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Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression φ in 3CNF with m clauses is mapped by the

reduction to the pair (G,m), where G is the graph obtained from φ

as follows:

G contains m triangles, one for each clause of φ, with each

node representing one of the literals in the clause.

Additionally, there is an edge between two nodes in

different triangles if they represent literals where one is the

negation of the other.
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Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

x1

x2
¬x3

¬x1

¬x2x3
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Clique

Given a graph G = (V,E), a subset X ⊆ V of the vertices is called

a clique, if for every u, v ∈ X , (u, v) is an edge.

As with IND, we can define a decision problem:

CLIQUE is defined as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains a clique with K or more

vertices.
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Clique 2

CLIQUE is in NP by the algorithm which guesses a clique and then

verifies it.

CLIQUE is NP-complete, since

IND ≤P CLIQUE

by the reduction that maps the pair (G,K) to (Ḡ,K), where Ḡ is

the complement graph of G.
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k-Colourability

A graph G = (V,E) is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E,

χ(u) 6= χ(v)

This gives rise to a decision problem for each k.

2-colourability is in P.

For all k > 2, k-colourability is NP-complete.
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3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT

to 3-Colourability.

For each variable x, we have two vertices x, x̄ which are connected

in a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l1, l2 and l3 we

have a gadget.
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Gadget

l1

l2

l3 b

With a further edge from a to b.
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Hamiltonian Graphs

Recall the definition of HAM—the language of Hamiltonian graphs.

Given a graph G = (V,E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Anuj Dawar May 4, 2016



Complexity Theory 10

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a

graph, so that every satisfying truth assignment to the expression

corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.
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Travelling Salesman

Recall the travelling salesman problem

Given

• V — a set of nodes.

• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1
∑

i=1

c(vi, vi+1)

is the smallest possible.
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Travelling Salesman

As with other optimisation problems, we can make a decision

problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

(V, c : V × V → IN, t)

such that there is a tour of the set of vertices V , which under the

cost matrix c, has cost t or less.
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Reduction

There is a simple reduction from HAM to TSP, mapping a graph

(V,E) to the triple (V, c : V × V → IN, n), where

c(u, v) =







1 if (u, v) ∈ E

2 otherwise

and n is the size of V .
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Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to

be NP-complete.

Literally hundreds of naturally arising problems have been proved

NP-complete, in areas involving network design, scheduling,

optimisation, data storage and retrieval, artificial intelligence and

many others.

Such problems arise naturally whenever we have to construct a

solution within constraints, and the most effective way appears to

be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose

significance lies in that they have been used to prove a large

number of other problems NP-complete, through reductions.
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