
Distributed	systems
Lecture	4:	Clock	synchronisation;	logical	clocks

Dr Robert	N.	M.	Watson

1

Last	time

• Started	to	look	at	time	in	distributed	systems
– Coordinating	actions	between	processes

• Physical	clocks	‘tick’	based	on	physical	processes	(e.g.	
oscillations	in	quartz	crystals,	atomic	transitions)
– Imperfect,	so	gain/lose	time	over	time
– (wrt nominal	perfect	 ‘reference’	clock	(such	as	UTC))

• The	process	of	gaining/losing	time	is	clock	drift
• The	difference	between	two	clocks	is	called	clock	skew
• Clock	synchronizationaims	to	minimize	clock	skew	
between	two	(or	a	set	of)	different	clocks

2



The	clock	synchronization	problem

• In	distributed	systems,	we’d	like	all	the	different	
nodes	to	have	the	same	notion	of	time,	but
– quartz	oscillators	oscillate	at	slightly	different	
frequencies	 (time,	temperature,	manufacture)

• Hence	clocks	tick	at	different	rates:
– create	ever-widening	 gap	in	perceived	 time
– this	is	called	clock	drift

• The	difference	between	two	clocks	at	a	given	
point	in	time	is	called	clock	skew

• Clock	synchronization	aims	to	minimize	clock	
skew	between	two	(or	a	set	of)	different	clocks

3

From	last	lecture

Dealing	with	drift

• A	clock	can	have	positive	or	negative	drift	with	
respect	to	a	reference	clock	(e.g.	UTC)
– Need	to	[re]synchronize	periodically

• Can’t	just	set	clock	to	‘correct’	time
– Jumps	(particularly	backward!)	can	confuse	apps

• Instead	aim	for	gradual	compensation
– If	clock	fast,	make	it	run	slower	until	correct

– If	clock	slow,	make	it	run	faster	until	correct

4



Compensation

• Most	systems	relate	real-time	to	cycle	counters	or	periodic	
interrupt	sources
– E.g.	calibrate	CPU	Time-Stamp	Counter	(TSC)	against	CMOS	

Real-Time	Clock	(RTC) at	boot,	and	compute	scaling	factor	(e.g.	
cycles	per	ms)

– Can	now	convert	TSC	differences	 to	real-time
– Similarly	can	determine	how	much	real-time	passes	between	

periodic	interrupts:	call	this	delta
– On	interrupt,	add	delta	to	software	real-time	 clock

• Making	small	changes	to	delta	gradually	 adjusts	time
– Once	synchronized,	change	delta	back	to	original	value
– (Or	try	to	estimate	drift	&	continually	adjust	delta)
– Minimise	time	discontinuities	from	stepping

5

Obtaining	accurate	time

• Of	course,	need	some	way	to	know	correct	time	
(e.g.	UTC)	in	order	to	adjust	clock!
– could	attach	a	GPS	receiver	 (or	GOES	receiver)	 to	
computer,	and	get	±1ms	(or	±0.1ms)	accuracy…

– …but	too	expensive/clunky	 for	general	use
– (RF	in	server	 rooms	and	data	centres non-ideal)

• Instead	can	ask	some	machine	with	a	more	
accurate	clock	over	the	network:	a	time	server

– e.g.	send	RPC	getTime()	to	server
– What’s	the	problem	here?

6



Cristian’s	Algorithm	(1989)

• Attempt	to	compensate	for	network	delays
– Remember	local	time	just	before	sending:	T0
– Server	 gets	request,	and	puts	Ts into	response
– When	client	receives	 reply,	notes	local	time:	T1
– Correct	 time	is	then	approximately	 (Ts +	(T1- T0)	/	2)
– (assumes	symmetric	behaviour...)

7

client

server
time

request reply

T0 T1

Ts

Cristian’s	Algorithm:	Example

• RTT	=	460ms,	so	one	way	delay	is	[approx]	230ms.
• Estimate	correct	time	as	(08:02:04.325	+	230ms)	=	08:02:04.555
• Client	gradually	adjusts	local	clock	to	gain	2.425	seconds

8

C08:02:01.670

S

C08:02:02.130

08:02:04.325

T0

T1

Ts

Tim
e



Berkeley	Algorithm	(1989)

• Don’t	assume	have	an	accurate	time	server
• Try	to	synchronize	a	set	of	clocks	to	the	average

– One	machine,	M,	is	designated	the	master
– M	periodically	polls	all	other	machines	for	their	time
– (can	use	Cristian’s	technique	to	account	for	delays)
– Master	computes	average	(including	itself,	but	ignoring	
outliers),	and	sends	an	adjustment	to	each	machine

M

A B C

0
8
:0
2
:0
1

08:01:17 M

A B C

-0
0
:0
0
:3
1

Avg =	(01:17+01:12+02:01)/3

=	(04:30/3)	=	01:30

9

+00:00:13

Network	Time	Protocol	(NTP)

• Previous	schemes	designed	for	LANs;	in	practice	
today’s	systems	use	NTP:
– Global	service	 designed	to	enable	clients	 to	stay	
within	 (hopefully)	 a	few	ms	of	UTC

• Hierarchy	of	clocks	arranged	into	strata
– Stratum0	=	atomic	clocks	(or	maybe	GPS,	GEOS)
– Stratum1	=	servers	directly	 attached	to	stratum0	clock
– Stratum2	=	servers	that	synchronize	with	stratum1
– …	and	so	on

• Timestamps	made	up	of	seconds	and	‘fraction’
– e.g.	32	bit	seconds-since-epoch;	 32	bit	‘picoseconds’

10



NTP	algorithm

• UDP/IP	messages	with	slots	for	four	timestamps
– systems	insert	timestamps	at	earliest/latest	opportunity

• Client	computes:
– Offset	O	=	((T1-T0)	+	(T2-T3))	/	2
– Delay	D	=	(T3-T0)	– (T2-T1)

• Relies	on	symmetric	messaging	delays	to	be	correct	
(but	now	excludes	variable	processing	delay	at	server)

11

client

server
time

request reply

T0 T3

T1 T2

Measured	difference	in	average	
timestamps:	 (T1+T2)/2	– (T0+T3)/2

Estimated	two-way	communication	
delay	minus	processing	time

NTP	example

• First	request/reply	pair:	
– Total	message	delay	is	((6-3)	- (38-37))	=	2	
– Offset	is	((37-3)	+	(38-6))	/	2	=	33

• Second	request/reply	pair:	
– Total	message	delay	is	((13-8)	- (45-42))	=	2	
– Offset	is	((42-8)	+	(45-13))	/	2	=	33

12

client

server
time

request reply

02 03 04 05 06 07 08 09 10 11 12 13

35 36 37 38 39 40 41 42 43 44 45 46



NTP:	additional	details	(1)

• NTP	uses	multiple	requests	per	server
– Remember	<offset,	delay>	in	each	case
– Calculate	 the	filter	dispersion	of	the	offsets	&	discard	
outliers

– Chooses	remaining	candidate	with	the	smallest	delay

• NTP	can	also	use	multiple	servers
– Servers	 report	synchronization	dispersion =	estimate	
of	their	quality	 relative	 to	the	root	(stratum	0)

– Combined	procedure	 to	select	best	samples	from	best	
servers	(see	RFC	5905	for	the	gory	details)

13

NTP:	additional	details	(2)

• Various	operating	modes:	
– Broadcast (“multicast”):	server	advertises	current	
time

– Client-server (“procedure	call”):	as	described	on	
previous

– Symmetric:	between	a	set	of	NTP	servers

• Security	is	supported
– Authenticate	server,	prevent	replays
– Cryptographic	cost	compensated	for

14



Physical	clocks:	summary

• Physical	devices	exhibit	clock	drift
– Even	 if	initially	correct,	they	tick	too	fast	or	too	slow,	and	
hence	time	ends	up	being	wrong

– Drift	rates	depend	on	the	specific	device,	and	can	vary	
with	time,	temperature,	 acceleration,	…

• Instantaneous	difference	between	clocks	is	clock	skew
• Clock	synchronization	algorithmsattempt	to	minimize	
the	skew	between	a	set	of	clocks
– Decide	upon	a	target	correct	time	(atomic,	or	average)
– Communicate	to	agree,	compensating	for	delays
– In	reality,	will	still	have	1-10ms	skew	after	sync	;-(

15

Ordering

• One	use	of	time	is	to	provide	ordering
– If	I	withdrew	 £100	cash	at	23:59.44…	
– And	the	bank	computes	interest	at	00:00.00…
– Then	interest	calculation	shouldn’t	 include	 the	£100	

• But	in	distributed	systems	we	can’t	perfectly	
synchronize	time	=>	cannot	use	this	for	ordering
– Clock	skew	can	be	large,	and	may	not	be	trusted
– And	over	large	distances,	relativistic	events	mean	that	
ordering	depends	on	the	observer

– (similar	effect	due	to	finite	‘speed	of	Internet’	;-)

16



The	“happens-before”	relation

• Often	don’t	need	to	know	when event	a occurred	
– Just	need	to	know	if	a occurred	 before	or	after	b

• Define	the	happens-before relation,	a	→ b
– If	events	a and	b are	within	the	same	process,	then	
a→ b	if	a occurs	with	an	earlier	 local	timestamp

– Messages	between	processes	are	ordered	causally,	
i.e.	the	event	send(m) → the	event	receive(m)

– Transitivity:	 i.e.	if	a→ b	and	b→ c,	then	a→ c
• Note	that	this	only	provides	a	partial	order:
– Possible	for	neither	a→ b	nor b→ a	to	hold	
– We	say	that	a and	b are	concurrent and	write	a ~	b

17

Example

• Three	processes	(each	with	2	events),	and	2	messages
– Due	to	process	order,	we	know	a→ b,	c→ d	and e→ f
– Causal	order	tells	us	b→ c	and d→ f	
– And	by	transitivity a→ c,	a→ d,	a→ f,	b→ d,	b→ f,	c→ f

• However	event	e is	concurrentwith	a,	b,	c and	d

18

P1

P2 physical	time

P3

a b

e f

c d

m1

m2

? ?

? ?



Implementing	Happens-Before

• One	early	scheme	due	to	Lamport [1978]
– Each	process	Pi has	a	logical	clock	Li

• Li can	simply	be	an	integer,	initialized	 to	0

– Li is	incremented	 on	every	 local	event	e
• We	write	Li(e)	or	L(e)	as	the	timestamp	of	e

– When	Pi	sends	a	message,	it	increments	Li and	copies	
the	value	into	the	packet

– When	Pi	 receives	a	message	from	Pj,	it	extracts	Lj and	
sets	Li	:=	max(Li,Lj),	 and	then	increments	Li

• Guarantees	that	if	a→ b,	then	L(a)	<	L(b)
– However	 if	L(x)	<	L(y),	this	doesn’t	imply	x→ y !

19

Lamport Clocks:	Example

• When	P2 receives	m1,	it	extracts	timestamp	2	and	sets	its	
clock	to	max(0,	2)	before	increment

• Possible	for	events	to	have	duplicate	timestamps
– e.g.	event	e has	the	same	timestamp	as	event	a

• If	desired	can	break	ties	by	looking	at	pids,	IP	addresses,	…	
– this	gives	a	total	order,	but	doesn’t	 imply	happens-before!

20

P1

P2 physical	time

P3

a b

e f

c d

1 2

3 4

1 5

m1

m2



Vector	clocks

• With	Lamport clocks,	given	L(a)	and	L(b),	we		
can’t	tell	if	a→ b	or	b→ a	or a	~	b

• One	solution	is	vector	clocks:
– An	ordered	 list	of	logical	clocks,	one	per-process
– Each	process	Pi maintains	Vi[],	initially	all	zeroes
– On	a	local	event	e,	Pi increments	Vi[i]

• If	the	event	is	message	send,	new	Vi[]	copied	into	packet

– If	Pi receives	a	message	from	Pj then,	for	all	k	=	0,	1,	…,	
it	sets	Vi[k]	:=	max(Vj[k],	 Vi[k]),	and	increments	Vi[i]

• Intuitively	Vi[k]	captures	the	number	of	events	at	
process	Pk that	have	been	observed	by	Pi

21

Vector	clocks:	example

• When	P2 receives	m1,	it	merges the	entries	from	P1’s	clock
– choose	the	maximum	value	in	each	position

• Similarly	when	P3 receives	m2,	it	merges	in	P2’s	clock
– this	incorporates	the	changes	from	P1 that	P2 already	saw

• Vector	clocks	explicitly	 track	the	transitive	causal	order:	f’s
timestamp	captures	the	history	of	a,	b,	c &	d

22

P1

P2 physical	time

P3

a b

e f

c d

(1,0,0)

m1

m2

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)



Using	vector	clocks	for	ordering

• Can	compare	vector	clocks	piecewise:
– Vi =	Vj iff Vi[k]	=	Vj[k]	 for	k	=	0,	1,	2,	…
– Vi ≤	Vj iff Vi[k]	≤	Vj[k]	 for	k	=	0,	1,	2,	…
– Vi <	Vj iff Vi ≤	Vj and	Vi ≠	Vj

– Vi ~	Vj otherwise
• For	any	two	event	timestamps	T(a)	and	T(b)
– if	a→ b then T(a)	<	T(b)	;	and
– if	T(a)	<	T(b)	then	a→ b

• Hence	can	use	timestamps	to	determine	if	there	
is	a	causal	ordering	between	any	two	events
– i.e.	determine	whether	a→ b,	b→ a	or a ~ b

23

e.g.	[2,0,0]	versus	[0,0,1]

Does	this	seem	familiar?	Recall	Time-Stamp	Ordering	and	Optimistic	
Concurrency	Control	for	transactions	last	term.

Summary	+	next	time	(ironically)

• The	clock	synchronisation problem
• Cristian’s	Algorithm,	Berkeley	Algorithm,	NTP
• Logical	time	via	the	happens-before	relation
• Vector	clocks

• More	on	vector	clocks
• Consistent	cuts
• Group	communication
• Enforcing	ordering	vs.	asynchrony
• Distributed	mutual	exclusion

24


