Concurrent systems

Lecture 4: Safety and liveness

Dr Robert N. M. Watson

Reminder from last time

 Alternatives to simple semaphores/locks:
— Conditional critical regions (CCRs)
— Monitors and condition variables
— Signal-and-wait vs. signal-and-continue semantics

* Concurrency primitives in practice

* Concurrency primitives wrap-up

15/09/15

From last time: primitives summary

* Concurrent systems require means to ensure:
— Safety (mutual exclusion in critical sections), and
— Progress (condition synchronization)
* Spinlocks (busy wait); semaphores; CCRs and monitors
— Hardware primitives for synchronisation
— Signal-and-Wait vs. Signal-and-Continue
* Many of these are still used in practice
— subtle minor differences can be dangerous
— require care to avoid bugs
— E.g., “lost wakeups”

* More detail on implementation in our case study

Progress is particularly difficult, in large part because of

primitives themselves, and is the topic of this lecture

This time

Liveness properties

Deadlock

— Requirements

— Resource allocation graphs
— Detection

— Prevention — the Dining Philosophers
— Recovery

Priority inversion
Priority inheritance

15/09/15

Liveness Erogerties

* From a theoretical viewpoint must ensure that
we eventually make progress, i.e. want to avoid
— Deadlock (threads sleep waiting for each other), and
— Livelock (threads execute but make no progress)
* Practically speaking, also want good performance
— No starvation (single thread must make progress)
— (more generally may aim for fairness)
— Minimality (no unnecessary waiting or signalling)

* The properties are often at odds with safety :-(

Deadlock

» Set of k threads go asleep and cannot wake up
— each can only be woken by another who's asleep!
* Real-life example (Kansas, 1920s):

— “When two trains approach each other at a crossing, both
shall come to a full stop and neither shall start up again
until the other has gone.”

* In concurrent programs, tends to involve the taking of

mutual exclusion locks, e.g.:

// thread 1 // thread 2
Tock(X); Tock(Y); > ‘
e .. > |
Tock(Y); if(<cond>) {
// critical section Tock(X);
unlock(Y);

15/09/15

Requirements for deadlock

* Like all concurrency bugs, deadlock may be rare

(e.g. imagine <cond> is mostly false)
* In practice there are four necessary conditions

1. Mutual Exclusion: resources have bounded #owners

2. Hold-and-Wait: can get Rx and wait for Ry

3. No Preemption: keep Rx until you release it

4. Circular Wait: cyclic dependency
* Require all four to be true to get deadlock

— But most modern systems always satisfy 1, 2, 3

Resource allocation graphs

e Graphical way of thinking about deadlock

» Circles are threads (or processes), boxes are single
owner resources (e.g. mutual exclusion locks)

* A cycle means we (will) have deadlock

Dashed line T->R
T wants resource R

Thick line R->T means
T holds resource R

15/09/15

Resource allocation graghs

e Can generalize to resources which can have K
distinct users (c/f semaphores)

* Absence of a cycle means no deadlock...
— but presence only means may have deadlock, e.g.

Dealing with deadlock

1. Ensure it never happens
— Deadlock prevention
— Deadlock avoidance (Banker’s Algorithm)

2. Let it happen, but recover
— Deadlock detection & recovery
3. Ignore it!
— The so-called “Ostrich Algorithm” ;-)
— i.e. let the programmer fix it
— Very widely used in practice!

10

15/09/15

Deadlock prevention

1. Mutual Exclusion: resources have bounded #owners
— Could always allow access... but probably unsafe ;-(
— However can help e.g. by using MRSW locks

2. Hold-and-Wait: can get Rx and wait for Ry

— Require that we request all resources simultaneously; deny the
request if any resource is not available now

— But must know maximal resource set in advance = hard?
3. No Preemption: keep Rx until you release it

— Stealing a resource generally unsafe (but see later)
4. Circular Wait: cyclic dependency

— Impose a partial order on resource acquisition

— Can work: but requires programmer discipline

— Lock order enforcement rules used in many systems eg FreeBSD
WITNESS — static and dynamic orders checked

11

Example: Dining Philosophers

* 5 philosophers, 5 forks, round table...

Semaphore forks[] = new Semaphore[5];

while(true) { // philosopher i
think();
wait(fork[i]);
wait(fork[(i+1) % 5]1;
eat();
signal (fork[i]);
signal (fork[(i+1) % 5];
}

* Possible for everyone to acquire ‘left’ fork (i)
* Q: what happens if we swap order of signal()s?

12

15/09/15

Example: Dining Philosophers

* (one) Solution: always take lower fork first
Semaphore forks[] = new Semaphore[5]; C:3

while(true) { // philosopher 1

think(Q); \(:>
first = MIN(i, (i+1) % 5); OQ %OD
second = MAX(i, (1+1) % 5); Y
wait(fork[first]);

wait(fork[second]; O O
eat(); @ O

signal(fork[second]);
signal (fork[first]);

}

* NowevenifO,12,3are held, 4 will not acquire final fork

13

Deadlock avoidance

* Prevention aims for deadlock-free “by design”

* Deadlock avoidance is a dynamic scheme:

— Assume we know maximum possible resource
allocation for every process / thread

— Track actual allocations in real-time
— When a request is made, only grant if guaranteed no
deadlock even if all others take max resources
* e.g. Banker’s Algorithm — see textbooks

— Not really useful in general as need a priori knowledge
of #processes/threads, and their max resource needs

14

15/09/15

Deadlock detection

* Deadlock detection is a dynamic scheme that
determines if deadlock exists

 When only a single instance of each resource,
can explicitly check for a cycle:
— Keep track which object each thread is waiting for

— From time to time, iterate over all threads and
build the resource allocation graph

— Run a cycle detection algorithm on graph O(n?)
 More difficult if have multi-instance resources

15

Deadlock detection

* Have m distinct resources and n threads
e V[0:m-1], vector of available resources

A, the m x nresource allocation matrix, and R,
the m x n (outstanding) request matrix
— A,,; is the number of objects of type j owned by i
— R,,; is the number of objects of type j needed by i

Proceed by marking rows in A for threads that
are not part of a deadlocked set
— If we cannot mark all rows of A we have deadlock

Optimistic assumption: if we can fulfill thread i’s request R/, then it will run

to completion and release held resources for other threads to allocate.

15/09/15

Deadlock detection algorithm

 Mark all zero rows of A (since a thread holding
zero resources can’t be part of deadlock set)

* |nitialize a working vector W[0:m-1] to V
e Select an unmarked row j of A s.t. R[i] <=W

— (i.e. find a thread who’s request can be satisfied)
— Set W =W + A[i]; mark row /, and repeat

* Terminate when no such row can be found
— Unmarked rows (if any) are in the deadlock set

W] describes any free resources at start, plus any resources released by a

hypothesized sequence of satisfied threads freeing and terminating

Deadlock detection example 1

* Five threads and three resources (none free)

A R vV W
XY Z XY Z XY Z XY Z
0 o+6 [000] o000 (725
T1L 200 [202
T2 363 (000
T3 2=
4 oo+ [002]

* Find an unmarked row, mark it, and update W
« TO,T2,T3,T4,T1

18

15/09/15

15/09/15

Deadlock detection example 2

* Five threads and three resources (none free)

A R Vv W
XY Z XY Z XY Z XY Z
T0 016 000 000 010
T1 | 200 2 0 2
72| 303 001 '
3 211 100 \J\I
T4 | 001 002
|

* One minor tweak to T2’s request vector...

19

Deadlock recovery

What can we do when we detect deadlock?
Simplest solution: kill someone!

— ldeally someone in the deadlock set ;-)

Brutal, and not guaranteed to work

— But sometimes the best we can do
— E.g. Linux OOM killer (better than system reboot?)

Could also resume from checkpoint
— Assuming we have one

In practice computer systems seldom detect or
recover from deadlock: rely on programmer

20

10

Livelock

* Deadlock is at least ‘easy’ to detect by humans
— System basically blocks & stops making any progress

* Livelock is less easy to detect as threads continue to
run... but do nothing useful

e Often occurs from trying to be clever, e.g.:

// thread 1 // thread 2

Tock(X); Tock(Y);

while (!'trylock(Yy)) { while(!trylock(X)) {
unlock(X); unlock(Y);
yield(); yield();
lock(X); Tock(Y);

} }

21

Priority Inversion

* Another liveness problem...

— Due to interaction between locking and scheduler
e Consider three threads: T1, T2, T3

— T1 is high priority, T2 low priority, T3 is medium

— T2 gets lucky and acquires lock L...

— ... T1 preempts him and sleeps waiting for L...

— ... then T3 runs, preventing T2 from releasing L!
* This is not deadlock or livelock

— But not very desirable (particularly in RT systems)

22

15/09/15

11

Priority inheritance

e Typical solution is priority inheritance:

— Temporarily boost priority of lock holder to that of the
highest waiting thread

— Concrete benefits to system interactivity

— (some RT systems (like VxWorks) allow you specify on
a per-mutex basis [to Rover’s detriment ;-])

 Windows “solution”

— Check if any ready thread hasn’t run for 300 ticks
— If so, double its guantum and boost its priority to 15

-©

23

Problems with priority inheritance

* Hard to reason about resulting behaviour: heuristic
* Works for locks

— More complex than it appears at first: propagation might need
to be extended over multiple locks

— How might we handle reader-writer locks?

* But what about process synchronisation, resource
allocation?

— With locks, we know what thread holds the lock

— Semaphores do not record which thread might issue a signal or
release an allocated resource

— Must compose across multiple waiting types: e.g., “waiting for a
signal while holding a lock”

* Where possible, avoid the need for priority inheritance
— Avoid resource sharing between threads of differing priorities

24

15/09/15

12

Summary + next time

* Liveness properties

* Deadlock (requirements; resource allocation graphs;
detection; prevention; recovery)

* The Dining Philosophers
* Priority inversion
* Priority inheritance

* Next time:
— Concurrency without shared data
— Active objects; message passing
— Composite operations; transactions
— ACID properties; isolation; serialisability

25

15/09/15

13

