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Active Contours

I Match a deformable model to an image, by “energy minimisation”

I Used for shape recognition, object tracking, and image segmentation

I A deformable spline (or “snake”) changes its shape under competing
forces: image forces that pull it towards certain object contours; and
internal forces (“stiffness”) that resist excessive deformations

I The trade-off between these forces is adjustable, and adaptable

I External energy reflects how poorly the snake is fitting a contour

I Internal energy reflects how much the snake is bent or stretched

I This sum of energies is minimised by methods like gradient descent,
simulated annealing, and partial differential equations (PDEs)

I Problems: numerical instability, and getting stuck in local minima

I With geodesic active contours (used in medical image computing),
contours may split and merge, depending on the detection of objects
in the image

Demonstration: https://www.youtube.com/watch?v=ceIddPk78yA
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Scale-Invariant Feature Transform (SIFT)

Goals and uses of SIFT:

I Object recognition with geometric invariance to transformations in
perspective, size (distance), position, and pose angle

I Object recognition with photometric invariance to changes in
imaging conditions like brightness, exposure, quality, wavelengths

I Matching corresponding parts of different images or objects
I “Stitching” overlapping images into a seamless panorama
I 3D scene understanding (despite clutter)
I Action recognition (what transformation has happened...)
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(Scale-Invariant Feature Transform, con’t)

Key idea: identifying keypoints that correspond in different images,
and discovering transformations that map them to each other.

I Various kinds of feature detectors can be used, but they should have
an orientation index and a scale index

I Classic approach of Lowe used extrema (maxima and minima) of
difference-of-Gaussian functions in scale space

I Build a Gaussian image pyramid in scale space by successively
smoothing (at octave blurring scales σi = σ02i ) and resampling

I Dominant orientations of features, at various scales, are detected
and indexed by oriented edge detectors (e.g. gradient direction)

I Low contrast candidate points and edges are discarded

I The most stable keypoints are kept, indexed, and stored for
“learning” a library of objects or classes
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(Scale-Invariant Feature Transform, con’t)

Examples of keypoints (difference-of-Gaussian extrema) detected in an
original image, of which 35% are discarded as low contrast or unstable.
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(Scale-Invariant Feature Transform, con’t)

To find stable features invariant to scale, SIFT uses a scale-space approach.
Keypoints are detected by first finding scale-space extrema. This is achieved
by convolving the image with Gaussian filters at different scales of analysis
and differencing the resulting blurred images at neighbouring scales to find
local minima and maxima. Once these extrema (which correspond typically
to edges, corner points, and other places where informative changes occur in
image structure) have been extracted, their gradient direction is calculated by
estimating local derivatives in x and y, yielding a local direction of change.
From these estimates, an orientation histogram of directions can be assigned
to each local region, forming “keypoint descriptors.”

SIFT performs interpolation to localise candidate keypoints with sub-pixel
accuracy and discards keypoints with poor contrast or stability. In order to
achieve invariance to rotation, a keypoint descriptor based on local gradient
directions and magnitude is used. The descriptor is invariant to image rota-
tions since the bins of the orientation histograms are normalised relative to
the dominant gradient orientation in the vicinity of the keypoint.
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For each local region (four are highlighted here), an orientation histogram
is constructed from the gradient directions as a keypoint descriptor.
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(Scale-Invariant Feature Transform, con’t)

I The bins of the orientation histogram are normalised relative to the
dominant gradient direction in the region of each keypoint, so that
rotation-invariance is achieved

I Matching process resembles identification of fingerprints: compare
relative configurations of groups of minutiae (ridge terminations,
spurs, etc), but search across many relative scales as well

I The best candidate match for each keypoint is determined as its
nearest neighbour in a database of extracted keypoints, using the
Euclidean distance metric

I Algorithm: best-bin-first; heap-based priority queue for search order
I The probability of a match is computed as the ratio of that nearest

neighbour distance, to the second nearest (required ratio > 0.8)
I Searching for keys that agree on a particular model pose is based on

Hough Transform voting, to find clusters of features that vote for a
consistent pose

I SIFT does not account for any non-rigid deformations
I Matches are sought across a wide range of scales and positions;

30 degree orientation bin sizes; octave (factor of 2) changes in scale
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Summary: philosophy and theology of the SIFT

The Doctrine of Suspicious Coincidences 

When the recurrence of patterns just by chance is a highly 

improbable explanation, it is unlikely to be a coincidence. 
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Structure from Texture
I Most surfaces are covered with texture, of one sort or another

I Texture is both an identifying feature, and a cue to surface shape

I If one can assume uniform statistics along the surface itself, then
textural foreshortening or stretching reveals 3D surface shape

I As implied by its root, linking it with (woven) textiles, texture is
defined by the existence of statistical correlations across the image

I From grasslands to textiles, the unifying notion is quasi-periodicity

I Variations from uniform periodicity reveal 3D shape, slant, distance
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(Structure from Texture, con’t)

I Quasi-periodicity can be detected best by Fourier-related methods
I The eigenfunctions of Fourier analysis (complex exponentials) are

periodic, with a specific scale (frequency) and wavefront orientation
I Therefore they excel at detecting a correlation distance and direction
I They can estimate the “energy” within various quasi-periodicities

I Texture also supports figure/ground segmentation by dipole statistics
I The examples below can be segmented (into figure vs ground) either

by their first-order statistics (size of the texture elements), or by
their second-order statistics (dipole orientation)
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(Structure from Texture, con’t)

I Images can be segmented into “figure” vs “ground” regions using
Gabor wavelets of varying frequencies and orientations

I The modulus of Gabor wavelet coefficients reveals texture energy
variation in those frequencies and orientations across the image

I This can be a strong basis for image segmentation (outlined regions)
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(Structure from Texture, con’t)
I Resolving textural spectra simultaneously with location information

is limited by the Heisenberg Uncertainty Principle, and this trade-off
is optimised by Gabor wavelets

I Texture segmentation using Gabor wavelets can be a basis for
extracting the shape of an object to recognise it. (Left image)

I Phase analysis of iris texture using Gabor wavelets is a powerful
basis for person identification. (Right image)
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(Structure from Texture, con’t)

Inferring depth from texture gradients can have real survival value...
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Colour Information

Two compelling paradoxes are apparent in how humans process colour:
1. Perceived colours hardly depend on the wavelengths of illumination

(colour constancy), even with dramatic changes in the wavelengths
2. But the perceived colours depend greatly on the local context

The brown tile at the centre of the illuminated upper face of the cube,
and the orange tile at the centre of the shadowed front face, are actually
returning the same light to the eye (as is the tan tile lying in front)
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(Colour Information, con’t)

Colour is a nearly ubiquitous property of surfaces, and it is useful both for
object identification and for segmentation. But inferring colour properties
(“spectral reflectances”) of object surfaces from images seems impossible,
because generally we don’t know the spectrum of the illuminant.

I Let I (λ) be the wavelength composition of the illuminant
I Let O(λ) be the spectral reflectance of the object at some point

(the fraction of light scattered back as a function of wavelength λ)
I Let R(λ) be the actual wavelength mixture received by the camera at

the corresponding point in the image, say for (400nm < λ < 700nm)

Clearly, R(λ) = I (λ)O(λ). The problem is that we wish to infer the
“object colour” O(λ), but we only know R(λ), the mixture received.

To give the problem a slightly more formal presentation:

Let /()) represent the wavelength composition of the illuminant (i.e. the
amount of energy it contains as a function of wavelength ), across the
visible spectrum from about 400 nanometers to 700 nm).

Let O()) represent the inherent spectral reflectance of the object at a
particular point: the fraction of incident light that is scattered back from
its surface there, &s a function of the incident light's wavelength ).

Let n()) represent the actual wavelength mixture received by the camera
at the corresponding point in the image of the scene.
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One simple idea that has been proposed is to try actually to measure /())
directly, by searching for highly specular (shiny, metallic, glassy) regions in an
image where the reflected light might be a fairly faithful copy of I()). This
might be a glint from someone's glasses or from a shiny doorknob. Then at
all other points in the image we need only to divide the n()) we receive there
by our other specular "measurement" of I (I), and we can then compute the

desired O()) across the image.

Clearly, this method has several weakness: (1) there may be no specular sur-

faces in the image; (2) those that there are may themselves affect somewhat

the wavelength composition that they reflect (..g. metals which have a brassy
colour); and (3) the method is neither robust nor stable, since global inferences
about scene interpretation depend critically upon uncertain measurements at

(what may b. just) a single tiny point in the image.

i)o(D
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(Colour Information, con’t)

An algorithm for computing O(λ) from R(λ) was proposed by Dr E Land
(founder of Polaroid Corporation). He named it the Retinex Algorithm
because he regarded it as based on biological vision (RETINa + cortEX).

It is a ratiometric algorithm:

1. Obtain the red/green/blue value (r , g , b) of each pixel in the image

2. Find the maximal values (rmax , gmax , bmax) across all the pixels

3. Assume that the scene contains some objects that reflect “all” the
red light, others that reflect “all” the green, and others “all” the blue

4. Assume that those are the origins of the values (rmax , gmax , bmax),
thereby providing an estimate of I (λ)

5. For each pixel, the measured values (r , g , b) are assumed to arise
from actual object spectral reflectance (r/rmax , g/gmax , b/bmax)

6. With this renormalisation, we have discounted the illuminant

7. Alternative variants of the Retinex exist which estimate O(λ) using
only local comparisons across colour boundaries, assuming only local
constancy of the illuminant spectral composition I (λ), rather than
relying on a global detection of (rmax , gmax , bmax)
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(Colour Information, con’t)

Colour assignments are very much a matter of calibration, and of making
assumptions. Many aspects of colour are “mental fictions”.

For example, why does perceptual colour space have a seamless, cyclic
topology (the “colour wheel”), with red fading into violet fading into
blue, when in wavelength terms that is moving in opposite directions
along a line (λ→ 700nm red) versus (blue 400nm ← λ)?

The next slide is a purely monochromatic (black-and-white) picture. But
you can cause it to explode into compelling colours by re-calibrating your
brain, using the subsequent false colour image (2 slides ahead):

1. Stare at the blue disk in the false colour image for about 10 seconds,
without moving your eyes. (Finger on key, ready to “flip back”)

2. Flip back to the monochromatic image, while continuing to fixate on
that same central point

3. As long as you don’t move your eyes, you should see very rich and
compelling and appropriate colours in the monochromatic image

4. The spell will be broken, your brain’s original calibration restored,
once you move your eyes
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Structure from Stereo Vision

An important source of information about the 3D structure of the
surrounding (near) visual world is stereo vision, using stereo algorithms

I Having 2 (or more) cameras, or 2 eyes, with a base of separation,
allows the capture of simultaneous images from different positions

I Such images have differences called stereoscopic disparity, which
depend on the 3D geometry of the scene, and on camera properties

I 3D depth information can be inferred by detecting those differences,
which requires solving the correspondence problem
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(Structure from Stereo Vision, con’t)

Of course, alternative methods exist for estimating depth. For example,
the “Kinect” gaming device projects an infrared (IR, invisible) laser grid
into the scene, whose resulting pitch in the image sensed by an IR camera
is a cue to depth and shape, as we saw in discussing shape from texture.
Here we consider only depth computation from stereoscopic disparity.

I Solving the correspondence problem can require very large searches
for matching features under a large number of possible permutations

I We seek a relative registration which generates maximum correlation
between the two scenes acquired with the spatial offset, so that their
disparities can then be detected and measured

I The multi-scale image pyramid is helpful here

I It steers the search by a coarse-to-fine strategy to maximise its
efficiency, as only few features are needed for a coarse-scale match

I The permutation-matching space of possible corresponding points is
greatly attenuated, before refining the matches iteratively, ultimately
terminating with single-pixel precision matches
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(Structure from Stereo Vision, con’t)

I If the optical axes of the 2 cameras converge at a point, then objects
in front or behind that point in space will project onto different parts
of the two images. This is sometimes called parallax

I The disparity becomes greater in proportion to the distance of the
object in front, or behind, the point of fixation

I Clearly it depends also on the convergence angle of the optical axes
I Even if the optical axes parallel each other (“converged at infinity”),

there will be disparity in the image projections of nearby objects
I Disparity also becomes greater with increased spacing between the

two cameras, as that is the base of triangulation

can be infered from the available retinal measurements r?()) without explic-

it ly knowing /()).

8.3 Stereo information

Important information about depth can be obtained from the use of two (ot

more) cameras, in the same way that humans achieve stereoscopic depth vision
by virtue of having two eyes. Objects in front or behind of the point in space at

which the two optical axes intersect (as determined by the angle between them,

which is controlled by camera movements or eye movementt), will project into

different relative parts of the two images. This is calle d stereoscopic disparity.
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Edge peaks in image L

This "error signal" becomes greater in proportion to the distance of the object

in front or behind the point of fixation, and so it can be calibrated to obtain
a depth cue. It also becomes greater with increased spacing between the two

eyes or cameras) since that is the "base of triangulation." (That is why the

German Army in WWI introduced V-shaped binocular "trench periscopes" to

increase stereoscopic visual acuity, for breaking camouflage by increasing the
effectiue spacing between the viewer's two eyes to almost a meter.)

The essence of making use of such stereoscopic disparity cues is the need to

solve the Correspondence Problem. In order to infer that the cylinder is in a

d i f fe rentp* ikgroundobjec ts in thetwof ramesshown,
it is first necessary to detect the correspondence of the background objects

in the two frames, or at least of their edges. This puts the two frames "into
registration," so that the disparity of the foreground object can be detected.

32

Edge peaks in image R
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(Structure from Stereo Vision, con’t)

In the simplifying case that the optical axes are parallel, once the
correspondence problem has been solved, plane geometry enables
calculation of how the depth d of any given point depends on:

I camera focal length f

I base distance b between the optical centres of their lenses

I disparities (α, β) in the image projections of some object point (P)
in opposite directions relative to the optical axes, outwards

Note: P is “at infinity” if (α, β) = 0

Unfortunately, current algorithms for solving the Correspondence Problem
tend to require very large searches for matching features under a large number
of possible permutations. It is difficult to know which set of features in the two
frames to select for comparison in evaluating the degree of alignment, when
trying to find that relative registration which generates maximum correlation

between the two background scenes.

I(rocal 
lensth)

d={b/ (c r+p)

Namely: d = fb/(α + β)
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(Structure from Stereo Vision, con’t)

In World War I, stereo trench periscopes were used not only to peer
“safely” over the parapets, but by increasing the base of triangulation
(increasing the angle of the V), to try to “break camouflage”.
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Functional streaming: colour and motion pathways
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