Distributed systems

Lecture 7: Replication in distributed systems, CAP, case studies

Dr Robert N. M. Watson

Last time

- General issue of consensus:
 - How to get processes to agree on something
 - FLP says "impossible" in asynchronous networks with at least 1 failure ... but in practice we're OK!
 - General idea useful for leadership elections, distributed mutual exclusion: relies on being able to detect failures

Distributed transactions:

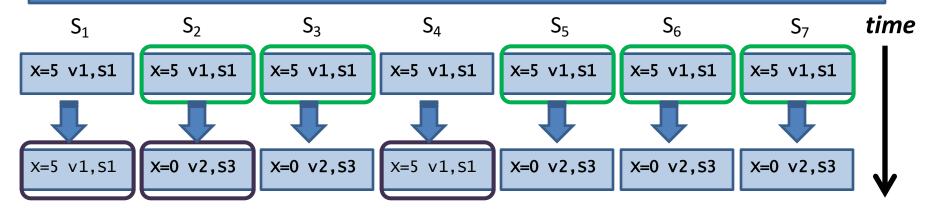
- Need to commit a set of "sub-transactions" across multiple servers – want all-or-nothing semantics
- Use atomic commit protocol like 2PC

Replication:

- Performance, load-balancing, and fault tolerance
- Introduction to consistency

Replication and consistency

- Gets more challenging if clients can perform updates
- For example, imagine x has value 3 (in all replicas)
 - C1 requests write(x, 5) from S4
 - C2 requests read(x) from S3
 - What should occur?
- With strong consistency, the distributed system behaves as if there is no replication present:
 - i.e. in above, C2 should get the value 5
 - requires coordination between all servers
- With weak consistency, C2 may get 3 or 5 (or ...?)
 - Less satisfactory, but much easier to implement


Achieving strong consistency

- Goal: impose total order on updates to some state x
 - Ensure update propagated to replicas before subsequent reads
- Simple **lock-step** solution for object replicated over servers:
 - 1. When S_i receives update for x, locks x at all other replicas
 - 2. Make change to \mathbf{x} on $\mathbf{S_i}$
 - 3. Propagate S_{i} 's change to x to all other replicas
 - 4. Other servers send acknowledgements to S_i
 - 5. After acknowledgments received, instruct replicas to unlock **x**
 - 6. Once C_i has an ACK for its write to S_i , any C_k will see update
- Need to handle failure (of replica, or network)
 - Add step to tentatively apply update, and only actually apply ("commit") update if all replicas agree
- We've reinvented distributed transactions & 2PC!

Quorum systems

- Transactional consistency works, but:
 - High overhead, and
 - Poor availability during update (worse if crash!)
- An alternative is a quorum system:
 - Imagine there are N replicas, a write quorum Q_w , and a read quorum Q_r , where $Q_w > N/2$ and $(Q_w + Q_r) > N$
- To perform a write, must update Q_w replicas
 - Ensures a majority of replicas have new value
- To perform a read, must read **Q**_r replicas
 - Ensures that we read at least one updated value

Example

- Seven replicas (N=7), $\mathbf{Q}_{w} = 5$, $\mathbf{Q}_{r} = 3$
- All objects have associated version (T, S)
 - T is logical timestamp, initialized to zero
 - S is a server ID (used to break ties)
- Any write will update at least Q_w replicas
- Performing a read is easy:
 - Choose replicas to read from until get \mathbf{Q}_r responses
 - Correct value is the one with highest version

Quorum systems: writes

- Performing a write is trickier:
 - Must ensure get entire quorum, or cannot update
 - Hence need a commit protocol (as before)
- In fact, transactional consistency is a quorum protocol with Q_w = N and Q_r = 1!
 - But when $\mathbf{Q}_{\mathbf{w}} < \mathbf{N}$, additional complexity since must bring replicas up-to-date before updating
- Quorum systems are good when expect failures
 - Additional work on update, additional work on reads...
 - ... but increased availability during failure
- How might client-server traffic scale with Q_w/Q_r ?

Weak consistency

- Maintaining strong consistency has costs:
 - Need to coordinate updates to all (or $\mathbf{Q}_{\mathbf{w}}$) replicas
 - Slow... and will block other accesses for the duration
- Weak consistency systems provides fewer guarantees:
 - E.g. C1 updates (replica of) object x at S3
 - S3 lazily propagates changes to other replicas
 - Other clients can potentially read old ("stale") value
 - Writes might conflict: nodes could disagree on current value
- Considerably more efficient:
 - Write is simpler, and doesn't need to wait for communication with lots of other replicas...
 - ... hence is also more available (i.e. fault tolerant)
 - But it can be harder to reason about possible outcomes

FIFO consistency

- As with group communication primitives, various ordering guarantees possible
- FIFO consistency: all updates originating at S_i occur in the same order at all other replicas
 - As with FIFO multicast, can buffer for as long as we like!
 - But says nothing about how S_i 's updates are interleaved with S_i 's at another replica (may put S_i first, or S_i , or mix)
- Still useful in some circumstances
 - e.g. single user accessing different replicas at disjoint times
 - I.e., client will see its writes serialised
 - Essentially primary replication with primary = last accessed

Eventual consistency

- FIFO consistency doesn't provide very nice semantics:
 - E.g. C1 writes V₁ of file f to S₁
 - Later C1 reads f from S2, and writes V2
 - Much later, C1 reads f from S_3 and gets V_1 changes lost!
- What happened?
 - V_1 arrived at S_3 after V_2 , thus overwrote it (stooopid S_3)
- A desirable property in weakly consistent systems is that they converge to a more correct state
 - I.e. in the absence of further updates, every replica will eventually end up with the same latest version
- This is called eventual consistency

Implementing eventual consistency

- Servers S_i keep a version vector V_i(O) for each object
 - For each update of O on S_i, increment V_i(O)[i]
 - (essentially a vector clock reused as a version number)
- Servers synchronize pair-wise from time to time
 - For each object O, compare $V_i(O)$ to $V_j(O)$
 - If V_i(O) < V_j(O), S_i gets an up-to-date copy from S_j;
 if V_j(O) < V_i(O), S_j gets an up-to-date copy from S_i.
- If Vi(O) ~ Vj(O) we have a write-conflict:
 - Concurrent updates have occurred at 2 or more servers
 - Must apply some kind of reconciliation method
 - (similar to revision control systems, and equally painful)

Amazon's Dynamo [2007]

- Storage service used within Amazon's web services
- Designed to prioritise availability above consistency:
 - SLA to give bounded response time 99.99% of the time
 - if customer wants to add something to shopping basket and there's a failure... still want addition to 'work'
 - Even if get (temporarily) inconsistent view... fix later!
- Built around notion of a so-called sloppy quorum:
 - Have N, Q_w , Q_r as we saw earlier... but don't actually require that $Q_w > N/2$, or that $(Q_w + Q_r) > N$
 - Instead make tunable: lower Q values = higher availability(i.e. read/write) throughput
 - Also let system continue during failure

Session guarantees

- Eventual consistency seems great, but how can you program to it?
 - Need to know something about guarantees to the client
- These are called session guarantees:
 - Not system wide, just for one (identified) client
 - Client must be a more active participant
 - E.g. client maintains version vectors of objects it reads/writes
- Example: Read Your Writes (RYW):
 - If C_i writes a new value to x, a subsequent read of x should see this update ... even if C_i is now reading from a different replica
 - Need C_i to remember highest id of any update it made
 - Only read from a server if it has seen that update

Session guarantees + availability

- There are many variations on session guarantees
 - All deal with allowable state on replica given history of accesses by a specific client
- Session guarantees are weaker than strong consistency, but stronger than 'pure' weak consistency:
 - But this means that they sacrifice availability
 - I.e. choosing not to allow a read or write if it would break a session guarantee means not allowing that operation!
 - 'Pure' weak consistency would allow the operation
- Can we get the best of both worlds?

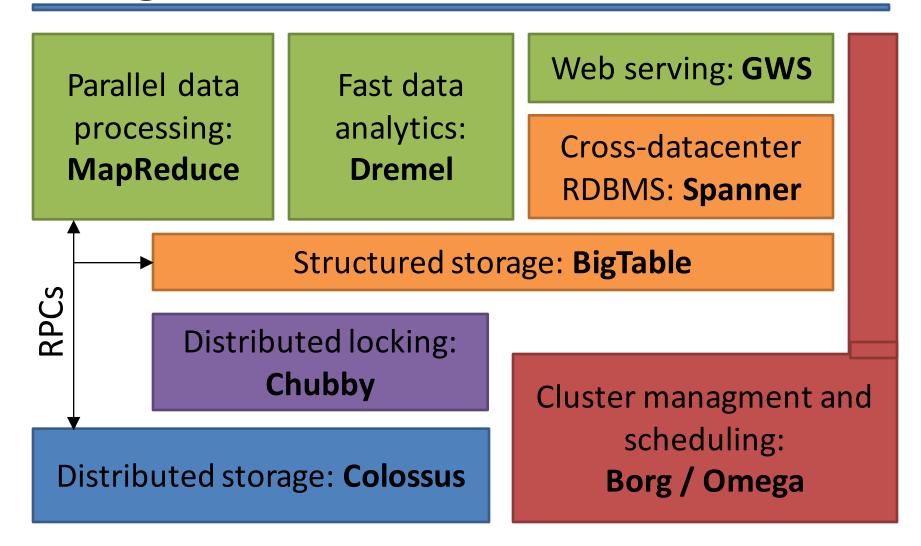
Consistency, Availability & Partitions (CAP)

- Short answer: No ;-)
- The CAP Theorem (Brewer 2000, Gilbert & Lynch 2002) says you can only guarantee two of:
 - Consistent data, Availability, Partition-tolerance
- ... in a single system.
- In local-area systems, can sometimes drop partitiontolerance by using redundant networks
- In the wide-area, this is not an option:
 - Must choose between consistency & availability
 - Most Internet-scale systems ditch consistency
- **NB**: this doesn't mean that things are always inconsistent, just that they're not always **guaranteed** to be consistent

A Google Datacentre

MapReduce

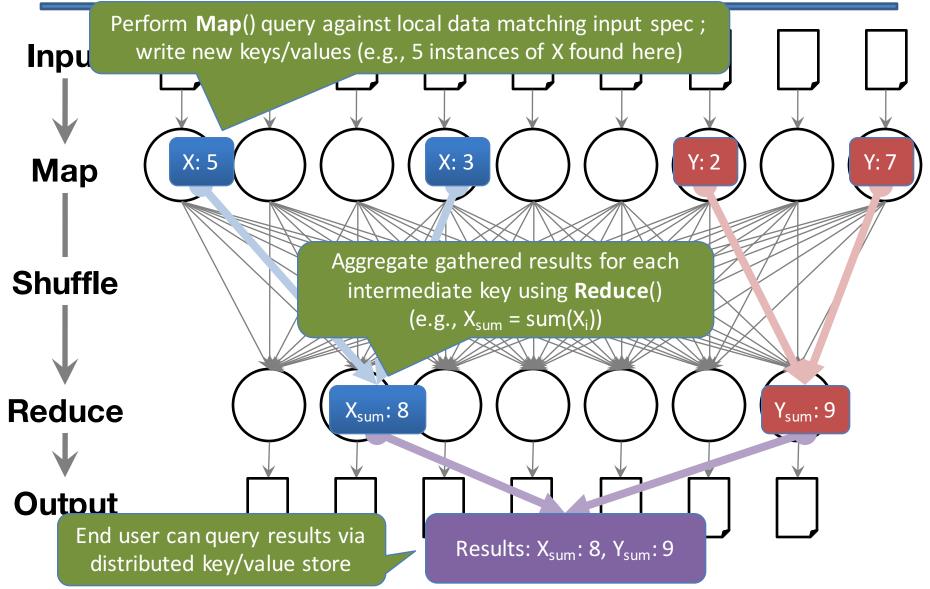
Scalable distributed computation model


BigTable

Distributed storage with weak consistency

Spanner

- Distributed storage with strong consistency
- Many spiffy distributed systems at Google
 - E.g.: **Dapper**: trace RPCs and distributed events

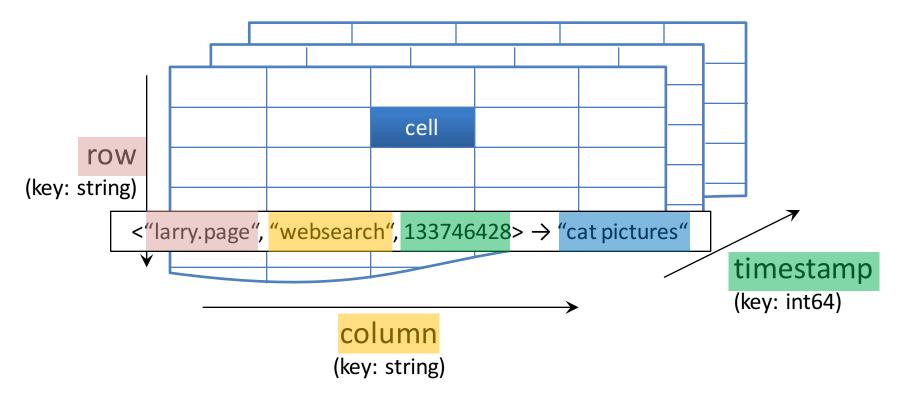

Google: architecture overview

Google's MapReduce [2004]

- Specialised programming framework for scale
 - Run a program on 100's to 10,000's machines
- Framework takes care of:
 - Parallelization, distribution, load-balancing, scaling up (or down) & fault-tolerance
 - Locality: compute close to (distributed) data
- Programmer implements two methods
 - map(key, value) → list of <key', value'> pairs
 - reduce(key', value') → result
 - Inspired by functional programming
- E.g., for every word, count documents using word(s):
 - First, extract words from local documents in map() phase
 - Then, aggregate and generate sums in reduce() phase

MapReduce: The Big Picture

MapReduce example programs


- Sorting data is trivial (map, reduce both identity function)
 - Works since the shuffle step essentially sorts data
- Distributed grep (search for words)
 - map: emit a line if it matches a given pattern
 - reduce: just copy the intermediate data to the output
- Count URL access frequency
 - map: process logs of web page access; output < URL, 1>
 - reduce: add all values for the same URL
- Reverse web-link graph
 - map: output <target, source> for each link to target in a page
 - reduce: concatenate the list of all source URLs associated with a target. Output <target, list(source)>

MapReduce: pros and cons

- Extremely simple, and:
 - Can auto-parallelize (since operations on every element in input are independent)
 - Can auto-distribute (since rely on underlying Colossus/BigTable distributed storage)
 - Gets fault-tolerance (since tasks are idempotent, i.e. can just re-execute if a machine crashes)
- Doesn't really use any of the sophisticated algorithms we've seen (except storage replication)
- However not a panacea:
 - Limited to batch jobs, and computations which are expressible as a map() followed by a reduce()

Google's BigTable [2006]

- "Three-dimensional" structured key-value store:
 - <row key, column key, timestamp> → value

Effectively a distributed, sorted, sparse map

Google's BigTable [2006]

- Distributed tablets (~1 GB max) hold subsets of map
 - Adjacent rows have user-specifiable locality
 - E.g., store pages for a particular website in the same tablet
- On top of **Collossus**, which handles replication and fault tolerance: *only one (active) server per tablet!*
- Reads & writes within a row are transactional
 - Independently of the number of columns touched
 - But: no cross-row transactions possible
- METAO tablet is "root" for name resolution
 - Filesystem meta stored in BigTable itself
- Use Chubby to elect master (META0 tablet server), and to maintain list of tablet servers & schemas
 - 5-way replicated Paxos consensus on data in Chubby

Google's Spanner [2012]

- **BigTable** insufficient for some consistency needs
- Often have transactions across >1 datacentres
 - May buy app on Play Store while travelling in the U.S.
 - Hit U.S. server, but customer billing data is in U.K.
- **Spanner** offers **transactional** consistency: full RDBMS power, ACID properties, at global scale!
- Wide-area consistency is hard
 - due to long delays and clock skew
- Secret sauce: hardware-assisted clock sync
 - Using GPS and atomic clocks in datacentres
 - Use global timestamps and Paxos to reach consensus
 - Still have a period of uncertainty for write TX: wait it out!

Comparison

	Dynamo	BigTable	Spanner
Consistency_	eventual	weak(ish)	strong
Availability	high throughput, low latency	 	low throughput, high latency
Expressivity_	simple key-value	row transactions	full transactions

Summary + next time

- Strong, weak, and eventual consistency
- Quorum replication
- Session guarantees
- CAP theorem
- Amazon, Google case studies
- Publish-Subscribe (PubSub) systems
- Distributed-system security
 - Access control, capabilities, RBAC, single-system sign on
- Distributed storage system case studies
 - NASD, AFS3, and Coda
- Distributed-filesystem case studies++