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Provable Intractability

Our aim now is to show that there are languages (or, equivalently,

decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f , there

is a language that is not in TIME(f).

The proof is based on the diagonal method, as in the proof of the

undecidability of the halting problem.
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Time Hierarchy Theorem

For any constructible function f , with f(n) ≥ n, define the

f -bounded halting language to be:

Hf = {[M ], x |M accepts x in f(|x|) steps}

where [M ] is a description of M in some fixed encoding scheme.

Then, we can show

Hf ∈ TIME(f(n)3) and Hf 6∈ TIME(f(⌊n/2⌋))

Time Hierarchy Theorem

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(2n+ 1)3).
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Strong Hierarchy Theorems

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(n)(log f(n))).

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and

g 6= O(f), there is a language in SPACE(g(n)) that is not in

SPACE(f(n)).

Similar results can be established for nondeterministic time and

space classes.
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Consequences

• For each k, TIME(nk) 6= P.

• P 6= EXP.

• L 6= PSPACE.

• Any language that is EXP-complete is not in P.

• There are no problems in P that are complete under linear time

reductions.
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Descriptive Complexity

Descriptive Complexity is an attempt to study the complexity of

problems and classify them, not on the basis of how difficult it is to

compute solutions, but on the basis of how difficult it is to describe

the problem.

This gives an alternative way to study complexity, independent of

particular machine models.

Based on definability in logic.
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Graph Properties

As an example, consider the following three decision problems on

graphs.

1. Given a graph G = (V,E) does it contain a triangle?

2. Given a directed graph G = (V,E) and two of its vertices

a, b ∈ V , does G contain a path from a to b?

3. Given a graph G = (V,E) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever

(u, v) ∈ E, χ(u) 6= χ(v).
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Graph Properties

1. Checking if G contains a triangle can be solved in polynomial

time and logarithmic space.

2. Checking if G contains a path from a to b can be done in

polynomial time.

Can it be done in logarithmic space?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in exponential time

and polynomial space.

Can it be done in polynomial time?

Unlikely. It is NP-complete.
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Logical Definability

In what kind of formal language can these decision problems be

specified or defined?

The graph G = (V,E) contains a triangle.

∃x, y, z ∈ V (x 6= y ∧ y 6= z ∧ x 6= z ∧ E(x, y) ∧ E(x, z) ∧ E(y, z))

The other two properties are provably not definable with only

first-order quantification over vertices.
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First-Order Logic

Consider first-order predicate logic.

A collection of variables x, y, . . ., and formulas:

E(x, y) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ

Any property of graphs that is expressible in first-order logic is in L.

The problem of deciding whether G |= φ for a first-order φ is in

time O(lnm) and O(m logn) space.

where, l is the length of φ and n the order of G and m is the

nesting depth of quantifiers in φ.
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Complexity of First-Order Logic

The straightforward algorithm proceeds recursively on the

structure of φ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If φ ≡ ∃xψ then for each v in G check whether

(G, x 7→ v) |= ψ.
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Second-Order Quantifiers

3-Colourability and Reachability can be defined with quantification

over sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V

∀x(Rx ∨Bx ∨Gx)∧

∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))

∀S ⊆ V (a ∈ S ∧ ∀x∀y((x ∈ S ∧ E(x, y)) → y ∈ S) → b ∈ S)
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Existential Second-Order Logic

Second-order logic is obtained by adding to the defining rules of

first-order logic two further clauses:

atomic formulae – X(t1, . . . , ta), where X is a second-order

variable

second-order quantifiers – ∃Xφ, ∀Xφ

Existential Second-Order Logic (ESO) consists of formulas of the

form

∃X1 · · · ∃Xkφ

where φ is first-order
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Fagin’s Theorem

Theorem (Fagin)

A class of graphs is definable by a formula of existential

second-order logic if, and only if, it is decidable by a

nondeterminisitic machine running in polynomial time.

ESO = NP

One direction is easy: Given G and ∃X1 . . .∃Xkφ.

a nondeterministic machine can guess an interpretation for

X1, . . . , Xk and then verify φ.

The other direction requires a proof similar to Cook’s theorem.
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A Logic for P?

Is there a logic, intermediate between first and second-order logic

that expresses exactly graph properties in P?

This is an open question, still the subject of active research.
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The End

Please provide feedback, using the link sent to you by e-mail.
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