter: ’a->(’a->’a)->nat->’a

end

The constraint str:>sgn prunes str but also generates a
new, abstract type for each opaque type in sgn.
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I The actual implementation of AbsNat.nat by int is
hidden, so that AbsNat.nat 6= int.
AbsNat is just IntNat, but with a hidden type
representation.

I AbsNat defines an abstract datatype of natural numbers:
the only way to construct and use values of the abstract
type AbsNat.nat is through the operations, zero, succ,
and iter.
E.g., the application AbsNat.succ(˜3) is ill-typed: ˜3 has
type int, not AbsNat.nat. This is what we want, since ˜3

is not a natural number in our representation.
In general, abstractions can also prune and specialise
components.
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Opaque signature constraints

structure MyOpaqueStack :> STACK = MyStack ;

val e = MyOpaqueStack.new ;
val s0 = MyOpaqueStack.push 0 e ;
val s01 = MyOpaqueStack.push 1 s0 ;
val s0’ = MyOpaqueStack.pop s01 ;
MyOpaqueStack.top s0’ ;

val e = - : ’a MyOpaqueStack.reptype
val s0 = - : int MyOpaqueStack.reptype
val s01 = - : int MyOpaqueStack.reptype
val s0’ = - : int MyOpaqueStack.reptype
val it = 0 : int

[Compare slide 147 which exposes reptype as list.]
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Datatype and exception specifications

Signatures can also specify datatypes and exceptions:

structure PredNat =
struct datatype nat = zero | succ of nat
fun iter b f i = ...
exception Pred
fun pred zero = raise Pred

| pred (succ n) = n

end :> sig datatype nat = zero | succ of nat

val iter: ’a->(’a->’a)->(nat->’a)
exception Pred
val pred: nat -> nat (* raises Pred *)

end

This means that clients can still pattern-match on datatype
constructors, and handle exceptions.
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SML Modules
Functors

I An SML functor is a structure that takes other
structures as parameters.

I Functors let us write program units that can be
combined in different ways. Functors can also
express generic algorithms.

Alan Mycroft Concepts in Programming Languages 159 / 267



Functors

The Modules language also features parameterised structures,
called functors.
Example: The functor AddFun below takes any
implementation, N, of naturals and re-exports it
with an addition operation.

functor AddFun(N:NAT) =
struct

structure Nat = N
fun add n m = Nat.iter n (Nat.succ) m

end
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I A functor is a function mapping a formal argument
structure to a concrete result structure.

I The body of a functor may assume no more
information about its formal argument than is
specified in its signature.
In particular, opaque types are treated as distinct type
parameters.
Each actual argument can supply its own, independent
implementation of opaque types.

Alan Mycroft Concepts in Programming Languages 161 / 267



Functor application

A functor may be used to create a structure by applying it to an
actual argument:

structure IntNatAdd = AddFun(IntNat)
structure AbsNatAdd = AddFun(AbsNat)

The actual argument must match the signature of the formal
parameter—so it can provide more components, of more
general types.
Above, AddFun is applied twice, but to arguments that differ in
their implementation of type nat (AbsNat.nat 6= IntNat.nat).
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Example: Generic imperative stacks.

signature STACK =
sig
type itemtype
val push: itemtype -> unit
val pop: unit -> unit
val top: unit -> itemtype

end ;
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exception E ;
functor Stack( T: sig type atype end ) : STACK =
struct

type itemtype = T.atype
val stack = ref( []: itemtype list )
fun push x

= ( stack := x :: !stack )
fun pop()

= case !stack of [] => raise E
| _::s => ( stack := s )

fun top()
= case !stack of [] => raise E

| t::_ => t
end ;
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structure intStack
= Stack(struct type atype = int end) ;

structure intStack : STACK

intStack.push(0) ;
intStack.top() ;
intStack.pop() ;
intStack.push(4) ;

val it = () : unit
val it = 0 : intStack.itemtype
val it = () : unit
val it = () : unit
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Why functors ?

Functors support:
Code reuse.
AddFun may be applied many times to different
structures, reusing its body.

Code abstraction.
AddFun can be compiled before any
argument is implemented.

Type abstraction.
AddFun can be applied to different types N.nat.

But there are various complications:
I Should functor application be applicative or generative?
I We need some way of specifying types as being shared.

Alan Mycroft Concepts in Programming Languages 166 / 267



Structures as records

I Structures are like Core records, but can contain
definitions of types as well as values.

I What does it mean to project a type component from a
structure, e.g. IntNatAdd.Nat.nat?

I Does one needs to evaluate the application
AddFun(IntNat) at compile-time to simplify
IntNatAdd.Nat.nat to int? And what about any
side-effects?

I No! Its sufficient to know the compile-time types of AddFun
and IntNat, ensuring a phase distinction between
compile-time and run-time.
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Type propagation through functors

Each functor application propagates the actual realisation of its
argument’s opaque type components.
Thus, for

structure IntNatAdd = AddFun(IntNat)
structure AbsNatAdd = AddFun(AbsNat)

the type IntNatAdd.Nat.nat is just another name for int, and
AbsNatAdd.Nat.nat is just another name for AbsNat.nat.
Examples: IntNatAdd.Nat.succ(0)

√

IntNatAdd.Nat.succ(IntNat.Nat.zero)
√

AbsNatAdd.Nat.succ(AbsNat.Nat.zero)
√

AbsNatAdd.Nat.succ(0) ×
AbsNatAdd.Nat.succ(IntNat.Nat.zero) ×
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Functors: generative or applicative?
The following functor is almost the identity functor, but
re-abstracts its argument:

functor GenFun(N:NAT) = N :> NAT

Now, suppose we apply it twice to the same argument:
structure X = GenFun(IntNat)
structure Y = GenFun(IntNat)

Question: are the types X.nat and Y.nat compatible?
I The applicative interpretation of functor application (used

in OCaml) says “yes”.
I The generative interpretation (used in SML) says “no”.

(Abstract types from the body of a functor are replaced by
fresh types at each application. This is consistent with
inlining the body of a functor at applications.)

This question is the tip of a very large iceberg (many papers).
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Digression: should functors be generative ?

It is really a design choice. Often, the invariants of the body of a
functor depend on both the types and values imported from the
argument. Consider:
functor OrdSet(O: sig type elem

val compare: (elem * elem) -> bool

end) = struct
type set = O.elem list (* ordered list of elements *)
val empty = []
fun insert e [] = [e]
| insert e1 (e2::s) = if O.compare(e1,e2)

then if O.compare(e2,e1) then e2::s else e1::e2::s
else e2::insert e1 s

end :> sig type set
val empty: set
val insert: O.elem -> set -> set

end
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For
structure S
= OrdSet(struct type elem=int

fun compare(i,j)= i <= j end)

structure R
= OrdSet(struct type elem=int

fun compare(i,j)= i >= j end)

we want S.set 6= R.set because their representation
invariants depend on the compare function: the set {1,2,3}
is [1,2,3] in S.set, but [3,2,1] in R.set.

Alan Mycroft Concepts in Programming Languages 171 / 267



Functors: issues with sharing

Functors are often used to combine different argument
structures.
Sometimes, these structure arguments need to communicate
values of a shared type.
For instance, we might want to implement a sum-of-squares
function (n,m 7→ n2 + m2) using separate structures for
naturals with addition and multiplication . . .
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Sharing violations

functor SQ(
structure AddNat:

sig structure Nat: sig type nat end
val add:Nat.nat -> Nat.nat -> Nat.nat

end
structure MultNat:

sig structure Nat: sig type nat end
val mult:Nat.nat -> Nat.nat -> Nat.nat

end ) =
struct

fun sumsquare n m
= AddNat.add (MultNat.mult n n) (MultNat.mult m m) ×

end
The above piece of code is ill-typed: the types
AddNat.Nat.nat and MultNat.Nat.nat are opaque, and thus
different. The add function cannot consume the results of mult.
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Sharing specifications

The fix is to declare the type sharing directly at the specification
of MultNat.Nat.nat, using a concrete, not opaque, specification:
functor SQ(

structure AddNat:
sig structure Nat: sig type nat end

val add: Nat.nat -> Nat.nat -> Nat.nat
end

structure MultNat:

sig structure Nat: sig type nat = AddNat.Nat.nat end

val mult: Nat.nat -> Nat.nat -> Nat.nat
end ) =

struct
fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m)
√

end
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Sharing constraints

Alternatively, one can use a post-hoc sharing specification to
identify opaque types.
functor SQ(

structure AddNat:
sig structure Nat: sig type nat end

val add:Nat.nat -> Nat.nat -> Nat.nat
end

structure MultNat:
sig structure Nat: sig type nat end

val mult:Nat.nat -> Nat.nat -> Nat.nat
end

sharing type MultNat.Nat.nat = AddNat.Nat.nat
) =
struct
fun sumsquare n m
= AddNat.add (MultNat.mult n n) (MultNat.mult m m)

√

end
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˜ Part C ˜
Linguistic ideas beyond Java and ML

Distributed concurrency, Scala, Monads
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˜ Topic VIII ˜
Languages for Concurrency and Parallelism
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Sources of parallel computing

Five main sources:
1. Theoretical models: PRAM, BSP (complexity theory),

CSP, CCS, π-calculus (semantic theory),
Actors (programming model).

2. Multi-core CPUs (possibly heterogeneous—mobile
phones).

3. Graphics cards (just unusual SIMD multi-core CPUs).
4. Supercomputers (mainly for scientific computing).
5. Cluster Computing, Cloud Computing.

NB: Items 2–5 conceptually only differ in processor-memory
communication.
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Language groups

1. Theoretical models (PRAM, π-calculus, Actors, etc.).
2. C/C++ and roll-your-own using pthreads.
3. Pure functional programming (‘free’ distribution).
4. [Multi-core CPUs] Open/MP, Java (esp. Java 8), Open/MP,

Cilk, X10.
5. [Graphics cards] CUDA (Nvidia), OpenCL (open standard).
6. [Supercomputers] MPI.
7. [Cloud Computing] MapReduce, Hadoop, Skywriting.
8. [On Chip] Verilog, Bluespec.

NB: Language features may fit multiple architectures.
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Painful facts of parallel life

1. Single-core clock speeds have stagnated at around 3GHz
for the last ten years. Moore’s law continues to give more
transistors (hence multi-core, many-core, giga-core).

2. Inter-processor communication is far far far more
expensive than computation (executing an instruction).

3. Can’t the compiler just take my old C/Java/Fortran (or
ML/Haskell) program and, you know, parallelise it? Just
another compiler optimisation? NO! (Compiler
researchers’ pipe-dream/elephants’ graveyard.)

Takeaway: optimising performance requires exploiting
parallelism, you’ll have to program this yourself, and getting it
wrong gives slow-downs and bugs due to races.
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Multi-core-chip memory models

Today’s model (cache simplified to one level):
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A Compute Cluster or Cloud-Computing Server
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(The sort of thing which Google uses.)
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Lecture topic: what programming abstractions?

I We’ve got a large (and increasing) number of processors
available for use within each ‘device’

I This holds at multiple levels of scale (from on-chip to
on-cloud). “Fractal”

I Memory is local to processor units (at each scale)
I Communication (message passing) between units is much

slower than computation.

Question: what are good programming abstractions for a
system containing lots of processors?
Answer: rest of this lecture.
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What hardware architecture tells us

I Communication latency is far higher than instruction
execution time (2–6 orders of magnitude)

I So, realistically a task needs to have need at least 104

instructions for it to be worth moving to another CPU.
I Long-running independent computations fit the hardware

best.
I “Shared memory” is an illusion. At the lowest level it is

emulated by message passing in the cache-coherency
protocol.

I Often best to think of multi-core processors as distributed
systems.
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Communication abstractions for programming

I “Head in sand”: What communication – I’m just using a
multi-core CPU?

I “Principled head in sand”: the restrictions in my
programming language means I can leave this to someone
else (or even the compiler).

I Just use TCP/IP.
I Shared memory, message passing, RMI/RPC?
I Communication is expensive, expose it to programmer

(no lies about ‘shared memory’).

Ask: language⇒ programmer model of communication?
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Concurrent, Parallel, Distributed

These words are often used informally as near synonyms.
I Distributed systems have separate processors connected

by a network, perhaps on-chip (multi-core)?
I ‘Parallel’ suggests multiple CPUs or even SIMD, but

“parallel computation" isn’t clearly different from
“concurrency”.

I Concurrent behaviour can happen on a single-core CPU
(e.g. Operating System and threads), Theorists often
separate ‘true concurrency’ (meaning parallel behaviour)
from ‘interleaving concurrency’.
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SIMD, MIMD

I Most parallel systems nowadays are MIMD.
I GPUs (graphical processor units) are a bit of an exception;

several cores execute the same instructions, perhaps
conditionally based on a previous test which sets
per-processor condition codes.

I Programming Languages for GPUs (OpenCL, CUDA)
emphasise the idea of a single program which is executed
by many tasks. A program can enquire to find out the
numerical value of its task identifier, originally its (x , y)
co-ordinate, to behave differently at different places (in
addition to having separate per-task pixel data).
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Theoretical model – process algebra

I CCS, CSP, Pi-Calculus (calculus = “simple programming
language"). E.g.

I Atomic actions α, α, can communicate with each other or
the world (non-deterministically if multiple partners
offered). Internal communication gives special internal
action τ .

I Behaviour p ::= 0 | α.p | p + p | p|p | X | rec X .p
(Deadlock, prefixing, non-determinism, parallelism,
recursive definitions, also (not shown)
parameterisation/hiding and value-passing.)

I Typical questions: “is α.0|β.0 the same as α.β.0 + β.α.0"
and
“what does it mean for two behaviours to be equal"

Part II course: ‘Topics in Concurrency’.
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Theoretical model – PRAM model

I PRAM: parallel random-access machine.
I N shared memory locations and P processors (both

unbounded); each processor can access any location in
one cycle.

I Execute instructions in lock-step (often SIMD, but MIMD
within the model): fetch data, do operation, write result.

I Typical question: “given n items can we sort them in O(n)
time, or find the maximum in O(1) time"

I BSP (bulk-synchronous parallel) model refines PRAM by
adding costs for communication and synchronisation.

Part II course: ‘Advanced Algorithms’.
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Oldest idea: Threads

Java threads – either extend Thread or implement Runnable:

class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long m) { minPrime = m; }
public void run() {

// compute primes larger than minPrime
}

}
...
p = new PrimeRun(143); // create a thread
new Thread(p).start(); // run it

Posix’s pthreads are similar.
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Threads, and what’s wrong with them

I Need explicit synchronisation. Error prone.
I Because they’re implemented as library calls, the compiler

(and often users) cannot work out where they start and
end.

I pthreads as OS-level threads. Need context switch.
Heavyweight.

I Various lightweight-thread systems. Often non-preemptive.
Blocking operations can block all lightweight operations
sharing the same OS thread.

I Number of threads pretty hard-coded into your program.

Alan Mycroft Concepts in Programming Languages 192 / 267



Language support: Cilk

Cilk [example from Wikipedia]

cilk int fib (int n)
{ int x,y;

if (n < 2) return n;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return x+y;

}

Compiler/run-time library can manage threads. Neat
implementation by “work stealing”. Can adapt to hardware.
X10 (IBM) adds support for partitioned memory.

Alan Mycroft Concepts in Programming Languages 193 / 267



Language support: OpenMP

OpenMP [example from Wikipedia]

int main(int argc, char *argv[]) {
const int N = 100000;
int i, a[N];
#pragma omp parallel for
for (i = 0; i < N; i++)

a[i] = 2 * i;
return 0;

}

The directive “omp parallel for" tells the compiler “it is safe to do
the iterations in parallel".
Fortran “FORALL INDEPENDENT".
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Clusters/Cloud Computing

I Memory support for threads, Cilk, OpenMP centres around
a shared address space. (Even if secretly multi-core
machines behave like distributed machines.)

I What about clusters? Cloud Computing?
I More emphasis on message-passing . . .
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Software support for message passing: MPI

I MPI = Message Passing Interface [nothing to do with
OpenMP]

I “de facto standard for communication among processes
that model a parallel program running on a distributed
memory system.” [no shared memory].

I Standardised API calls for transferring data and
synchronising iterations. Message passing is generally
synchronous, suitable for repeated sweeps over scientific
data.

I Emphasis on message passing (visible and
expensive-looking to user) means that MPI programs can
work surprisingly well on multi-core, because they
encourage within-core locality.
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Software support for message passing: Erlang

I Shared-nothing language based on the actor model
(asynchronous message passing).

I Dynamically typed, functional-style (no assignment).
I Means tasks can just commit suicide if they feel there’s a

problem and someone else fixes things, including
restarting them

I Relatively easy to support hot-swapping of code.
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Cloud Computing (1)

Can mean either “doing one computer’s worth of work on a
server instead of locally". Google Docs. Or . . .
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Cloud Computing (2)

. . . massively parallel combinations of computing, e.g.
MapReduce invoked by a search engine.

I MapReduce can match a search term against many
computers (Map) each holding part of Google index of
words, and then combine these result (Reduce).

I Reduce here means parallel reduce (tree-like, logarithmic
cost), not foldl or foldr from ML.

I Functional style (idempotency) useful for error resilience
(errors happen often in big computations). Try to ensure
computation units are larger than cost of transmitting
arguments and results. (also: Skywriting project in
Cambridge)
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Embarrassingly Parallel

Program having many separate sub-units of work (typically
more than the number of processors) which
I do not interact (no communication between them, not even

via shared memory)
I are large

Example: the map part of MapReduce.
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Functional Programming

In pure functional programming every tuple (perhaps an
argument list to an application) can be evaluated in parallel.
So functional programming is embarrassingly parallel?
Not in general (i.e. not enough for compilers to be able to
choose the parallelism for you). Need to find sub-executions
with X
I little data to transfer at spawn time (because it needs

copying, even if memory claims to be shared);
I a large enough unit of work to be done before return

Probably only certain stylised code.
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Garbage Collection

While we’re talking about functional programming, and as
garbage collection has previously been mentioned . . .
Just how do we do garbage collection across multiple cores?
I Manage data so that data structures do not move from one

processor to another?
I “Stop the world" GC with one big lock doesn’t look like it

will work.
I Parallel GC: use multiple cores for GC.

Concurrent GC: do GC while the mutator (user’s program)
is running. Hard?

I Incremental? Track imported/exported pointers?
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Java 8: Internal vs External iteration

Can’t trust users to iterate over data. They start with

for (i : collection)
{ // whatever
}

and then get lazy. Do we want to write this?

for (k = 0; k<NUMPROCESSORS; k++}
{ spawn for (i : subpart(collection,k))

{ // whatever
}

}
sync;
// combine results from sub-parts here
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Internal vs External iteration (2)

I Previous slide was external iteration. It’s hard to parallelise
(especially in Java where iterators have shared mutable
state).

I The Java 8 Streams library encourages internal iteration –
keep the iterator in the library, and use ML-like stream
operation to encode the body of the loop

maxeven = collection.toStream().parallel()
.filter(x -> x%2 == 0)
.max();

I The library can optimise the iteration based on the number
of threads available (and do a better job than users make!).
The Java 8 API ensures that a Stream pipeline like the
above only traverses the data once.
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˜ Topic IX ˜
A modern language design : Scala

www.scala-lang.org

References:

I Scala By Example by M. Odersky. Programming
Methods Laboratory, EPFL, 2008.

I An overview of the Scala programming language by

M. Odersky et al. Technical Report
LAMP-REPORT-2006-001, Second Edition, 2006.
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Scala (I)

I Scala has been developed from 2001 in the Programming
Methods Laboratory at EPFL by a group lead by Martin
Odersky. It was first released publicly in 2004, with a
second version released in 2006.

I Scala is aimed at the construction of components and
component systems.
One of the major design goals of Scala was that it should
be flexible enough to act as a convenient host language for
domain specific languages implemented by library
modules.
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I Scala has been designed to work well with Java and
C#.
Every Java class is seen in Scala as two entities, a
class containing all dynamic members and a singleton
object, containing all static members.
Scala classes and objects can also inherit from Java
classes and implement Java interfaces. This makes it
possible to use Scala code in a Java framework.

I Scala’s influences: Beta, C#, FamilyJ, gbeta, Haskell,
Java, Jiazzi, ML≤, Moby, MultiJava, Nice, OCaml,
Pizza, Sather, Smalltalk, SML, XQuery, etc.
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A procedural language !

def qsort( xs: Array[Int] ) {
def swap(i: Int, j:Int) {

val t = xs(i); xs(i) = xs(j); xs(j) = t
}
def sort(l: Int, r: Int) {

val pivot = xs( (l+r)/2 ); var i = l; var j = r
while (i <= j) {
while ( lt( xs(i), pivot ) ) i += 1
while ( lt( xs(j), pivot ) ) j -= 1
if ( i<=j ) { swap(i,j); i += 1; j -= 1 }

}
if (l<j) sort(l,j)
if (j<r) sort(i,r)

}
sort(0,xs.length-1)

}
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NB:
I Definitions start with a reserved word.
I Type declarations use the colon notation.
I Array selections are written in functional notation.

(In fact, arrays in Scala inherit from functions.)
I Block structure.
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A declarative language !

def qsort[T] (xs: Array[T]) (lt: (T,T)=>Boolean): Array[T]
= if ( xs.length <= 1 ) xs

else {
val pivot = xs( xs.length/2 )
Array.concat(qsort(xs filter (x => lt(x,pivot))) lt,

xs filter (x => x == pivot) ,
qsort(xs filter (x => lt(pivot,x))) lt)

}
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NB:
I Polymorphism.
I Type declarations can often be omitted because the

compiler can infer it from the context.
I Higher-order functions.
I The binary operation e ? e′ is always interpreted a the

method call e. ? (e′).
I The equality operation == between values is designed

to be transparent with respect to the type
representation.
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Scala (II)

Scala fuses (1) object-oriented programming and (2) functional
programming in a statically typed programming language.

1. Scala uses a uniform and pure object-oriented model
similar to that of Smalltalk: Every value is an object and
every operation is a message send (that is, the invocation
of a method).
In fact, even primitive types are not treated specially; they
are defined as type aliases of Scala classes.

2. Scala is also a functional language in the sense that
functions are first-class values.
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Mutable state

I Real-world objects with state are represented in Scala
by objects that have variables as members.

I In Scala, all mutable state is ultimately built from
variables.

I Every defined variable has to be initialised at the point of
its definition.

I Variables may be private.

Alan Mycroft Concepts in Programming Languages 213 / 267



Blocks

Scala is an expression-oriented language, every function
returns some result.
Blocks in Scala are themselves expressions. Every block
ends in a result expression which defines its value.
Scala uses the usual block-structured scoping rules.
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Functions

A function in Scala is a first-class value.
The anonymous function

( x1: T1, ... , xn: Tn ) => E

is equivalent to the block
{ def f ( x1: T1 , ... , xn: Tn ) = E ; f }

where f is a fresh name which is used nowhere else in
the program.
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Parameter passing

Scala uses call-by-value by default, but it switches to
call-by-name evaluation if the parameter type is preceded
by =>.

Imperative control structures

A functional implementation of while loops:
def whileLoop( cond: => Boolean )( comm: => Unit )
{ if (cond) comm ; whileLoop( cond )( comm ) }
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Classes and objects

I classes provide fields and methods. These are
accessed using the dot notation. However, there may
be private fields and methods that are inaccessible
outside the class.
Scala, being an object-oriented language, uses
dynamic dispatch for method invocation. Dynamic
method dispatch is analogous to higher-order function
calls. In both cases, the identity of the code to be executed
is known only at run-time. This similarity is
not superficial. Indeed, Scala represents every
function value as an object.
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I Every class in Scala has a superclass which it extends.
A class inherits all members from its superclass. It may
also override (i.e. redefine) some inherited members.
If class A extends class B, then objects of type A may be
used wherever objects of type B are expected. We say in
this case that type A conforms to type B.

I Scala maintains the invariant that interpreting a value of a
subclass as an instance of its superclass does not change
the representation of the value.
Amongst other things, it guarantees that for each pair of
types S <: T and each instance s of S the following
semantic equality holds:

s.asInstanceOf[T].asInstanceOf[S] = s
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I Methods in Scala do not necessarily take a parameter
list. These parameterless methods are accessed just
as value fields.
The uniform access of fields and parameterless
methods gives increased flexibility for the implementer
of a class. Often, a field in one version of a class
becomes a computed value in the next version.
Uniform access ensures that clients do not have to
be rewritten because of that change.
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I abstract classes may have deferred members which
are declared but which do not have an implementation.
Therefore, no objects of an abstract class may be created
using new.
abstract class IntSet {

def incl( x:Int ): IntSet
def contains( x:Int ): Boolean

}

Abstract classes may be used to provide interfaces.
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I Scala has object definitions. An object definition
defines a class with a single instance. It is not
possible to create other objects with the same
structure using new.
object EmptySet extends IntSet {

def incl( x: Int ): IntSet
= new NonEmptySet(x,EmptySet,EmptySet)

def contains( x: Int ): Boolean = false
}

An object is created the first time one of its members
is accessed. (This strategy is called lazy evaluation.)
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I A trait is a special form of an abstract class that does not
have any value (as opposed to type) parameters for its
constructor and is meant to be combined with other
classes.
trait IntSet {

def incl( x:Int ): IntSet
def contains( x:Int ): Boolean

}

Traits may be used to collect signatures of some
functionality provided by different classes.
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Case study (I)

abstract class Expr {
def isNumber: Boolean
def isSum: Boolean
def numValue: Int
def leftOp: Expr
def rightOp: Expr

}
class Number( n: Int ) extends Expr {

def isNumber: Boolean = true
def isSum: Boolean = false
def numValue: Int = n
def leftOp: Expr = error("Number.leftOp")
def rightOp: Expr = error("Number.rightOp")

}
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class Sum( e1: Expr; e2: Expr ) extends Expr {
def isNumber: Boolean = false
def isSum: Boolean = true
def numValue: Int = error("Sum.numValue")
def leftOp: Expr = e1
def rightOp: Expr = e2

}
def eval( e: Expr ): Int = {

if (e.isNumber) e.NumValue
else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
else error("bad expression")

}

? What is good and what is bad about this implementation?
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Case study (II)

abstract class Expr {
def eval: Int

}

class Number( n: Int ) extends Expr {
def eval: Int = n

}
class Sum( e1: Expr; e2: Expr ) extends Expr {

def eval: Int = e1.eval + e2.eval
}
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This implementation is easily extensible with new types
of data:
class Prod( e1: Expr; e2: Expr ) extends Expr {

def eval: Int = e1.eval * e2.eval
}

But, is this still the case for extensions involving new operations
on existing data?

The language-design problem of allowing a data-type definition
where one can add new cases to the datatype and new
functions over the datatype (without requiring ubiquitous
changes) is known as the ‘expression problem’: http:
//en.wikipedia.org/wiki/Expression_problem
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Case study (III)
Case classes

abstract class Expr
case class Number( n: Int ) extends Expr
case class Sum( e1: Expr; e2: Expr ) extends Expr
case class Prod( e1: Expr; e2: Expr ) extends Expr

I Case classes implicitly come with a constructor
function, with the same name as the class.
Hence one can construct expression trees as:

Sum( Sum( Number(1) , Number(2) ) , Number(3) )

Alan Mycroft Concepts in Programming Languages 227 / 267



I Case classes and case objects implicitly come with
implementations of methods toString, equals, and
hashCode.

I Case classes implicitly come with nullary accessor
methods which retrieve the constructor arguments.

I Case classes allow the constructions of patterns which
refer to the case class constructor (see next slide).

(Case classes are essentially ML data types in an
object-oriented language.)
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Case study (III)
Pattern matching

The match method takes as argument a number of cases:
def eval( e: Expr ): Int

= e match
{ case Number(x) => x

case Sum(l,r) => eval(l) + eval(r)
case Prod(l,r) => eval(l) * eval(r)

}

If none of the patterns matches, the pattern matching
expression is aborted with a MatchError exception.
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Generic types and methods

I Classes in Scala can have type parameters.
abstract class Set[A] {

def incl( x: A ): Set[A]
def contains( x: A ): Boolean

}

I Scala has a fairly powerful type inferencer which allows
one to omit type parameters to polymorphic functions
and constructors.
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Generic types and variance annotations

The combination of type parameters and subtyping poses
some interesting questions.

? If T is a subtype of a type S, should Array[T] be a
subtype of the type Array[S]?

! No, if one wants to avoid run-time checks!
We considered this question for Java earlier.
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Example:

I For ColPoint <: Point and a: Array[ColPoint],
(a.apply(0)).color: Col

type checks.
I Suppose that Array is covariant:
ColPoint <: Point =⇒
Array[ColPoint] <: Array[Point]

so that a: Array[Point].
I Then, for p: Point, we have that a.update(0,p) type

checks; and, as above, so does
(a.apply(0)).color: Col

But this is semantically equal to p.color; a run-time error.
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In Scala, generic types like the following one:
class Array[A] {

def apply( index: Int ): A
...

def update( index: Int, elem: A )
...

}

have by default non-variant subtyping.
However, one can enforce co-variant (or covariant) subtyping
by prefixing a formal type parameter with a +. There is also a
prefix - which indicates contra-variant subtyping.
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Scala uses a conservative approximation to verify
soundness of variance annotations: a covariant type parameter
of a class may only appear in covariant
position inside the class. Hence, the following class
definition is rejected:

class Array[+A] {
def apply( index: Int ): A

...
def update( index:Int , elem: A )

...
}
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Functions are objects

Recall that Scala is an object-oriented language in that every
value is an object. It follows that functions are objects in Scala.
Indeed, the function type

( A1, ..., Ak ) => B

is equivalent to the following parameterised class type:
abstract class Functionk[-A1,...,-Ak,+B]

{ def apply( x1:A1,...,xn:Ak ): B }


Since function types are classes in Scala, they can be
further refined in subclasses. An example are arrays,
which are treated as special functions over the type of
integers.
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The function x => x+1 would be expanded to an instance
of Function1 as follows:

new Function1[Int,Int] {
def apply( x:Int ): Int = x+1

}

Conversely, when a value of a function type is applied to
some arguments, the apply method of the type is implicitly
inserted; e.g. for f and object of type Function1[A,B],
the application f(x) is expanded to f.apply(x).
NB: Function subtyping is contravariant in its arguments
whereas it is covariant in its result. ? Why?
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Generic types
Type parameter bounds

trait Ord[A] {
def lt( that: A ): Boolean

}
case class Num( value: Int ) extends Ord[Num] {

def lt( that: Num ) = this.value < that.value
}

trait Heap[ A <: Ord[A] ] {
def insert( x: A ): Heap[A]
def min: A
def remove: Heap[A]

}
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Generic types
Lower bounds

I A non-example:

abstract class Stack[+A] // covariant declaration
{ def push( x: A ) // A in contravariant position

// hence rejected
: Stack[A]

= new NonEmptyStack(x,this)
def top: A
def pop: Stack[A] }
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I that makes sense:
ColPoint <: Point

s : Stack[ColPoint] <: Stack[Point]

p : Point

s.push(p) : Stack[Point] // OK

(s.push(p)).top : Point // OK
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I Covariant generic functional stacks.
The solution:

abstract class Stack[+A] {
def push[B >: A]( x: B ): Stack[B]

= new NonEmptyStack(x,this)
def top: A
def pop: Stack[A]

}

class NonEmptyStack[+A](elem: A, rest: Stack[A])
extends Stack[A] {

def top = elem
def pop = rest

}
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Implicit parameters and conversions

I Implicit parameters
Scala has an implicit keyword that can be used at the
beginning of a parameter list.

def qsort[T](xs: Array[T])(implicit o: Ord[T]): Array[T]
= if ( xs.length <= 1 ) xs

else {
val pivot = xs( xs.length/2 )
Array.concat(qsort(xs filter (x => o.lt(x,pivot)) ),

xs filter (x => x == pivot ) ,
qsort(xs filter (x => o.lt(pivot,x)) ))

}
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I The principal idea behind implicit parameters is that
arguments for them can be left out from a method call.
If the arguments corresponding to implicit parameters
are missing, they are inferred by the Scala compiler.

I Implicit conversions
As last resort in case of type mismatch the Scala
compiler will try to apply an implicit conversion.
implicit def int2ord( x: Int ): Ord[Int]

= new Ord[Int] { def lt( y: Int ) = x < y }

Implicit conversions can also be applied in member
selections.
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Mixin-class composition

Every class or object in Scala can inherit from several traits
in addition to a normal class.

trait AbsIterator[T] {
def hasNext: Boolean
def next: T

}

trait RichIterator[T] extends AbsIterator[T] {
def foreach( f: T => Unit ): Unit =

while (hasNext) f(next)
}
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class StringIterator( s: String )
extends AbsIterator[Char] {

private var i = 0
def hasNext = i < s.length
def next = { val x = s charAt i; i = i+1; x }

}

Traits can be used in all contexts where other abstract classes
appear; however only traits can be used as mixins.
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object Test {
def main( args: Array[String] ): Unit = {

class Iter extends StringIterator(args(0))
with RichIterator[Char]

val iter = new Iter
iter.foreach(System.out.println)

}
}

The class Iter is constructed from a mixin composition
of the parents StringIterator (called the superclass)
and RichIterator (called a mixin) so as to combine their
functionality.

Alan Mycroft Concepts in Programming Languages 245 / 267



The class Iter inherits members from both StringIterator

and RichIterator.
NB: Mixin-class composition is a form of multiple inheritance,
but avoids the ‘diamond’ problem of C++ and similar languages
(where a class containing a field appears at multiple places in
the inheritance hierarchy).

class A public: int f;
class B: public A ...
class C: public A ...
class D: public B,C ... f ...
// Is this B::f or C::f?
// And do B and C both have an f of type A,,
// or share a single one?
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Scala language innovations

I Flexible syntax and type system.
I Pattern matching over class hierarchies unifies

functional and object-oriented data access.
I Abstract types and mixin composition unify

concepts from object and module systems.

Alan Mycroft Concepts in Programming Languages 247 / 267



˜ Topic X ˜
Miscellaneous (entertaining) concepts

Additional notes for lecture 8
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Overview

I Monadic I/O
I Generalised Algebraic Data Types (GADTs)
I Continuation-passing style (CPS) and call/cc
Wikipedia:Call-with-current-continuation

I Dependent types (Coq and Agda)
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I/O in functional languages

The ML approach: “evaluation is left-right, just let side-effecting
I/O happen as in C or Java”.
I Breaks referential transparency (‘purity’), e.g. that e + e

and let x = e in x + x should be equal.
I Not an appropriate solution for lazy languages (order of

side effects in arguments in a function call would depend
on the detail of the called function).

I Haskell is a lazy function language (“laziness keeps us
pure”).

Everything I say about I/O applies to other side-effecting
operations, e.g. mutable variables, exceptions, backtracking . . .
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Giving different types to pure and impure functions

Suppose we have two types A→ B for functions with no
side-effects and A B for impure functions.
I Then everything with a side effect would be visible in its

type (contagious).
I (Later we might have ways of hiding “locally impure”

functions within a pure function, but this doesn’t apply to
I/O.)

I Instead of writing A B we write A→ B M where M is a
unary type constructor called a monad.
Factors the idea of ‘call a function’ and ‘do the resulting
computation’.

Syntax: ML type constructors are postfix so we write t list or
B M whereas Haskell writes M B and perhaps List t .
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So, how does I/O work?

In ML we might read from and write to stdin/stdout with
(writing for emphasis):

MLrdint: unit  int
MLwrint: int  unit

Using monads (either in Haskell or ML) these instead have type
rdint: int IO
wrint: int -> unit IO

I The unary type constructor IO is predefined, just like the
binary type constructor ‘->’.

I Shouldn’t we have rdint: unit -> int IO?
We could, but this would be a bit pointless—writing takes
an argument and gives a computation, but reading from
stdin is just a computation.
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Composing I/O functions
or Sequencing I/O effects

I In ML we could just write e; e′ to sequence the side effects
of e and those in e′. But now all ‘effects’ like I/O are part of
monadic values, and no longer ‘side effects’—so this
doesn’t work

I Instead every monad M (including IO as a special case)
has two operators: one to sequence computations and one
to create an empty computation.

(>>=): ’a M -> (’a -> ’b M) -> ’b M
(* infix, pronounced ‘bind’ *)

return: ’a -> ’a M
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Digression – Monad Laws

The idea of monad originates in mathematics, so these
operators have axioms relating »= and return in the
mathematics; these are seem as laws which all well-behaved
programming monads satisfy.
[left unit]

m >>= return = m
[right unit]

return x >>= f = f x
[associativity]

(m >>= f) >>= g = m >>= λx.(f x >>= g)

(The bind operator ‘»=’ syntactically groups to the left so the
brackets in the final line are redundant.)
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Using the IO monad

In a system using monadic I/O, for example Haskell, the
read-eval-print loop not only deals with pure values (integers,
lists and the like), but has a special treatment for values in the
IO monad. Given a value of type tIO, it:
I performs the side effects in the monad; then
I prints the resulting value of type t.

So the question is: how do we make a computation which (say)
reads an integer, adds one to it, and then prints the result?
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Using the IO monad – examples

Read an integer, adds one to it, and print the result (using ML
syntax):

rdint >>= (fn x => wrint(x+1));

Do this twice:
let val doit = rdint >>= (fn x => wrint(x+1))
in doit >>= (fn () => doit);

Note that doit has type unit IO, so we use »= to use doit

twice.

NB: computations are not called as they are not functions; they
are composed using »= as in the above examples.
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Using the IO monad – examples (2)

Read pairs of numbers, multiply them, printing the sum of
products so far, until the product is zero.

fun foo s = rdint >>= fn x =>
rdint >>= fn y =>
if (x*y = 0) then return ()
else wrint(s+x*y) >>= fn () =>
foo(s+y*z);

foo 0;

Note the type of foo is int -> unit IO.
Note also the use of return to give a ‘do nothing’ computation.
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Practical use

The Mirage OS (most recent Computer Lab spin-out acquired
by Docker) is written in OCaml in monadic style. But most
monadic-style programs are written in Haskell. GHCi is just like
the ML read-eval-print loop, but remember:
I Haskell syntax uses upper case for constants (types,

constructors) and lower case for variables.
I Haskell swaps ‘:’ and ‘::’ relative to ML
I Type constructors are prefix
I fn x=>e is written \x->e

Haskell also provides do-notation to allow programmers to write
imperative-looking code which de-sugars to uses of return
and »=.
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Other monads

I Many other unary type constructors have natural monadic
structure (at least as important as IO).

I For example, using Haskell syntax, List t and Maybe t.
Another important one is State s t of computations
returning a value of type t, but which can mutate a state of
type s. (Subtlety: the monad is legally the unary type
State s for some given s.)

I Haskell overloads »= and return to work on all such types
(Haskell’s type class construct facilitates this).

I The common idea is ‘threading’ some idea of state
implicitly through a calculation.

Haskell example using List in GHCi:
[1,2,3] >>= \x->if x==2 then return 5 else [x,x]
[1,1,5,3,3]
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Generalised Algebraic Data Types (GADTs)

OCaml data type (just like datatype in ML):

type ’a mylist = MyNil | MyCons of ’a * ’a mylist;;

Can also be written

type ’a mylist = MyNil : ’a mylist
| MyCons : ’a * ’a mylist -> ’a mylist;;

Why bother (it’s longer and duplicates info)?
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How about this:

type _ exp = Val : ’a -> ’a exp
| Eq : ’a exp * ’a exp -> bool exp
| Add : int exp * int exp -> int exp

[This uses OCaml syntax, but Haskell also has GADTs]
Allows bool exp values to be checked that Add, Eq etc. are
used appropriately. E.g.
Val 3: int exp

√

Val true: bool exp
√

Add(Val 3, Val 4): int exp
√

Add(Val 3, Val true) ×
Eq(Val true, Val false): bool exp

√

Eq(Val 3, Val 4): bool exp
√

Eq(Val 3, Val true) ×
Can’t do this in SML.
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Can even write eval where the type of the result depends on
the value of its type:

fun eval(Val(x)) = x
| eval(Eq(x,y)) = eval(x) = eval(y)
| eval(Add(x,y)) = eval(x) + eval(y);

eval: ’a exp -> ’a

(Some type-checking dust being swept under the carpet here.)
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Reified continuations

Make calling continuation appear to be a value in the language
(reifying it).
Reminder on continuation-passing style (CPS), perhaps
mentioned in Compiler Construction. Can see a function of type
t1 → t2 as a function of type

(t2 → unit)→ (t1 → unit)

Or uncurrying
(t2 → unit)× t1 → unit

(One parameter of type t1 and the other saying what to do with
the result t2 – like argument and return address!)
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Instead of

fun f(x) = ... return e ...
print f(42)

we write

fun f’(k, x) = ... return k e’ ...
f(print, 42)

In CPS all functions return unit and all calls are now tail-calls
(so the above isn’t just a matter of adjusting a return statement).
Sussman and Steele papers from the 1970’s (“Lambda the
ultimate XXX”).
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Reified continuations (2)

I A function with two continuation parameters rather than
one can act as normal return vs. exception return. (Or
Prolog success return vs failure return.)

I But we don’t want to write all our code in CPS style. So:
call/cc “call with current continuation”. Lots of neat
programming tricks in a near-functional language.

I Reified? The continuation used at the meta-level
(semantics) to explain how a language operates is
exposed as an object-level (run-time value).
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Reified continuations (3)

Core idea (originally in Scheme, a form of Lisp):

fun f(k) = let x = k(2) in 3;

In ML this function ‘always returns 3’. E.g.

> f(fn x=>x);

But callcc(f) returns 2!
I The return address/continuation used in the call to f is

reified into a side-effecting function value k which
represents the “rest of the computation after the call to f”.

I Some similarity with f(fn x => raise Foo);
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Dependent types – non-examinable illustration

Suppose f is a curried function of n boolean arguments which
returns a boolean. How do we determine if f is a tautology
(always returns true)?

fun taut(0,f) = f
| taut(n,f) = taut(n-1, f true) and also

taut(n-1, f false);

Works nicely in dynamically typed languages. Fails to
type-check in ML. Why?
I The type of the second argument depends on the value of

the first.
I Dependent type systems can capture this (languages like

Coq and Agda).

Alan Mycroft Concepts in Programming Languages 267 / 267


