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Face Detection, Recognition, and Interpretation

Some variations in facial appearance (L.L. Boilly: Réunion de Têtes Diverses)
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(Face Detection, Recognition, and Interpretation, con’t)

Detecting faces and recognising their identity is a “Holy Grail” problem
in computer vision. It is difficult for all the usual reasons:

I Faces are surfaces on 3D objects (heads), so facial images depend
on pose and perspective angles, distance, and illumination

I Facial surfaces have relief, so some parts (e.g. noses) can occlude
other parts. Hair can also create random occlusions and shadows

I Surface shape causes shading and shadows to depend upon the angle
of the illuminant, and whether it is an extended or a point source

I Faces have variable specularity (dry skin may be Lambertian,
whereas oily or sweaty skin may be specular). As always, this
confounds the interpretation of the reflectance map

I Parts of faces can move around relative to other parts (eye or lip
movements; eyebrows and winks). We have 7 pairs of facial muscles.
People use their faces as communicative organs of expression

I People put things on their faces (e.g. glasses, cosmetics, cigarettes),
change their facial hair (moustaches, eyebrows), and age over time
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(Face Detection, Recognition, and Interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

These are different persons, in genetically identical (monozygotic) pairs:
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(Face Detection, Recognition, and Interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Persons who share 50% of their genes (parents and children; full siblings;
double cousins) sometimes look almost identical (apart from age cues):
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(Face Detection, Recognition, and Interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

...and these are completely unrelated people, in Doppelgänger pairs:Photos by François Brunelle of unrelated doppelgängers 

6 / 33



(Face Detection, Recognition, and Interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Same person, fixed pose and expression; varying illumination geometry:

BELHUMEUR ET AL.:  EIGENFACES VS. FISHERFACES: RECOGNITION USING CLASS SPECIFIC LINEAR PROJECTION 715

3 EXPERIMENTAL RESULTS

In this section, we present and discuss each of the afore-
mentioned face recognition techniques using two different
databases. Because of the specific hypotheses that we
wanted to test about the relative performance of the consid-
ered algorithms, many of the standard databases were in-
appropriate. So, we have used a database from the Harvard
Robotics Laboratory in which lighting has been systemati-
cally varied. Secondly, we have constructed a database at
Yale that includes variation in both facial expression and
lighting. 1

3.1 Variation in Lighting
The first experiment was designed to test the hypothesis
that under variable illumination, face recognition algo-
rithms will perform better if they exploit the fact that im-
ages of a Lambertian surface lie in a linear subspace. More
specifically, the recognition error rates for all four algo-
rithms described in Section 2 are compared using an im-
age database constructed by Hallinan at the Harvard Ro-
botics Laboratory [14], [15]. In each image in this data-
base, a subject held his/her head steady while being illu-
minated by a dominant light source. The space of light
source directions, which can be parameterized by spheri-
cal angles, was then sampled in 15$ increments. See Fig. 3.
From this database, we used 330 images of five people (66
of each). We extracted five subsets to quantify the effects
of varying lighting. Sample images from each subset are
shown in Fig. 4.

Subset 1 contains 30 images for which both the longitudi-
nal and latitudinal angles of light source direction are
within 15$ of the camera axis, including the lighting

1. The Yale database is available for download from http://cvc.yale.edu.

direction coincident with the camera’s optical axis.
Subset 2 contains 45 images for which the greater of the

longitudinal and latitudinal angles of light source di-
rection are 30$ from the camera axis.

Subset 3 contains 65 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 45$ from the camera axis.

Subset 4 contains 85 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 60$ from the camera axis.

Subset 5 contains 105 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 75$ from the camera axis.

For all experiments, classification was performed using a
nearest neighbor classifier. All training images of an indi-

Fig. 3. The highlighted lines of longitude and latitude indicate the light
source directions for Subsets 1 through 5. Each intersection of a lon-
gitudinal and latitudinal line on the right side of the illustration has a
corresponding image in the database.

Fig. 4. Example images from each subset of the Harvard Database used to test the four algorithms.
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(Face Detection, Recognition, and Interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Effect of variations in pose angle (easy and hard), and distance:
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(Face Detection, Recognition, and Interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Changes in appearance over time (sometimes artificial and deliberate)
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Paradox of Facial Phenotype and Genotype

Facial appearance (phenotype) of everyone changes over time with age;
but monozygotic twins (identical genotype) track each other as they age.

Therefore at any given point in time, they look more like each other than
they look like themselves at either earlier or later periods in time
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(Face Detection, Recognition, and Interpretation, con’t)

Detecting and recognising faces raises all the usual questions encountered
in other domains of computer vision:

I What is the best representation to use for faces?

I Should this be treated as a 3D problem (object-based, volumetric),
or a 2D problem (image appearance-based)?

I How can invariances to size (hence distance), location, pose, and
illumination be achieved? (A given face should acquire a similar
representation under such transformations, for matching purposes.)

I What are the generic (i.e. universal) properties of all faces that we
can rely upon, in order to reliably detect the presence of a face?

I What are the particular features that we can rely upon to distinguish
among faces, and thus determine the identity of a given face?

I What is the best way to handle “integration of evidence”, and
incomplete information, and to make decisions under uncertainty?

I How can machine learning develop domain expertise, either about
faces in general (e.g. pose transformations), or facial distinctions?
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Viola-Jones Face Detection Algorithm

Paradoxically, face detection is a harder problem than recognition, and
performance rates of algorithms are poorer. (It seems paradoxical since
detection precedes recognition; but recognition performance is measured
only with images already containing faces.) The best known way to find
faces is the cascade of classifiers developed by Viola and Jones (2004).

shift the detector window by more than one pixel at a time depending on the
current window size, and the scale would be increased by some constant (say
20%) at each iteration over the image, but the number of evaluations will still
be about 105 per image.

Modern approaches to face detection make use of a number of image pro-
cessing and machine learning techniques to deal with these challenges. The
currently most popular method is due to Viola and Jones (2004), who popu-
larised the use of the AdaBoost (“Adaptive Boosting,” formulated by Freund
and Schapire) machine learning algorithm to train a cascade of feature clas-
sifiers for object detection and recognition. Boosting is a supervised machine
learning framework which works by building a “strong classifier” as a com-
bination of (potentially very simple) “weak classifiers.” As illustrated in the
figure below, a Viola-Jones face detector consists of classifiers based on simple
rectangular features (which can be viewed as approximating Haar wavelets)
and makes use of an image representation known as the integral image (also
called summed area table) to compute such features very efficiently.

The resulting boosted classifier is a weighted combination of thresholded
responses to a set of rectangular features that, like Haar basis functions, differ
in complexity (e.g. the features may consist of 2, 3 or 4 rectangular regions),
scale, position, and orientation (horizontal or vertical, though some implemen-
tations also incorporate diagonal features). Formally, a weak classifier hj(x)

97
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(Viola-Jones Face Detection Algorithm, con’t)

Key idea: build a strong classifier from a cascade of many weak classifiers
− all of whom in succession must agree on the presence of a face

I A face (in frontal view) is presumed to have structures that should
trigger various local “on-off” or “on-off-on” feature detectors

I A good choice for such feature detectors are 2D Haar wavelets
(simple rectangular binary alternating patterns)

I There may be 2, 3, or 4 rectangular regions (each +1 or −1) forming
feature detectors fj , at differing scales, positions, and orientations

I Applying Haar wavelets to a local image region only involves adding
and subtracting pixel values (no multiplications; hence very fast)

I A given weak classifier hj (x) consists of a feature fj , a threshold θj

and a polarity pj ∈ ±1 (all determined in training) such that

hj (x) =

{
−pj if fj < θj

pj otherwise

I A strong classifier h(x) takes a linear combination of weak classifiers,
using weights αj learned in a training phase, and considers its sign:

h(x) = sign(
∑

j

αj hj )

13 / 33



(Viola-Jones Face Detection Algorithm, con’t)
I At a given level of the cascade, a face is “provisionally deemed to

have been detected” at a certain position if h(x) > 0
I Only those image regions accepted by a given layer of the cascade

(h(x) > 0) are passed on to the next layer for further consideration
I A face detection cascade may have 30+ layers, yet the vast majority

of candidate image regions will be rejected early in the cascade.

shift the detector window by more than one pixel at a time depending on the
current window size, and the scale would be increased by some constant (say
20%) at each iteration over the image, but the number of evaluations will still
be about 105 per image.

Modern approaches to face detection make use of a number of image pro-
cessing and machine learning techniques to deal with these challenges. The
currently most popular method is due to Viola and Jones (2004), who popu-
larised the use of the AdaBoost (“Adaptive Boosting,” formulated by Freund
and Schapire) machine learning algorithm to train a cascade of feature clas-
sifiers for object detection and recognition. Boosting is a supervised machine
learning framework which works by building a “strong classifier” as a com-
bination of (potentially very simple) “weak classifiers.” As illustrated in the
figure below, a Viola-Jones face detector consists of classifiers based on simple
rectangular features (which can be viewed as approximating Haar wavelets)
and makes use of an image representation known as the integral image (also
called summed area table) to compute such features very efficiently.

The resulting boosted classifier is a weighted combination of thresholded
responses to a set of rectangular features that, like Haar basis functions, differ
in complexity (e.g. the features may consist of 2, 3 or 4 rectangular regions),
scale, position, and orientation (horizontal or vertical, though some implemen-
tations also incorporate diagonal features). Formally, a weak classifier hj(x)

97
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(Viola-Jones Face Detection Algorithm, con’t)
I Training uses the AdaBoost (“Adaptive Boosting”) algorithm
I This supervised machine learning process adapts the weights αj such

that early cascade layers have very high true accept rates, say 99.8%
(as all must detect a face; hence high false positive rates, say 68%)

I Later stages in the cascade, increasingly complex, are trained to be
more discriminating and therefore have lower false positive rates

I More and more 2D Haar wavelet feature detectors are added to each
layer and trained, until performance targets are met

I The cascade is evaluated at different scales and offsets across an
image using a sliding window approach, to find any (frontal) faces

I With “true detection” probability di in the i th layer of an N-layer
cascade, the overall correct detection rate is: D =

∏N
i=1 di

I With “erroneous detection” probability ei at the i th layer, the overall
false positive rate is E =

∏N
i=1 ei (as every layer must falsely detect)

I Example: if we want no false detections, with 105 image subregions
so E < 10−5, in a 30-layer cascade we train for ei = 10−5/30 ≈ 0.68
which shows why each layer can use such weak classifiers!

I Likewise, to achieve a decent overall detection rate of D = 0.95
requires di = 0.951/30 ≈ .9983 (very happy to call things “faces”)
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(Viola-Jones Face Detection Algorithm, con’t)

Performance on a local group photograph:

consists of a feature fj, a threshold θj and a parity pj ∈ ±1 such that

hj(x) =




1 if pjfj < pjθj
−1 otherwise

and the resulting strong classifier using weights aj is

h(x) = sign(
∑

j

ajhj)

By combining such classifiers into a hierarchical cascade made up of increas-
ingly complex classifiers, good detection accuracy can be achieved at relatively
low false positive levels. The cascade is also very efficient, since each stage
(layer) is computationally very simple to apply to an image region and only
those regions which are accepted by a given layer of the cascade (h(x) > 0)
are passed on to the next layer for consideration. Training is done in such
a way that early cascade layers have very high true accept rates (with cor-
respondingly high false positive rates) in order to quickly reject those image
regions that are very unlikely to represent a face. Later stages are trained to
be more discriminating and consequently have increasingly lower target false
positive rates. Each stage is trained by adding rectangle features until the
target detection and false positive rates are met.

A fully trained face detection cascade may have over 30 layers, yet the vast
majority of candidate image regions will only be considered by the first few of
these. To perform face detection, the cascade is evaluated at different scales
and offsets within an image using a sliding window approach. The following
figure illustrates what the sliding window finds in a local group photo:
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2D Appearance-based Face Recognition: Gabor Wavelets

We saw that 2D Gabor wavelets can make remarkably compact codes for
faces, among many other things. In this sequence, even using only about
100 Gabor wavelets, not only the presence of a face is obvious, but also
its gender, rough age, pose, expression, and perhaps even identity:

Number of Wavelets

116 216 original16 52
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I Gabor wavelets capture image structure as combined undulations
I Parameterisation: 2D positions, sizes, orientations, and phases
I Facial features like eyes, lips, and noses are represented with just a

handful of wavelets, without requiring explicit models for such parts
I Can track changes of expression locally. Example: gaze = phase
I A deformable elastic graph made from such an encoding can preserve

matching, while tolerating some changes in pose and expression
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(2D Appearance-based Face Recognition: Gabor Wavelets)

Phase-Quadrant Demodulation Code

[0, 0] [1, 0]

[1, 1][0, 1]

Re

Im

Computed feature vectors in a face code can be local 2D Gabor wavelet
amplitude or phase information. Bits in the “face code” are set by the
quadrant in which the phasor lies, for each aspect of facial structure.
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2D Appearance-based Face Recognition: “Eigenfaces”

An elegant method for 2D appearance-based face recognition combines
Principal Components Analysis (PCA) with machine learning and algebra,
to compute a linear basis (like the Fourier basis) for representing any face
as a combination of empirical eigenfunctions, called eigenfaces.

I A database of face images (at least 10,000) that are pre-normalised
for size, position, and frontal pose is “decomposed” into its Principal
Components of statistical variation, as a sequence of orthonormal
eigenfunctions whose eigenvalues are in descending order

I This is a classical framework of linear algebra, associated also with
the names Karhunen-Loève Transform, or the Hotelling Transform,
or Dimensionality Reduction and subspace projection

I Optimised for truncation: finding the best possible (most accurate)
representation of data using any specified finite number of terms

I Having extracted from a face gallery the (say) 20 most important
eigenfaces of variation (in sequence of descending significance),
any given presenting face is projected onto these, by inner product

I The resulting (say) 20 coefficients then constitute a very compact
code for representing, and recognising, the presenting face

I 15 such representational eigenfaces are shown in the next slide
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(2D Appearance-based Face Recognition: “Eigenfaces”)

The top left face is a particular linear combination of the eigenfaces
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(2D Appearance-based Face Recognition: “Eigenfaces”)

I Performance is often in the range of 90% to 95% accuracy

I Databases can be searched very rapidly, as each face is represented
by a very compact feature vector of only about 20 numbers

I A major limitation is that significant (early, low-order) eigenfaces
emerging from the statistical analysis arise just from normalisation
errors of size (head outlines), or variations in illumination angle

I Like other 2D representations for faces, the desired invariances for
transformations of size (distance), illumination, and pose are lacking

I Both the Viola-Jones face detection algorithm, and these 2D
appearance-based face recognition algorithms, sometimes deploy
“brute force” solutions (say at airport Passport control) such as
acquiring images from a large (3× 3) or (4× 4) array of cameras for
different pose angles, each allowing some range of angles
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Three-Dimensional Approaches to Face Recognition

Face recognition algorithms now aim to model faces as three-dimensional
objects, even as dynamic objects, in order to achieve invariances for pose,
size (distance), and illumination geometry. Performing face recognition in
object-based (volumetric) terms, rather than appearance-based terms,
unites vision with model-building and graphics.

To construct a 3D representation of a face, it is necessary to extract both
a shape model (below right), and a texture model (below left). The term
“texture” here encompasses albedo, colouration, and 2D surface details.

16.6 Three-dimensional approaches to face recognition

Current efforts in face recognition seek to model faces as three-dimensional
objects, even as dynamic objects, in order to achieve invariance both to pose
angle and illumination geometry. Of course, this requires solving the ill-posed
problems of infering shape from shading, interpreting albedo versus variations
in Lambertian and specular surface properties, structure from motion, etc.
On page 4 we examined how difficult this problem is, and how remarkable it
is that we humans seem to be so competent at it. The synthesis of vision
as model-building and graphics, to perform face recognition in object-based
terms, rather than appearance-based terms, is now a major focus of this field.

In order to construct a 3D representation of a face (so that, for example,
its appearance can be predicted at different pose angles as we saw on page 4),
it is necessary to extract separately both a shape model and a texture model
(texture encompasses albedo, colouration, any 2D surface details, etc).

The 3D shape model (above right) is extracted by various means, which
may include laser range-finding (with millimetre resolution); stereo cameras;
projection of structured light (grid patterns whose distortions reveal shape); or
extrapolation from a multitude of images taken from different angles (often a
4×4 matrix). The size of the data structure can be in the gigabyte range, and
significant time is required for the computation. Since the texture model is
linked to coordinates on the shape model, it is possible to project the texture
(tone, colour, features, etc) onto the shape and thereby generate models of
the face in different poses. Clearly sensors play an important role here for
extracting the shape model, but it is also possible to do this even from a single
photograph if sufficiently strong Bayesian priors are also marshalled, assuming
an illumination geometry and universal aspects of head and face shape.

103
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(Three-Dimensional Approaches to Face Recognition)

Extracting the 3D shape model can be done by various means:

I laser range-finding, even down to millimetre resolution

I calibrated stereo cameras

I projection of structured IR light (grid patterns whose distortions
reveal shape, as with Kinect)

I extrapolation from multiple images taken from different angles

The size of the resulting 3D data structure can be in the gigabyte range,
and significant time can be required for the computation.

Since the texture model is linked to coordinates on the shape model, it is
possible to “project” the texture (tone, colour, features) onto the shape,
and thereby to generate predictive models of the face in different poses.

Clearly sensors play an important role here for extracting shape models,
but it is also possible to do this even from just a single photograph if
sufficiently strong Bayesian priors are also marshalled, assuming an
illumination geometry and some universal aspects of head and face shape.
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(Three-Dimensional Approaches to Face Recognition)

Texture Extraction
& Facial Expression

Reconstruction
of Shape & Texture Cast Shadow New Illumination Rotation

InitializationOriginal 3D Reconstruction

An impressive demo of using a single 2D photograph (top left) to morph
a 3D face model after manual initialisation, building a 3D representation
of the face that can be manipulated for differing pose angles, illumination
geometries, and even expressions, can be seen here:

http://www.youtube.com/watch?v=nice6NYb_WA
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(Three-Dimensional Approaches to Face Recognition)

Description from the Blanz and Vetter paper,
Face Recognition Based on Fitting a 3D Morphable Model:

“...a method for face recognition across variations in pose, ranging from
frontal to profile views, and across a wide range of illuminations,
including cast shadows and specular reflections. To account for these
variations, the algorithm simulates the process of image formation in 3D
space, using computer graphics, and it estimates 3D shape and texture of
faces from single images. The estimate is achieved by fitting a statistical,
morphable model of 3D faces to images. The model is learned from a set
of textured 3D scans of heads. Faces are represented by model
parameters for 3D shape and texture.”
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Face Algorithms Compared with Human Performance

The US National Institute for Standards and Technology (NIST) runs
periodic competitions for face recognition algorithms, over a wide range
of conditions. Uncontrolled illumination and pose remain challenging.
But in a 2007 test, three algorithms had ROC curves above (better than)
human performance at non-familiar face recognition (the black curve):

Performance of humans and seven algorithms on the difficult face pairs (Fig. 3a) and easy face pairs (Fig. 3b) shown

algorithms outperform humans on the difficult face pairs at most or all combinations of verification

(cf., [20] NJIT, [21] CMU for details on two of the three algorithms). Humans out-perform the other four

face pairs. All but one algorithm performs more accurately than humans on the easy face pairs. (A color

figure is provided in the Supplemental Material.)
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Major Breakthrough in 2015: Deep-Learning “FaceNet”

Machine learning approaches focused on scale (“Big Data”) are having a
profound impact in Computer Vision. In 2015 Google demonstrated large
reductions in face recognition error rates (by 30%) on two very difficult
databases: YouTube Faces (95%), and Labeled Faces in the Wild (LFW)
database (99.63%), which are new accuracy records.
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(Major Breakthrough in 2015: Deep-Learning “FaceNet”)
I Convolutional Neural Net with 22 layers and 140 million parameters
I Big dataset: trained on 200 million face images, 8 million identities
I 2,000 hours training (clusters); about 1.6 billion FLOPS per image
I Euclidean distance metric (L2 norm) on embeddings f (xi ) learned for

cropped, but not pre-segmented, images xi using back-propagation
I Used triplets of images, one pair being from the same person, so

that both the positive (same face) and negative (different person)
features were learned by minimising a loss function L:

L =
∑

i

[
‖ f (xa

i )− f (xp
i ) ‖2 − ‖ f (xa

i )− f (xn
i ) ‖2

]

...

Batch

DEEP ARCHITECTURE L2 Triplet 
Loss

E
M
B
E
D
D
I
N
G

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Anchor

Positive

Negative

Anchor
Positive

Negative
LEARNING

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

in the end-to-end learning of the whole system. To this end
we employ the triplet loss that directly reflects what we want
to achieve in face verification, recognition and clustering.
Namely, we strive for an embedding f(x), from an image
x into a feature space Rd, such that the squared distance
between all faces, independent of imaging conditions, of
the same identity is small, whereas the squared distance be-
tween a pair of face images from different identities is large.

Although we did not a do direct comparison to other
losses, e.g. the one using pairs of positives and negatives,
as used in [14] Eq. (2), we believe that the triplet loss is
more suitable for face verification. The motivation is that
the loss from [14] encourages all faces of one identity to be
projected onto a single point in the embedding space. The
triplet loss, however, tries to enforce a margin between each
pair of faces from one person to all other faces. This al-
lows the faces for one identity to live on a manifold, while
still enforcing the distance and thus discriminability to other
identities.

The following section describes this triplet loss and how
it can be learned efficiently at scale.

3.1. Triplet Loss

The embedding is represented by f(x) ∈ Rd. It em-
beds an image x into a d-dimensional Euclidean space.
Additionally, we constrain this embedding to live on the
d-dimensional hypersphere, i.e. ‖f(x)‖2 = 1. This loss is
motivated in [19] in the context of nearest-neighbor classifi-
cation. Here we want to ensure that an image xai (anchor) of
a specific person is closer to all other images xpi (positive)
of the same person than it is to any image xni (negative) of
any other person. This is visualized in Figure 3.

Thus we want,

‖xai − xpi ‖22 + α < ‖xai − xni ‖22, ∀ (xai , xpi , xni ) ∈ T , (1)

where α is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the
training set and has cardinality N .

The loss that is being minimized is then L =

N∑

i

[
‖f(xai )− f(xpi )‖

2
2 − ‖f(xai )− f(xni )‖

2
2 + α

]
+
.

(2)
Generating all possible triplets would result in many

triplets that are easily satisfied (i.e. fulfill the constraint
in Eq. (1)). These triplets would not contribute to the train-
ing and result in slower convergence, as they would still
be passed through the network. It is crucial to select hard
triplets, that are active and can therefore contribute to im-
proving the model. The following section talks about the
different approaches we use for the triplet selection.

3.2. Triplet Selection

In order to ensure fast convergence it is crucial to select
triplets that violate the triplet constraint in Eq. (1). This
means that, given xai , we want to select an xpi (hard pos-
itive) such that argmaxxp

i
‖f(xai )− f(xpi )‖

2
2 and similarly

xni (hard negative) such that argminxn
i
‖f(xai )− f(xni )‖22.

It is infeasible to compute the argmin and argmax
across the whole training set. Additionally, it might lead
to poor training, as mislabelled and poorly imaged faces
would dominate the hard positives and negatives. There are
two obvious choices that avoid this issue:

• Generate triplets offline every n steps, using the most
recent network checkpoint and computing the argmin
and argmax on a subset of the data.

• Generate triplets online. This can be done by select-
ing the hard positive/negative exemplars from within a
mini-batch.

Here, we focus on the online generation and use large
mini-batches in the order of a few thousand exemplars and
only compute the argmin and argmax within a mini-batch.

To have a meaningful representation of the anchor-
positive distances, it needs to be ensured that a minimal
number of exemplars of any one identity is present in each
mini-batch. In our experiments we sample the training data
such that around 40 faces are selected per identity per mini-
batch. Additionally, randomly sampled negative faces are
added to each mini-batch.

Instead of picking the hardest positive, we use all anchor-
positive pairs in a mini-batch while still selecting the hard
negatives. We don’t have a side-by-side comparison of hard
anchor-positive pairs versus all anchor-positive pairs within
a mini-batch, but we found in practice that the all anchor-
positive method was more stable and converged slightly
faster at the beginning of training.

I The embeddings create a compact (128 byte) code for each face
I Simple threshold on Euclidean distances among these embeddings

then gives decisions of “same” vs “different” person
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(Major Breakthrough in 2015: Deep-Learning “FaceNet”)
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Figure 4. FLOPS vs. Accuracy trade-off. Shown is the trade-off
between FLOPS and accuracy for a wide range of different model
sizes and architectures. Highlighted are the four models that we
focus on in our experiments.

5.1. Computation Accuracy Trade-off

Before diving into the details of more specific experi-
ments lets discuss the trade-off of accuracy versus number
of FLOPS that a particular model requires. Figure 4 shows
the FLOPS on the x-axis and the accuracy at 0.001 false
accept rate (FAR) on our user labelled test-data set from
section 4.2. It is interesting to see the strong correlation be-
tween the computation a model requires and the accuracy it
achieves. The figure highlights the five models (NN1, NN2,
NN3, NNS1, NNS2) that we discuss in more detail in our
experiments.

We also looked into the accuracy trade-off with regards
to the number of model parameters. However, the picture
is not as clear in that case. For example, the Inception
based model NN2 achieves a comparable performance to
NN1, but only has a 20th of the parameters. The number
of FLOPS is comparable, though. Obviously at some point
the performance is expected to decrease, if the number of
parameters is reduced further. Other model architectures
may allow further reductions without loss of accuracy, just
like Inception [16] did in this case.

5.2. Effect of CNN Model

We now discuss the performance of our four selected
models in more detail. On the one hand we have our tradi-
tional Zeiler&Fergus based architecture with 1×1 convolu-
tions [22, 9] (see Table 1). On the other hand we have Incep-
tion [16] based models that dramatically reduce the model
size. Overall, in the final performance the top models of
both architectures perform comparably. However, some of
our Inception based models, such as NN3, still achieve good
performance while significantly reducing both the FLOPS
and the model size.

The detailed evaluation on our personal photos test set is

NN2 NN1 NNS1 NNS2

1E­61E­61E­6 1E­51E­51E­5 1E­41E­41E­4 1E­31E­31E­3 1E­21E­21E­2 1E­11E­11E­1 1E01E01E0

1E­11E­11E­1

5E­15E­15E­1

1E01E01E0

FARFARFAR

VA
L

VA
L
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Figure 5. Network Architectures. This plot shows the com-
plete ROC for the four different models on our personal pho-
tos test set from section 4.2. The sharp drop at 10E-4 FAR
can be explained by noise in the groundtruth labels. The mod-
els in order of performance are: NN2: 224×224 input Inception
based model; NN1: Zeiler&Fergus based network with 1×1 con-
volutions; NNS1: small Inception style model with only 220M
FLOPS; NNS2: tiny Inception model with only 20M FLOPS.

architecture VAL

NN1 (Zeiler&Fergus 220x220) 87.9%± 1.9
NN2 (Inception 224x224) 89.4%± 1.6
NN3 (Inception 160x160) 88.3%± 1.7
NN4 (Inception 96x96) 82.0%± 2.3
NNS1 (mini Inception) 82.4%± 2.4
NNS2 (tiny Inception) 51.9%± 2.9

Table 3. Network Architectures. This table compares the per-
formance of our model architectures on the hold out test set (see
section 4.1). Reported is the mean validation rate VAL at 10E-3
false accept rate. Also shown is the standard error of the mean
across the five test splits.

shown in Figure 5. While the largest model achieves a dra-
matic improvement in accuracy compared to the tiny NNS2,
the latter can be run 30ms / image on a mobile phone and
is still accurate enough to be used in face clustering. The
sharp drop in the ROC for FAR < 10−4 indicates noisy
labels in the test data groundtruth. At extremely low false
accept rates a single mislabeled image can have a significant
impact on the curve.

5.3. Sensitivity to Image Quality

Table 4 shows the robustness of our model across a wide
range of image sizes. The network is surprisingly robust
with respect to JPEG compression and performs very well
down to a JPEG quality of 20. The performance drop is
very small for face thumbnails down to a size of 120x120

Different variants of the Convolutional Neural Net and model sizes were
generated and run, revealing the trade-off between FLOPS and accuracy
for a particular point on the ROC curve (False Accept Rate = 0.001)
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Affective Computing: Interpreting Facial Emotion

Humans use their faces as visually expressive organs, cross-culturally
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Many areas of the human brain are concerned with recognising and
interpreting faces, and social computation is believed to have been the
primary computational load in the evolution of our brains, because of its
role in reproductive success
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Affective Computing: Classifying Identity and Emotion
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(Affective Computing: Interpreting Facial Emotion)

MRI scanning has revealed much about brain areas that interpret facial
expressions. Affective computing aims to classify visual emotions as
articulated sequences using Hidden Markov Models of their generation.
Mapping the visible data to action sequences of the facial musculature
becomes a generative classifier of emotions.
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