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Surfaces and Reflectance Maps

How can we infer the shape and reflectance properties of a surface from
measurements of brightness in an image?

This is complicated because many factors besides shape determine how
(and where) objects scatter light.

I Surface albedo is the fraction of the illuminant that is re-emitted
from a surface in all directions. Thus it relates to how “light” or
“dark” is the surface, and this may vary locally across it

I The amount of light reflected is the product of two factors: the
surface albedo, times a geometric factor that depends on angles
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(Surfaces and Reflectance Maps, con’t)
I A Lambertian surface (also called diffusely reflecting, or “matte”)

reflects light equally well in all directions

I Examples of Lambertian surfaces include: snow, non-glossy paper,
ping-pong balls, magnesium oxide, projection screens, ...

I The amount of light reflected from a Lambertian surface depends on
the angle of incidence of the light (by Lambert’s famous cosine law),
but not on the angle of emission (the viewing angle)

I A specular surface is mirror-like. It obeys Snell’s law (the angle of
incidence of light is equal to its angle of reflection from the surface),
and it does not scatter light into other angles

I Most metallic surfaces are specular. But more generally, surfaces lie
somewhere on a continuum between Lambertian and specular

I Special cases arise from certain kinds of dust. The surface of the
moon (called unsurprisingly a lunar surface) reflects light depending
on the ratio of cosines of angle of incidence and angle of emission

I That is why a full moon looks more like a penny than like a sphere;
its brightness does not fade, approaching the boundary (!)
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(Surfaces and Reflectance Maps, con’t)

Geometric summary of Lambertian, versus specular, properties of surfaces
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(Surfaces and Reflectance Maps, con’t)

The reflectance map is a function φ(i , e, g) which relates intensities in
the image to surface orientations of objects. It specifies the fraction of
incident light reflected per unit surface area, per unit solid angle, in the
direction of the camera; thus it has units of flux/steradian

It is a function of three variables:
I i is the angle of the illuminant, relative to the surface normal N
I e is the angle of a ray of light re-emitted from the surface
I g is the angle between the emitted ray and the illuminant

.->q'l:r )--?rxi

The definitions of the angles i, €, and g
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(Surfaces and Reflectance Maps, con’t)

There are many types of reflectance maps φ(i , e, g), each of which is
characteristic of certain surfaces and imaging environments

I Lambertian surface: reflectance function is φ(i , e, g) = cos(i)
(It looks equally bright viewed from all directions; the amount of
reflected light depends only on the angle of illumination)

I Specular surface: φ(i , e, g) is especially simple: φ(i , e, g) = 1 when
i = e and both are coplanar with the surface normal N, so g = i + e
(Snell’s law for a perfect mirror); otherwise φ(i , e, g) = 0

I For “lunar” surfaces such as the feldspar dusts on the moon, the
reflectance function φ(i , e, g) depends only upon the ratio of the
cosines of the angles of incidence and emission: cos(i)/ cos(e),
but not upon their relative angle g , nor upon the surface normal N

I In case you wondered, this is why the full moon looks like a penny
rather than a sphere. Even though it is illuminated by a point source
(the sun, behind you), it does not fade in brightness approaching its
limb (boundary) as the surface normal N tilts, because still i = −e
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(Surfaces and Reflectance Maps, con’t)

Typically, surfaces have both specular and matte properties. For example,
facial skin may vary from Lambertian (powdered) to specular (oily). The
purpose of powdering one’s face is to specify s and n in this expression:

φ(i , e, g) =
s(n + 1)(2 cos(i) cos(e)− cos(g))n

2
+ (1− s) cos(i)

I Linear combination of two terms, with weights s and (1− s)

I The first term on the right side is the specular component

I The second term on the right side is the Lambertian component

I s is the fraction of light emitted specularly

I n represents the sharpness (in angle) of the specular peak

I For glossy paint, typically the exponent n may be about 20

I Obviously as n grows very large, the exponentiated trigonometric
function approaches a delta function, representing Snell’s law for
mirrors: a very sharp power function of angle
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(Surfaces and Reflectance Maps, con’t)

Typically there is not just one point source of illumination, but rather a
multitude of sources (such as the extended light source provided by a
bright overcast sky). In a cluttered scene, much of the light received by
objects has been reflected from other objects (and coloured by them...)
One needs almost to think of light not in terms of ray-tracing but in terms
of thermodynamics: a “gas” of photons in equilibrium inside a room
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Clearly, the only way to infer the nature and geometry of surface
properties from image properties is to build-in certain assumptions about
the nature of the surfaces from other kinds of evidence. This requires us
to consider the general problem of inference and integration of evidence
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(Surfaces and Reflectance Maps, con’t)

Computing “shape-from-shading” requires the disambiguation of:
I geometry of the illuminant (e.g. is it a point source, or extended?

If a point source, where is it?) Are there several light sources?
I reflectance properties of the surface. What is its reflectance map?
I geometry of the surface (its underlying shape). Are shadows cast?
I rotations of the surface relative to perspective angle and illuminant
I variations in material and surface reflectance properties across space
I variations in surface albedo (“greyness”)

We must reason about hypotheses using data and assumptions:
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(Surfaces and Reflectance Maps, con’t)

Sometimes the only consistent solution is to assume simply that the
surface albedo really is different. In this image, tile A is emitting the
same light as tile B. But the requirements of illumination context and
shading make it impossible to see them as having the same albedo
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(Surfaces and Reflectance Maps, con’t)

The inference of a surface shape (a relief map, or an object-centred
description of a surface) from shading information is an inherently
ill-posed problem because the data necessary for the computation is not
known. One has to introduce ancillary assumptions about the surface
material composition, its albedo and reflectance map, the illumination of
the scene and its geometry, before such inferences become possible.

It is almost as though the assumptions (like angle of illumination) are
more important than the available image data. The computational nature
of the inference task then becomes one of constraint satisfaction. Often
there are rivalrous (e.g. is it a dome or a crater?) alternative solutions:
http://www.michaelbach.de/ot/fcs_hollow-face/index.html 11 / 44
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Shape Representation and Codon Shape Grammars

Closed boundary contours can be represented completely by their
curvature map θ(s) as a function of position s along the perimeter:

θ(s) = lim
∆s→0

1

r(s)

where the local radius of curvature r(s) is defined as the limiting radius
of the circle that best “fits” the contour at position s, as arc ∆s → 0.
Curvature sign, +/−, depends on whether the circle is inside, or outside,
the figure. For open contours, other conventions determine the sign. The
figure’s concavities are linked with minima; its convexities with maxima.
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(Shape Representation and Codon Shape Grammars, con’t)

The purpose of computing shape descriptions like curvature maps θ(s)
(which might result from fitting active contours, for example), is to build
a compact classification grammar for recognising common shapes.

By the Fundamental Theorem of Curves, a curvature map θ(s) together
with a “starting point” tangent t(so) specifies a shape fully. Some nice
properties of curvature-map descriptions are:

1. The description is position-independent (i.e., object-centred).

2. The description is orientation-independent (rotating the shape in the
plane does not affect its curvature map).

3. The description represents mirror-reversed shapes just by changing
the sign of s, so the perimeter is traversed in the opposite direction:

θ(s)→ θ(−s)

4. Scaling property: Changing the size of a shape just scales θ(s) by a
constant (K is reciprocal to the size change factor):

θ(s)→ Kθ(s)
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(Shape Representation and Codon Shape Grammars, con’t)

The goal is to construct an hierarchical taxonomy of closed 2D shapes,
based on the extrema of curvature. Their possible combinations are very
restricted by the requirement of closure, leading to a codon grammar of
shapes (analogous to the ordered triples of the nucleotide bases A,G,C,T
which specify the 20 amino acids).

Note that since curvature is a signed quantity (depending on whether the
fitting circle is inside or outside the shape), the minimum and maximum
of curvature may mean the same radius. For open contours, they depend
on sign conventions and the direction of travel. We are interested in the
extrema of curvature: minima, maxima, and zeroes (the inflexion points).

There are just six primitive codon types: all curve segments lying between
minima of curvature must have 0, 1 or 2 points of zero curvature, further
classified by whether a zero is encountered before (“−”) or after (“+”)
reaching the maximum curvature in the chosen direction of traversal.
Dots show zeroes of curvature (inflexions); slashes indicate the minima:

CODON CONSTRAINTS 267 

relation between these descriptors is preserved in the 2D image. This property 
follows because the inflection of a 3D curve is preserved under projection, guarantee 
ing that at least the ordinal relations between minima, maxima, and zeroes of 
curvature will be preserved under projection. Our scheme thus provides a very 
primitive representation for a part, simply in terms of the ordinal relations of the 
extrema of curvature. This approach yields six different basic primitive shapes, or 
codons (see Fig. 4). 

In order to define the codon types, it is first necessary to define maxima and 
minima of curvature. These definitions require that a convention be adopted for the 
sign of curvature. Consider Fig. 3. There are two directions along which the profile 
of the face may be traversed. In the upward direction (left) the minima of curvature 
(slashes) correspond to the points where the curve rotates at the greatest rate in the 
clockwise direction. If the same curve is traversed in the opposite direction, however, 
then the maxima and minima reverse. Our convention thus places “figure” to the left 
of the direction of traversal. When the figure is on the left, then the profile indeed 
looks like a face because the minima of curvature divide the curve into the natural 
parts-namely forehead, nose, mouth, and chin. (Note that the opposite view yields 
the “vase” of Rubin’s famous figure-ground illusion observed as early as 1819 by 
Turton [14].) Thus, knowing which side is the figure determines the choice of 
orientation on a curve, or, conversely, choosing an orientation determines which side 
is the figure by convention. Minima are then typically associated with the concavities 
of the figure, whereas maxima are convexities. 

To define our basic primitive codons, we first note that all curve segments lying 
between minima of curvature must have zero, one, or two points of zero curvature. If 
there are no zeroes (i.e., inflections), then the segment is designated as a type 0 
codon (see Fig. 4). Those with two zeroes are called type 2 codons. If a segment has 
exactly one zero, then the zero may be encountered either before (type l-) or after 
(type 1’) reaching the maximum point of the segment during traversal in the chosen 
orientation. 

The type 0 codons may be further subdivided into O+, 0 - and (co) to yield six 
basic codon types. Consider Fig. 3 once again. Note that as the ellipse is traversed in 
different directions, the minima of curvature change as expected. In the lower ellipse, 
which corresponds to a “hole” with figure outside, the minima have negative 
curvature, because the direction of rotation is clockwise. (Thus, the slashes suggest a 
part boundary by our rule, which will be repaired later when we discuss “holes.“) In 
the upper ellipse, however, the minima have positive curvature (the rotation is 
always counterclockwise). Thus, the type 0 codon can be subdivided into 0’ and 0 - 
with the superscript indicating the sign of curvature. Note that the 0 - codon can 
constitute a part boundary, whereas the type O+ codon must appear only as a shape 

/V-JtPO? 
ocl 0+ 0- 1+ 1- 2 

FIG. 4. The primitive codon types. Zeroes of curvature are indicated by dots, minima by slashes. The 
straight line (co) is a degenerate case included for completeness, although it is not treated in the text. 
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(Shape Representation and Codon Shape Grammars, con’t)

Note that because curvature is a signed quantity, the loci of its minima
depend on what we take to be “figure” vs “ground”. For open contours
like these face profiles (alternatively Rubin’s Vase profiles), if we regard
“figure” as “to left”, then loci of minima depend on direction of traversal:

There are 3 possible Codon Pairs (string type depending on direction):
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(Shape Representation and Codon Shape Grammars, con’t)

There are 5 possible Codon Triples, and 9 possible Codon Quads:
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(Shape Representation and Codon Shape Grammars, con’t)

Constraints on codon strings for closed curves are very strong. While
sequences of (say) 6 codons have 56 = 15, 625 possible combinations,
these make only 33 generic shapes.

Ordinal relations among singular points of curvature (maxima, minima,
and zeroes) remain invariant under translations, rotations, and dilations.

The inflexion (a zero of curvature) of a 3D curve is preserved under 2D
projection, thereby guaranteeing that the ordinal relations among the
extrema of curvature will also be preserved when projected to an image.

Thus we can acquire a very compact lexicon of elementary shapes, and
we can construct an object classification algorithm as follows:

1. use active contours to fit a deformable snake to an object’s outline

2. extract its codon string from its curvature map θ(s) by traversing
the outline given after convergence of the active contours algorithm

3. use this codon string as an index to a labelled lexicon of shapes

4. object is then classified by shape, with invariance to many factors.
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Volumetric Descriptions of 3D Shape

One scheme for bridging the gap between 2D image (appearance-based)
and 3D model-based descriptions is called the “2.5-dimensional sketch”.
Surface normals are computed and assigned to each point in the image,
like a pin-cushion, indicating 3D shape.
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(Volumetric Descriptions of 3D Shape, con’t)

Superquadrics represent objects as the unions and/or intersections of
generalized superquadric closed surfaces, which are the loci of points in
(x , y , z)-space that satisfy parametric equations of this form:

Axα + Byβ + Czγ = R

Spheres have (α, β, γ) = (2, 2, 2) and A = B = C . Other examples:
I cylinders: (α, β, γ) = (2, 2, 100) and A = B
I rectangular solids: (α, β, γ) = (100, 100, 100)
I prolate spheroids (shaped like zeppelins): (α, β, γ) = (2, 2, 2) and

(say) A = B but C < (A,B)
I oblate spheroids (shaped like tomatoes): (α, β, γ) = (2, 2, 2) and

(say) A = B but C > (A,B)
Rotations of such objects in 3D produce cross-terms in (xy , xz , yz).
Parameters (A,B,C ) determine object dimensions. Origin-centred.

These simple, parametric models for solids, augmented by Boolean
relations for conjoining them, allow the generation of object-centered,
“volumetric” descriptions of many objects (instead of an image-based
description) by just listing parameters (α, β, γ,A,B,C ) and relations,
rather like the codon descriptors for closed 2D shapes.
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Vision as Model Building

I role of context in determining a model
I percepts as hypotheses generated for testing
I rivalrous and paradoxical percepts, and visual

illusions: “bugs” or “features” of a system?
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Vision as Perceptual Inference and Hypothesis Testing

I Low-level visual percepts, built from extracted features, must be
iteratively compared with high-level models to derive hypotheses
about the visual world

I This iterative cycle of model-building for hypothesis generation and
testing is sometimes called the hermeneutical cycle

I It fits the key anatomical observation that mammalian brains have
massive feedback projections from the visual cortex back down to
the thalamus, meeting the upcoming data stream from the eyes

5

Dr Chris Town

Constructivism

© Stephen E. Palmer, 2002

Tilted room illusion

Dr Chris Town

Constructivism

© Stephen E. Palmer, 2002

Unconscious Inference: the process of recovering 
environmental information by logically combining
retinal information with heuristic assumptions.

Tilted room illusion:
If you assume that the
walls and floor of the 
room are vertical and
horizontal, then you
must be tilted —and you
feel that way!

Dr Chris Town

• Likelihood Principle: ”we will perceive the object that is most 
likely to be the cause of our sensory stimulation” (Helmholtz)

• Hypothesis Testing: “we may think of sensory stimulation as 
providing data for hypotheses concerning the state of the external world” 
(Richard Gregory)

Dr Chris Town

“The intelligent eye”: Richard Gregory

Dr Chris Town
200
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Vision as a Cycle of Perception

Signal
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Compare 
with model 
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and estimate 
likelihoods

Generate 
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and derive 

expectations

Symbolic

features

Bottom-up 
path

Top-down path

Analysis and recognition - Induction

Synthesis and verification - Deduction

Hermeneutical
cycle

The Hermeneutical cycle for iterative interpretation in a generative (hypothesise and 
test) approach.

Dr Chris Town

Vision as Graphics

Richard Gregory argues this sort of illusion happens because we are not 
used to seeing hollow faces, and therefore our beliefs and expectations 
are applied to make best sense of the data.
-> top-down rather than bottom-up (as in the Marr theory)
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Bayesian Inference in Vision

It is almost impossible to perform most computer vision tasks in a purely
“bottom-up” fashion. The data are just too impoverished by themselves
to support the task of object recognition

This section reviews the basic ideas behind Bayesian inference, which is a
method fundamental to probability theory, statistics, and machine learning.
Its purpose is to provide a means for integratin g prior information (such as
general knowledge about the sorts of things that populate the world, their
properties and relationships, the metaphysics of objects, etc...) with empirical
information gathered from incoming image data. This principle is expressed
in the form of a basic rule for relating conditional probabilities in which the
ttantecedent" and t'consequent" are interchanged. The value of this method
for computer vision is that it provides a framework for continually updating
one's theory of u'hat one is looking at, by integrating continuously incoming
evidence r,vith the best avtrilable inference or interpretation so far.
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(Bayesian Inference in Vision, con’t)

The Bayesian view focuses on the use of priors, which allow vision to be
steered heavily by a priori knowledge about the world and the things
which populate it.

For example, probabilistic priors can express the notions that:

I some events, objects, or interpretations are much more probable
than others

I matter cannot just disappear, but it does routinely become occluded

I objects rarely change their actual surface colour

I uniform texturing on a complex surface shape is a more likely
interpretation than highly non-uniform texturing on a simple or
planar surface

I a rigid rotation in three dimensions is a “better explanation” for
deforming boundaries (if consistent with them) than wild actual
boundary deformations in the object itself

Being able to integrate formally such learned or even “metaphysical”
assumptions about the world is one way in which Bayesian inference
facilitates a “top-down” or AI-oriented, expert-system-oriented, approach.
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(Bayesian Inference in Vision, con’t)

Bayes’ rule is a formalism for combining prior knowledge or beliefs with
empirical observations. It is at once a theory of explanation, a method
for drawing inferences from data, a procedure for the integration of
evidence, and a protocol for decision-making.

If H represents an hypothesis about the “state of the world” (e.g. the
object in an image) and D represents the available image data, then the
explanatory conditional probabilities p(H|D) and p(D|H) are related to
each other and to their unconditional likelihoods p(H) and p(D) as:

p(H|D) =
p(D|H)p(H)

p(D)

For example, a human agricultural expert, or an artificial expert system,
has knowledge of the form p(D|H): Given a plant (or some hypothetical
disease state) H, there is a corresponding conditional probability p(D|H)
of observing certain image data D. However, typically the task goal of
computer vision and pattern recognition is to calculate just the inverse of
that conditional probability: given image data D, what is the probability
p(H|D) that the hypothesis (of plant or disease state H) is true?
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(Bayesian Inference in Vision, con’t)

I Bayes’ rule specifies the formal procedure for calculating inferences
p(H|D), given the observations, the unconditional probabilities, and
the prior expert knowledge p(D|H)

I It thereby offers a clean and simple interface between a knowledge
base and incoming visual data

I A key feature is that it provides a formal mechanism for repeatedly
updating our assessment of a visual hypothesis as more data arrives
incrementally

I We can apply the rule recursively, using the latest posterior estimate
p(H|D) as the new prior p(H) for interpreting the next set of data

I Thus we learn from visual data and experience, and we can build up
visual knowledge about a domain of the world: we learn to see

I In AI, this aspect is important because it allows the systematic and
real-time construction of interpretations that can be continuously
updated as more data arrive in a time series, such as in a sequence
of video or of spoken sounds that we wish to understand
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Statistical Decision Theory

In many applications, we need to perform pattern classification on the
basis of some vector of acquired features from a given object or image.

The task is to decide whether or not this feature vector is consistent with
a particular class or object category. Thus the problem of classification
amounts to a “same / different” decision about the presenting feature
vector, compared with vectors characteristic of certain object classes.

Usually there is some similarity between “different” patterns, and some
dissimilarity between “same” patterns. The four possible combinations of
“ground truths” and decisions creates a decision environment:

1. Hit: Actually same; decision “same”

2. Miss: Actually same; decision “different”

3. False Alarm: Actually different; decision “same”

4. Correct Reject: Actually different; decision “different”

We would like to maximize the probability of outcomes 1 and 4, because
these are correct decisions. We would like to minimize the probability of
outcomes 2 and 3, because these are incorrect decisions
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Statistical Decision Theory

Dissimilarity Metric (Hamming Distance, HD) 
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(Statistical Decision Theory, con’t)
I In the two-state decision problem, the feature vectors or data are

regarded as arising from two overlapping probability distributions

I They might represent the features of two object classes, or they
might represent the similarity scores for “same” vs “different”

I When a decision is made, based upon the observed similarity and
some acceptability threshold, the probabilities of the four possible
outcomes can be computed as the four cumulatives under these
two probability distributions, to either side of the decision criterion

I These four probabilities correspond to the shaded areas in last figure

I The computed error probabilities can be translated directly into a
confidence level which can be assigned to any decision that is made

I Moving the decision criterion (dashed line) has coupled effects:
I Increasing the “Hit” rate also increases the “False Alarm” rate
I Decreasing the “Miss” rate also decreases the “Correct Reject” rate

I These dependencies map out the Receiver Operating Characteristic

I Each point (∗) on the ROC curve (next fig.) represents a particular
choice for the decision criterion, or threshold of acceptance
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Receiver Operator Characteristic (“ROC curve”)
Decision Strategies
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(Statistical Decision Theory, con’t)

Obviously we would like the ROC curve to be as “bowed” as possible,
approaching into the upper left corner, as that maximises the Hit Rate
and minimises the False Alarm Rate.

Regardless of where our decision criterion is placed, the fundamental
decidability of the decision task (or the detectability in a detection task)
is measured by the quantity d ′, which is monotonically related to the
length of the “arrow” in the “bow” (how bowed the ROC curve is):

d ′ =
|µ2 − µ1|√
1
2 (σ2

2 + σ2
1)

where the two distributions are characterized by their means µ1 and µ2

and their standard deviations σ1 and σ2. The metric d ′ is also called
discriminability. It is related to other σ-normalisations, such as Z -scores.

An improvement in d ′ can result either from pushing the distributions
further apart, or from making one or both of them narrower. The bigger
d ′ is, the better; a pattern recognition problem with high decidability will
have a large d ′, so the ROC curve approaches the upper-left corner.
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(Statistical Decision Theory, con’t)
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(Statistical Decision Theory, con’t)

Decidability d ′ ≥ 3 is normally considered good. The distributions shown
originally to illustrate had d ′ = 2. The empirical ones for iris recognition
(previous figure) had d ′ ≈ 11.

Because reliability of pattern recognition depends on the between-class
variance being larger than the within-class variance, R. Fisher defined the
“separation between two distributions” as the ratio of their between-class
variance to their within-class variance. This definition is related to d ′.

Another metric is the total area under the ROC curve, which ideally → 1.
Other relevant metrics include the total probability of error for a chosen
decision criterion, as illustrated by the combined shaded areas below:

p(x |C1)p(C1)

p(x |C2)p(C2)
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Bayesian Pattern Classifiers

Consider a two-class pattern classification problem, such as OCR (optical
character recognition) involving only two letters, a and b. We compute
some set of features x from the image data, and we wish to build a
Bayesian classifier that will assign a given pattern to one of two classes,
C1 ≡ a or C2 ≡ b, corresponding to the two letter instances.

Whatever are the extracted features x (perhaps they are as simple as
height/width ratio), after collecting these measurements from a large
number of samples of letters a and b, we can plot a histogram of how
these measurements are distributed for each of the classes. In general,
these histograms will overlap, but clearly the smaller x is, the more likely
it is that this sample came from class C1, other things being equal.
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(Bayesian Pattern Classifiers, con’t)

What do we mean by “other things being equal?” Suppose that instances
of class C2 are 100 times more frequent (more probable) than class C1.

Would we then still say that, given a slightly smallish sampled value x ,
the letter class is more likely to have been C1 than C2?

No. As Bayesians we must take into account the baseline rates. Define
the prior probabilities P(C1) and P(C2) as their two relative frequencies
(summing to 1).

If we had to guess which character had appeared without even seeing it,
we would always just guess the one with the higher prior probability.

For example, since in fact an ‘a’ is about 4 times more frequent than a ‘b’
in English, and these are the only two options in this two-class inference
problem, we would set the priors P(a) = 0.8 and P(b) = 0.2 then.
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(Bayesian Pattern Classifiers, con’t)

I For each class separately, we can measure how likely any particular
feature sample value x will be, by empirical observation of examples

I (Note that this requires knowing the “ground truth” of examples)

I This gives us P(x |Ck) for all the classes Ck

I We get the unconditional probability P(x) of any measurement x by
summing P(x |Ck) over all the classes, weighted by their frequencies:

P(x) =
∑

k

P(x |Ck)P(Ck)

I Now we have all the terms needed to compute posterior probabilities
P(Ck |x) of class membership, given some data observation x , taking
into account the priors P(Ck) and the “class conditional likelihoods”
P(x |Ck) of the observations x :

P(Ck |x) =
P(x |Ck)P(Ck)

P(x)
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(Bayesian Pattern Classifiers, con’t)

Thus we have a principled, formal way to perform pattern classifications
on the basis of available data and our knowledge of class baseline rates,
and how likely the data would be for each of the classes.

We can minimise the total probability of misclassification if we assign
each observation x to the class with the highest posterior probability.

Assign x to class Ck if:

P(Ck |x) > P(Cj |x) ∀j 6= k

Since the denominator P(x) in Bayes’ Rule is independent of Ck , we can
rewrite this minimum misclassification criterion simply as:

Assign x to class Ck if:

P(x |Ck)P(Ck) > P(x |Cj)P(Cj) ∀j 6= k

If we now plot the quantities in this inequality relation as a function of x ,
we see that the minimum misclassification criterion amounts to imposing
a decision boundary where the two curves cross each other (arrow):
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(Bayesian Pattern Classifiers, con’t)

Because the costs of the two different types of errors are not always
equal, we may not necessarily want to place our decision criterion at the
point where the two curves cross, even though that would minimise the
total error. If the decision boundary we choose is instead as indicated by
the vertical line, so R1 and R2 are the regions of x on either side of it,
then the total probability of error (which is the total shaded area) is:

P(error) = P(x ∈ R2,C1) + P(x ∈ R1,C2)

= P(x ∈ R2|C1)P(C1) + P(x ∈ R1|C2)P(C2)

=

∫

R2

P(x |C1)P(C1)dx +

∫

R1

P(x |C2)P(C2)dx
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Discriminant Functions and Decision Boundaries

If we construct some set of functions yk(x) of the data x , one function
for each class Ck , such that classification decisions are made by assigning
an observation x to class Ck if

yk(x) > yj(x) ∀j 6= k ,

those functions yk(x) are called discriminant functions.

The decision boundaries between data regions Rj and Rk are defined by
loci in the (normally multi-dimensional) data x at which yk(x) = yj(x).

Natural discriminant functions to choose are the posterior probabilities:

yk(x) = P(Ck |x)

Equivalently, since the denominator P(x) in Bayes’ Rule is independent
of k, we could choose as the discriminant functions:

yk(x) = P(x |Ck)P(Ck)
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(Discriminant Functions and Decision Boundaries, con’t)

This figure shows how in even just the case of two-dimensional data, the
decision boundaries separating four Gaussian densities (corresponding to
four classes) can be rather complex. (Note how the areas corresponding
to decision region R4 are not simply connected.)
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Discriminative versus Generative Methods in Vision

I Discriminative methods learn a function yk(x) = P(Ck |x) that maps
input features x to class labels Ck . They require large training data
covering all expected kinds of variation. Examples of such methods:

I artificial neural networks
I support vector machines
I boosting methods
I linear discriminant analysis

I Generative methods learn a likelihood model P(x |Ck) expressing the
probability that data features x would be observed in instances of
class Ck , which can then be used for classification using Bayes’ Rule.

I Generalise well and need less training data, but models get complex
I Popular for tasks such as analysis and synthesis of facial expressions
I Generative models have predictive power as they allow the generation

of samples from the joint distribution P(x ,Ck). Examples include:
I probabilistic mixture models
I most types of Bayesian networks
I active appearance models
I Hidden Markov models, Markov random fields
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Convolutional Neural Networks

I Feedforward artificial neural networks, inspired by the visual cortex
I Perform image classification using multiple layers of small collections

of neurons, having “receptive fields” in the image
I Tiling and overlapping of outputs aim to achieve shift invariance
I Often include pooling layers, convolutional layers, fully connected

layers, and point non-linearities in or after each layer
I Use little pre-processing; filters learned without human intervention
I Output is a classification decision, with robust invariances over image

input transformations (e.g. variations in handwritten characters)
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Example: Convolutional Neural Network for OCR (LeCun)

Optical Character Recognition systems have many applications:

I postal sorting, bank cheque routing
I automated number plate recognition
I book and manuscript digitisation
I text-to-speech synthesis for the blind
I handwriting recognition for portable device interfaces

Handwritten fonts require methods from Machine Learning to cope with
all writing variations (size, slant, stroke thickness), distortions, and noise.
A classic convolutional NN for OCR was developed by Yann LeCun:

• Generative methods learn a likelihood model P (x|Ck) expressing the prob-
ability that data features x would be observed in the case of class Ck, which
can then be used for classification using Bayes’ rule. Generative models
have predictive power as they allow one to generate samples from the joint
distribution P (x, Ck), and they are therefore popular for tasks such as the
analysis and synthesis of facial expressions. Examples include probabilis-
tic mixture models, most types of Bayesian networks, active appearance
models, Hidden Markov models, and Markov random fields.

Generative models often generalise well and may therefore require less train-
ing data, but the models themselves may become more complex than is re-
quired for classification, especially with larger numbers of classes. Construct-
ing such a model often requires specific domain expertise (e.g. for the design
of a Bayesian network). On specific (supervised) learning tasks, discriminative
methods usually perform better and are more efficient, but the training data
needs to be large enough to span the expected modes of variation in the data.

15 Applications of learning and statistical methods in vision

15.1 Optical character recognition (OCR); Convolutional neural networks

OCR systems have been developed for numerous applications including postal
and bank cheque routing, book digitisation, automated number plate recog-
nition, text-to-speech synthesis for the blind, and handwriting recognition for
portable device interfaces. Modern approaches make heavy use of machine
learning to allow recognition of multiple fonts and to cope with distortions,
noise, and variations in size, slant, and line thickness.

One of the most effective approaches to OCR is LeCun’s convolutional neu-
ral network (conv. net) illustrated above. It takes a 32x32 pixel image as its
input. The first stage of the network is a convolutional layer consisting of 6

84
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(Example: Convolutional Neural Network for OCR, con’t)

• Generative methods learn a likelihood model P (x|Ck) expressing the prob-
ability that data features x would be observed in the case of class Ck, which
can then be used for classification using Bayes’ rule. Generative models
have predictive power as they allow one to generate samples from the joint
distribution P (x, Ck), and they are therefore popular for tasks such as the
analysis and synthesis of facial expressions. Examples include probabilis-
tic mixture models, most types of Bayesian networks, active appearance
models, Hidden Markov models, and Markov random fields.

Generative models often generalise well and may therefore require less train-
ing data, but the models themselves may become more complex than is re-
quired for classification, especially with larger numbers of classes. Construct-
ing such a model often requires specific domain expertise (e.g. for the design
of a Bayesian network). On specific (supervised) learning tasks, discriminative
methods usually perform better and are more efficient, but the training data
needs to be large enough to span the expected modes of variation in the data.

15 Applications of learning and statistical methods in vision

15.1 Optical character recognition (OCR); Convolutional neural networks

OCR systems have been developed for numerous applications including postal
and bank cheque routing, book digitisation, automated number plate recog-
nition, text-to-speech synthesis for the blind, and handwriting recognition for
portable device interfaces. Modern approaches make heavy use of machine
learning to allow recognition of multiple fonts and to cope with distortions,
noise, and variations in size, slant, and line thickness.

One of the most effective approaches to OCR is LeCun’s convolutional neu-
ral network (conv. net) illustrated above. It takes a 32x32 pixel image as its
input. The first stage of the network is a convolutional layer consisting of 6

84

I Input is a 32× 32 pixel image, containing some digit or character
I In the training phase, 100,000s of examples of each target are used
I Training is supervised back-propagation: target output is set to +1,

all others to −1. Errors back-propagate to adaptable feature maps
I Neurons in a feature map have 5× 5 kernels, convolved with input
I Trained to extract a particular visual feature, regardless of position
I Subsequent feature maps achieve size, slant, and style invariances
I Neurons in the final layer identify the input as one of the targets
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(Example: Convolutional Neural Network for OCR, con’t)

The output oij of each neuron at position (i , j) applies a nonlinear (e.g.,
hyperbolic tangent) activation function fact to the sum of its input pixels
times its trained weights wmn, added to another (trained) bias term w0:

oij = fact(w0 +
∑

m

∑

n

wmn I(i−m),(j−n))

This figure illustrates three different handwritten instances of the digit 4
being recognised by this CNN. The smaller images show outputs of the
convolutional (C ) and subsampling (S) feature maps at different layers of
the network.

feature maps. The neurons in each feature map have 25 adaptable weights cor-
responding to the elements of a 5x5 kernel which is convolved with the input
image, plus an adaptable bias weight. Each feature map therefore has 28x28
(32 − 5 + 1 = 28) neurons, all of which share the same 26 weights. In this
way, the 6 feature maps can be trained to extract a particular visual feature,
independently of its position. As with other types of feed-forward neural net-
work, the outputs oij of each first layer neuron i are the result of applying an
activation function fact (a normalising ogival function such as the hyperbolic
tangent, tanh) to the sum of its inputs (pixels in the input image I) multiplied
by each of its weights wmn after adding an additional bias term w0:

oij = fact(w0 +
∑

m

∑

n
wmnIi−m,j−n)

(note how the double summation is equivalent to a 2D discrete convolution.).
The use of convolutional layers with shared weights was inspired by receptive
field profiles as found in biological visual systems, which we studied earlier.
Shifting the input image results in a corresponding shift in the output of the
feature maps.

There are 10 outputs corresponding to the digits 0-9, and the 10 neurons
of the final layer are fully connected to each of the preceding 100 neuron out-
puts. During the training phase using the “back-propagation” method, the
corresponding target output is manually set to +1 and all other outputs are
set to −1. The training set may contain 10s or 100s of thousands of ex-
amples of each character (differing in style, boldness, slant, size, and with
additive noise or shading to produce robust classifiers). The figure below
illustrates three different handwritten instances of the digit 4 being recog-
nised by a convolutional neural network; the smaller images show outputs of
the convolutional (C) and subsampling (S) feature maps at different layers
of the network. Further examples (including animations) can be found at
http://yann.lecun.com/exdb/lenet/.

85

More examples are shown at: http://yann.lecun.com/exdb/lenet/
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