Computer Networking

Michaelmas/Lent Term
M/W/F 11:00-12:00
LT1 in Gates Building

Slide Set 1
Andrew W. Moore

andrew.moore@cl.cam.ac.uk
2015-2016

Computer Networking UROP

* Assessed Practicals for Computer Networking.
— so supervisors can set/use work
— so we can have a Computer Networking tick
running over summer 2016
Talk to me.

Part 2 projects for 16-17

* Fancy doing something at scale or speed?

Talk to me.

Topic 1 Foundation

Administrivia

Networks

Channels

Multiplexing

Performance: loss, delay, throughput

Course Administration

Commonly Available Texts

Q Computer Networking: A Top-Down Approach
Kurose and Ross, 6t edition 2013, Addison-Wesley
(5th edition is also commonly available)

O Computer Networks: A Systems Approach
Peterson and Davie, 5t edition 2011, Morgan-Kaufman

Other Selected Texts (non-representative)
Q Internetworking with TCP/IP, vol. | + Il

Comer & Stevens, Prentice Hall
O UNIX Network Programming, Vol. |

Computer
Networks

Stevens, Fenner & Rudoff, Prentice Hall e

Thanks

Slides are a fusion of material from
Brad Smith, lan Leslie, Richard Black, Jim Kurose, Keith Ross, Larry Peterson,
Bruce Davie, Jen Rexford, lon Stoica, Vern Paxson, Scott Shenker, Frank Kelly,
Stefan Savage, Jon Crowcroft , Mark Handley, Sylvia Ratnasamy, and Adam
Greenhalgh (and to those others I've forgotten, sorry.)
Supervision material is drawn from
Stephen Kell, Andy Rice, and the fantastic TA teams of 144 and 168
Practical material will become available after a period of development;
if you want to lead the practical networking assessment revolution —
email me with
Subject: CompNet needs practicals
Finally thanks to the Part 1b students past and Andrew Rice for all the
tremendous feedback.

What is a network?

+ A system of “links” that interconnect “nodes”
in order to move “information” between nodes

* Yes, this is very vague

There are many different types
of networks

Internet

Telephone network

Transportation networks

Cellular networks

Supervisory control and data acquisition networks
Optical networks

Sensor networks

We will focus almost exclusively on the Internet

The Internet is
transforming everything

Took the dissemination of information to the next level

The Internet is big business

* Many large and influential networking
companies
— Cisco, Broadcom, AT&T, Verizon, Akamai, Huawei,

— $120B+ industry (carrier and enterprise alone)

* Networking central to most technology
companies
— Google, Facebook, Intel, HP, Dell, VMware, ...

Internet research has impact

* The Internet started as a research experiment!
* 4 of 10 most cited authors work in networking

* Many successful companies have emerged from
networking research(ers)

But why is the Internet interesting?

“What's your formal model for the Internet?” -- theorists
“Aren’t you just writing software for networks” — hackers

“You don’t have performance benchmarks???” — hardware folks

“Isn’t it just another network?” — old timers at AT&T
“What's with all these TLA protocols?” — all

“But the Internet seems to be working...” — my mother

A few defining characteristics
of the Internet

A federated system

» The Internet ties together different networks
— >18,000 ISP networks

Internet @
>

|”

Tied together by IP -- the “Internet Protocol” : a single common
interface between users and the network and between networks

A federated system

e The Internet ties together different networks
e >18,000 ISP networks

» Asingle, common interface is great for interoperability...
...but tricky for business

* Why does this matter?
— ease of interoperability is the Internet’s most important goal

— practical realities of incentives, economics and real-world trust
drive topology, route selection and service evolution

Tremendous scale

+ 3.17 Billion users (43% of world population)

* 1+ Trillion unique URLs from 1+ Billion web servers
« 215 Billion emails sent per day

+ 1.86 Billion smartphones

» 1.44 Billion Facebook users

* 64 Billion WhatsApp messages per day

+ 4 Billion YouTube videos watched per day

» 300 hours of video added per minute

» Routers that switch 322 Terabits/second

* Links that carry 400Gigabits/second

Enormous diversity and
dynamic range

« Communication latency: microseconds to seconds (10°)
« Bandwidth: 1Kbits/second to 100 Gigabits/second (107)
» Packetloss: 0 — 90%

« Technology: optical, wireless, satellite, copper

» Endpoint devices: from sensors and cell phones to

datacenters and supercomputers

» Applications: social networking, file transfer, skype,

live TV, gaming, remote medicine, backup, IM

» Users: the governing, governed, operators, malicious,

naive, savvy, embarrassed, paranoid, addicted, cheap ...

15

Constant Evolution

1970s:

+ 56kilobits/second “backbone” links

* <100 computers, a handful of sites in the US (and one UK)
» Telnet and file transfer are the “killer” applications

Today

» 100+Gigabits/second backbone links
» 10B+ devices, all over the globe

* 20M Facebook apps installed per day

Asynchronous Operation

« Fundamental constraint: speed of light

» Consider:

— How many cycles does your 3GHz CPU in Cambridge
execute before it can possibly get a response from a
message it sends to a server in Palo Alto?

« Cambridge to Palo Alto: 8,609 km

« Traveling at 300,000 km/s: 28.70 milliseconds

* Then back to Cambridge: 2 x 28.70 = 57.39 milliseconds

« 3,000,000,000 cycles/sec * 0.05739 = 172,179,999 cycles!

* Thus, communication feedback is always dated

Prone to Failure

+ To send a message, all components along a path must
function correctly

— software, modem, wireless access point, firewall, links,
network interface cards, switches,...

— Including human operators

+ Consider: 50 components, that work correctly 99% of
time = 39.5% chance communication will fail

* Plus, recall
— scale - lots of components
— asynchrony - takes a long time to hear (bad) news
— federation (internet) > hard to identify fault or assign blame

An Engineered System

« Constrained by what technology is practical
— Link bandwidths
— Switch port counts
— Bit errorrates
— Cost

Recap: The Internetis...

* Acomplex federation

» Of enormous scale

» Dynamic range

» Diversity

+ Constantly evolving

* Asynchronous in operation

+ Failure prone

» Constrained by what’s practical to engineer
» Too complex for theoretical models

* “Working code” doesn’'t mean much

» Performance benchmarks are too narrow

Performance — not just bits per second

Second order effects
* Image/Audio quality

Other metrics...
* Network efficiency (good-put versus throughput)

« User Experience? (World Wide Wait).... _\,”@

* Network connectivity expectation semux

and ireland

O to coprit
e

* Others?

R ——y 21

Channels Concept

(This channel definitionis very abstract)

¢ Peer entities communicate over channels

* Peer entities provide higher-layer peers with
higher-layer channels

A channel is that into which an entity puts symbols and which
causes those symbols (or a reasonable approximation) to appear
somewhere else at a later point in time.

symbols in symbols out

| t

channel

Channel Characteristics

Symbol type: bits, packets, Cost: per attachment, for use
waveform Reliability
Capacity: bandwidth, data-rate, security: privacy, unforgability

packet—r.ate . Order preserving: always, almost,
Delay: fixed or variable usually

Fidelity: signal-to-noise, bit error connectivity: point-to-point, to-
rate, packet error rate many, many-to-many

Examples: * Atelephone call (handset to
* Fibre Cable handset)

1 Gb/s channel in a network ® The audio channel in aroom
Sequence of packets * Conversation between two
transmitted between hosts people

Example Physical Channels
these example physical channels are also known as Physical Media

Twisted Pair (TP) Coaxial cable: Fiber optic cable:
« two insulated copper * two concentric copper high-speed operation
wires conductors point-to-point
bidirectional transmission

— Category 3: traditional

phone wires, 10 Mbps * baseband: (10’ s-100’ s Gps)

Ethernet — single channel on cable - |ow error rate
— Category 6: — legacy Ethernet + immune to
1Gbps Ethernet * broadband: electromagnetic
Shielded (STP) — multiple channels on noise
cable

Unshielded (UTP) — HFC (Hybrid Fiber Coax)

More Physical media: Radio

* Bidirectional and multiple Radio link types:
access O terrestrial microwave
< e.g. 45 Mbps channels

* propagation environment "
O LAN (e.g., Wifi)

ffects:
eltects . < 11Mbps, 54 Mbps, 200 Mbps
— reflection 0 wide-area (e.g., cellular)
— obstruction by objects + 4G cellular: ~ 4 Mbps
— interference

0 satellite

< Kbps to 45Mbps channel (or
multiple smaller channels)

< 270 msec end-end delay

< geosynchronous versus low
altitude

Nodes and Links

A B

=

Channels = Links
Peer entities = Nodes

Properties of Links (Channels)

bandwidth [. delay x bandwidth

Latency

» Bandwidth (capacity): “width” of the links

— number of bits sent (or received) per unit time (bits/sec or bps)
» Latency (delay): “length” of the link

— propagation time for data to travel along the link(seconds)
« Bandwidth-Delay Product (BDP): “volume” of the link

— amount of data that can be “in flight” at any time

— propagation delay X bits/time = total bits in link 27

Examples of Bandwidth-Delay

* Same city over a slow link:
— BW~100Mbps
— Latency~0.1msec
— BDP ~ 10,000bits ~ 1.25KBytes

* Cross-country over fast link:
— BW~10Gbps
— Latency~10msec
— BDP ~ 10%bits ~ 12.5GBytes

Packet Delay
Sending a 100B packet from A to B?

A B

Packet Delay =
(Packet Size + Link Bandwidth) + Link Latency

1GB file in 100B packets y

Sending a 100B packet from A to B?

A 1Gbps, 1ms? B

1Mbps, 1ms

107 x 100B packets

1/10°
1.0008ms

(107 11100
8001

Packet Delay: The “pipe” view
Sending 100B packets from A to B?

A B
[!l 1Mbps, 10ms [!l
| e—
VAN — - =" Packet Transmission
Time
100Byte packet 'T‘
\ =
m
100Byte packet time 2>
100Byte packet

Packet Delay: The “pipe” view
Sending 100B packets from A to B?

1Mbps, 10ms (BDP=10,000)

N

=

o

time >
1Mbps, 5ms (BDP=5,000) 10Mbps, 1ms (BDP=10,000)
N
N

=
: :

time >

time >

Packet Delay: The “pipe” view
Sending 100B packets from A to B?

1Mbps, 10ms (BDP=10,000)

BW

time >

1Mbps, 10ms (BDP=10,000)

BW

time >

Recall Nodes and Links

[] []
P = i /R

What if we have more nodes?

One link for every node?

Need a scalable way to interconnect nodes

35

Solution: A switched network

Nodes share network link resources

L]

| = &=
'~ \‘

How is this sharing implemented?

Two forms of switched networks

* Circuit switching (used in the POTS: Plain
Old Telephone system)

» Packet switching (used in the Internet)

Circuit switching

Idea: source reserves network capacity along a path

(1) Node A sends a reservation request

(2) Interior switches establish a connection -- i.e., “circuit”
(3) A starts sending data

(4) A sends a “teardown circuit” message

Old Time Multiplexing

Circuit Switching: FDM and TDM

Example:

Frequency Division Multiplexing 4 users EOOE

Radio2 8.9 MHz
frequency Radio3 91.1 MHz
Radio4 93.3 MHz
) RacioX95.5 MH:

time

Time Division Multiplexing

Radio Schedule
...,News, Sports, Weather, Local, News, Sports,...

frequency E E E E E

time

Time-Division Multiplexing/Demultiplexing

U Y4
/ Frames N\
e T~

Slots=0 123 45 012345

» Time divided into frames; frames into slots
» Relative slot position inside a frame determines to which
conversation data belongs
— e.g., slot 0 belongs to orange conversation
* Slots are reserved (released) during circuit setup (teardown)
« If a conversation does not use its circuit capacity is lost!

a1

Timing in Circuit Switching

E—m—m—E

Circuit
Establishment { —
\
Transfer I
Information
| time
Circuit 1 \\
Tear-down :a

Circuit switching: pros and cons
* Pros
— guaranteed performance

— fast transfer (once circuitis established)

* Cons

Timing in Circuit Switching

E—m—m— £

Circuit
Establishment E

\
Transfer ‘

Circuit
Tear-down

——I-
—

===

Circuit switching: pros and cons

* Pros
— guaranteed performance
— fast transfer (once circuitis established)

* Cons
— wastes bandwidth if traffic is “bursty”

Timing in Circuit Switching

H—am—a—F

Circuit {
Establishment 5
\
Transfer D
Information
| time
Circuit 1 \\
Tear-down :a

Timing in Circuit Switching

E—u—a—&

Circuit

Circuit switching: pros and cons

* Pros
— guaranteed performance
— fast transfers (once circuit is established)

» Cons
— wastes bandwidth if traffic is “bursty”
— connection setup time is overhead

Establishment 5
Transfer | e ——— |
—
TearS::rocvl\j: 1 \::
time
47
Circuit switching

Circuit switching doesn’t “route around failure”

Circuit switching: pros and cons

* Pros
— guaranteed performance
— fast transfers (once circuitis established)

» Cons
— wastes bandwidth if traffic is “bursty”
— connection setup time is overhead
— recovery from failure is slow

Numerical example

* How long does it take to send a file of 640,000
bits from host A to host B over a circuit-
switched network?

— All links are 1.536 Mbps
— Each link uses TDM with 24 slots/sec
— 500 msec to establish end-to-end circuit

Let’ s work it out!

Two forms of switched networks

* Circuit switching (e.g., telephone network)
* Packet switching (e.g., Internet)

Packet Switching

« Datais sent as chunks of formatted bits (Packets)
» Packets consist of a “header” and “payload”™

2

*® | Internet Address
'\ﬂ 2. Age (TTL)

2 3. Checksum to protect header

After Nick McKeown © 2006

Packet Switching

Data is sent as chunks of formatted bits (Packets)
Packets consist of a “header” and “payload™
— payload is the data being carried

— header holds instructions to the network for how to
handle packet (think of the header as an API)

Packet Switching

* Data is sent as chunks of formatted bits (Packets)
* Packets consist of a “header” and “payload”

* Switches “forward” packets based on their
headers

Switches forward packets
n

GLASGOW —— EDINBURGH

switch# switch#2

Forwarding Table

4 e
(I

GLASGOW 4

OXFORD 5

EDIN 2
OXFOR[%WitCh 5 veL

switch#3

Timing in Packet Switching

E=u—k

yime Lwhat about the time to process the packet at the switch? J
57

* We'll assume it’s relatively negligible (mostly true)

Timing in Packet Switching

2=m

time soon as it has processed the header?

¢ Yes! This would be called

Could the switch start transmitting as
a “cut through” switch 58

)

Timing in Packet Switching

p=m

We will always assume a switch processes/forwards
a packet after it has received it entirely.
This is called “store and forward” switching

jtime

Packet Switching

* Data is sent as chunks of formatted bits (Packets)
* Packets consist of a “header” and “payload”

* Switches “forward” packets based on their
headers

Packet Switching

Data is sent as chunks of formatted bits (Packets)
Packets consist of a “header” and “payload”

Switches “forward” packets based on their
headers

Each packet travels independently
— no notion of packets belongingto a “circuit”

Packet Switching

* Data is sent as chunks of formatted bits (Packets)

* Packets consist of a “header” and “payload”

* Switches “forward” packets based on their

headers

* Each packet travels independently

* No link resources are reserved in advance.
Instead packet switching leverages statistical

multiplexing (stat muxing)

Multiplexing

Sharing makes things efficient (cost less)

* One airplane/train for 100 people
* One telephone for many calls

* One lecture theatre for many classes

* One computer for many tasks
* One network for many computers
* One datacenter many applications

Three Flows with Bursty Traffic

Data Rate 1

. 0000000000 e

Data Rate 2

Time

Data Rate 3

Time

Capacity

When Each Flow Gets 1/3 of Capacity

Data Rate 1 Frequent Overloading

000000000000 Tine

Data Rate 2
AR

Time

Data Rate 3

When Flows Share Total Capacity

S Time

No Overloading

Time

Statistical multiplexingrelies on the assumption
that not all flows burst at the same time.

Very similar to insqi[naence, and has same failure case

Three Flows with Bursty Traffic

Data Rate 1

__—, Time

Data Rate 2

Time

Data Rate 3

Time

Capacity

Three Flows with Bursty Traffic

Data Rate 1

Time

Data Rate 2

Capacity

Time

Data Rate 3

Time

Three Flows with Bursty Traffic

Data Rate 1+2+3 >> Capacity

Time

Capacity

Time

What do we do under overload?

Statistical multiplexing: pipe view

pkt tx
time

BW

time 2>

Statistical multiplexing: pipe view

Statistical multiplexing: pipe view

O
\ No Overload
/-

Statistical multiplexing: pipe view

Queue overload
< into Buffer

Transient Overload
Not such a rare event

Statistical multiplexing: pipe view

Queue overload
< into Buffer

I

Transient Overload
Not such a rare event

74

Statistical multiplexing: pipe view

Queue overload
< into Buffer

T

Transient Overload
Not such a rare event

75

Statistical multiplexing: pipe view

Queue overload
< into Buffer

__|NEN

Transient Overload
Not such a rare event

76

Statistical multiplexing: pipe view

Queue overload
< into Buffer

__|HREN

Transient Overload
Not such a rare event

77

Statistical multiplexing: pipe view

Queue overload
< into Buffer

HICINENCE

Buffer absorbs transient bursts

Statistical multiplexing: pipe view

Queue overload
< into Buffer

What about persistent overload?
Will eventually drop packets

Queues introduce queuing delays

Recall,
packet delay = transmission delay + propagation delay (*)
With queues (statistical multiplexing)
packetdelay = transmission delay + propagation delay + queuing delay (*)
Queuing delay caused by “packetinterference”
Made worse at high load
— less “idle time” to absorb bursts
— think about traffic jams at rush hour

or rail network failure

(* plus per-hop processing delay that we define as negligible) 80

Queuing delay

+ R=link bandwidth (bps) queusing delay

e L=packet length (bits)

e a=average packet arrival
rate

traffic intensity = La/R LaiR
O La/R~ 0: average queuing delay small
O La/R -> 1: delays become large

O La/R>1:more “work” arriving than can be serviced, average delay
infinite — or data is lost (dropped).

Recall the Internet federation

» The Internet ties together different networks
— >18,000 ISP networks

We can see (hints) of the nodes and links using traceroute...

“Real” Internet delays and routes

traceroute: rio.cl.cam.ac.uk to munnari.oz.au
(tracepath on pwf is similar)

%Three delay measurements from
traceroute munnari.oz.au rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk|

traceroute to munnari.oz.au (202.29.151.3), 30 hops max, 60 byte packets

1 gatwick.net.cl.cam.ac.uk (128.232.32.2) 0.416 ms 0.384ms 0.427 ms .
2 cl-sby.route-nwest.net.cam.ac.uk (193.60.89.9) 0.393 ms 0.440 ms 0.494 ms trans-continent
3 route-nwest.route-mill.net.cam.ac.uk (192.84.5.137) 0.407 ms 0.448 ms 0.501 ms link

4 route-mill.route-enet.net.cam.ac.uk (192.84.5.94) 1.006 ms 1.091 ms 1.163 ms

5 xe-11-3-0.camb-rbr1.eastern.ja.net (146.97.130.1) 0.300 ms 0.313ms 0.350 ms

6 ae24.lowdss-sbrl ja.net (146.97.37.185) 2.679 ms 2.664ms 2.712ms

7 ae28.londhx-sbrl ja.net (146.97.33.17) 5.955ms 5.953ms 5.901 ms

8 janet.mx1.lon.uk geant.net (62.40.124.197) 6.059 ms 6.066ms 6.052ms

9 ae0.mx1.parfr.geant.net (62.40.98.77) 11.742ms 11.779 ms 11.724 ms

10 ael.mx1.mad.es.geant.net (62.40.98.64) 27.751 ms 27.734ms 27.704 ms

11 mb-s0-02-v4.bb.tein3.net (202.179.249.117) 138.296 ms 138.314 ms 138.282 ms

12 s5g-s0-04-v4.bb.tein3.net (202.179.249.53) 196.303ms 196.293 ms 196.264 ms

13 th-pr-v4.bb.tein3.net (202.179.249.66) 225.153 ms 225.178 ms 225.196 ms

14 pyt-thairen-to-02-bdr-pyt.uni.net.th (202.29.12.10) 225.163 ms 223.343ms 223.363 ms

15 202.28.227.126 (202.28.227.126) 241.038 ms 240.941 ms 240.834 ms

16 202.28.221.46(202.28.221.46) 287.252ms 287.306 ms 287.282 ms

17 ***

18***, *means no response (probe lost, router not replying)
19 * %%

20 coe-gw.psu.ac.th (202.29.149.70) 241.681 ms 241.715ms 241.680 ms

21 munnari.0ZAU (20229.151.3) 241.610ms 241.636 ms 241.537 ms

Internet structure: network of networks

e a packet passes through many networks!

Internet structure: network of networks

e “Tier-3” ISPs and local ISPs

— last hop (“access”) network (closest to end systems)

Local and tier- 3
ISPs are
customers of
higher tier ISPs
connecting the
to rest of
Internet

Internet structure: network of networks

* “Tier-2” ISPs: smaller (often regional) ISPs
— Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier-2 ISPs also
peer privately
with each other.

Tier-2 ISP pays tier-
11SP for
connectivity to rest
of Internet

O tier-2 ISP is
customer of
tier-1 provider Tier 1 ISP

. V Tier 1 ISP

Internet structure: network of networks

¢ roughly hierarchical

 atcenter: “tier-1” ISPs (e.g., Verizon, Sprint, AT&T, Cable and
Wireless), national/international coverage

— treat each other as equals

Tier-1 Tier 1 ISP
providers
interconnect

(peer)
privately

Tier 1 ISP Tier 1 ISP

Tier-1 ISP: e.g., Sprint

® - POP:point-of-presence — Qg

to/from backbone

to/from customers

Packet Switching

* Datais sent as chunks of formatted bits (Packets)

* Packets consist of a “header” and “payload”

* Switches “forward” packets based on their headers
* Each packet travels independently

* No link resourcesare reserved in advance. Instead
packet switching leverages statistical multiplexing
— allows efficient use of resources
— but introduces queues and queuing delays

Packet switching versus circuit switching

Packet switching may (does!) allow more users to use network

¢ 1Mb/s link
* each user:

— 100 kb/s when “active”
— active 10% of time

e circuit-switching: 1 Mbps link
— 10 users
* packet switching:

— with 35 users, probability
> 10 active at same time is
less than .0004

Q: how did we get value 0.0004?

Packet switching versus circuit switching

Q: how did we get value 0.0004?

e 1 Mb/s link
* each user:
— 100 kb/s when “active”
— active 10% of time HINT: Binomial Distribution
e circuit-switching:
— 10 users
* packet switching:

— with 35 users, probability
> 10 active at same time is
less than .0004

Circuit switching: pros and cons

* Pros
— guaranteed performance
— fast transfers (once circuitis established)

» Cons
— wastes bandwidth if traffic is “bursty”
— connection setup adds delay
— recovery from failure is slow

Packet switching: pros and cons

» Cons
— no guaranteed performance
— header overhead per packet
— queues and queuing delays

* Pros
— efficient use of bandwidth (stat. muxing)
—no overhead due to connection setup
—resilient-- can ‘route around trouble’

Summary

* A sense of how the basic “plumbing’ works
— links and switches
— packet delays= transmission + propagation +
queuing + (negligible) per-switch processing
— statistical multiplexingand queues
— circuit vs. packet switching

Topic 2 — Architecture and Philosophy

* Abstraction
* lLayering
* Layers and Communications
* Entities and Peers
* What is a protocol?
* Protocol Standardization
* The architects process
— How to break system into modules

— Where modules are implemented
— Where is state stored

* InternetPhilosophy and Tensions

Abstraction Concept

A mechanism for breaking down a problem

what not how
« eg Specification versus implementation
* eg Modules in programs
Allows replacement of implementations without affecting system
behavior
Vertical versus Horizontal

“Vertical” what happens in a box “How does it attach to the
network?”

“Horizontal” the communications paths running through the
system

Hint: paths are build on top of (“layered over”) other paths

Computer System Modularity

Partition system into modules & abstractions:
» Well-defined interfaces give flexibility
— Hides implementation - can be freely changed

— Extend functionality of system by adding new
modules

+ E.g., libraries encapsulating set of functionality

* E.g., programming language + compiler
abstracts away how the particular CPU works ...

Computer System Modularity (cnt’ d) Network System Modularity

» Well-defined interfaces hide information Like software modularity, but:

— Isolate assumptions * Implementationis distributed across many

— Present high-level abstractions machines (routers and hosts)

* Must decide:
¢ But can impair performance! — How to break system into modules
» Layering
— Where modules are implemented

» Ease of implementation vs worse « End-to-End Principle

performance — Where state is stored

+ Fate-sharing

Layering Concept Layers and Communications
* Arestricted form of abstraction: system functions
are divided into layers, one built upon another * Interaction only between adjacent layers
» Often called a stack; but not a data structure! * layer n uses services provided by layer n-1
pening 1 o « layer n provides service to layer n+1
speaking 2 d * Bottom layer is physical media
e 7 Kz analog voice * Top layer is application :

D/A,A/D

companding

8 KByte per sec stream

multiplexing

Framed Byte Stream
framing

Bitstream

modulation

Analog signal

Entities and Peers Entities and Peers
Entity — a thing (an independent existence) Entities usually do something useful
Entities interact with the layers above and below — Encryption— Error correction — Reliable Delivery
Entities communicate with peer entities — Nothingat allis also reasonable
— same level but different place (eg different person, different Not all communications is end-to-end

box, different host) Examples for things in the middle

— IP Router — Mobile Phone Cell Tower
. . — Person translating French to English

Communications between peers is supported by
entities at the lower layers

PR A 4 4

2 | 2 3 3

2] 2
1 1

] T :

Layering and Embedding

In Computer Networks we often see higher-layer information embedded within lower-layer
information
* Such embedding can be considered a form of layering
IHigher layer information is generated by stripping off headers and trailers of the current
ayer
eg an IP entity only looks at the IP headers
BUT embedding is not the only form of layering

Layering is to help understand a communications system l TTP data (payload)

NOT
determine implementation strategy .

TCP

hesder TCP payload

P
hemder IP payload

Ethernet
header

packet

Ethernet payload
emet pay! checksum

1

soyrce Example Embedding
message applidation (also called Encapsulation)

segment H| M trangport ﬁg

datagram [Ha] H] M] netyork
frame [H[Ho[B[M] link
physical
[Tink]
| physical -
switch
destination [H[H] M] |[etwork
lIl application Mﬂl‘ Iin!([Ha[e[™]
He[™M transport physical .
[Ha[B] M | [] network @
[H[Ha He] ™] link router
physical

Distributing Layers Across Network

* Layers are simple if only on a single machine

— Just stack of modules interacting with those
above/below

* But we need to implement layers across
machines

— Hosts
— Routers (switches)

* What gets implemented where?

What Gets Implemented on Host?

+ Bits arrive on wire, must make it up to
application

* Therefore, all layers must exist at the host

source / destination

E application
[m] M] [transport
[Ha[H] M] | network Q
[H[Ha[] ™] link
physical

What Gets Implemented on a Router?

. . . [Ha[e[™M]| network
* Bits arrive on wire AR] M Tk AR
n In| Ht
— Physical layer necessary physical ‘

router

¢ Packets must be delivered to next-hop
— Datalink layer necessary

* Routers participate in global delivery
— Network layer necessary

* Routers don’t supportreliable delivery
— Transport layer (and above) not supported

What Gets Implemented on Switches?

+ Switches do what routers do, except they don’t
participate in global delivery, just local delivery

* They only need to support Physical and Datalink
— Don’t need to support Network layer

» Won'’t focus on the router/switch distinction
— When | say switch, | almost always mean router
— Almost all boxes support network layer these days
Routers have switches but switches do not have routers

(M H[] ™] link
physical -

switch

The Internet Hourglass

Ethernet SONET

|CopperH Fiber ‘ ‘ Radio ‘ The Hourglass Model

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

17

Internet protocol stack versus
OSI Reference Model

osl
LS e
Reference . GET http//www.google.co.uk
Model Google f y
Application — =T "Z;?d: TCP payload Internet
_ Protocol
Presentation — - stack
P
N 1P payload o
Session neader pavioa Application
Transport Ethernet | pernet payioad packet Transport
header lchecksum
Network Network

- ERAMING: Ethernet payload

Data Link / consists of individual octets / Data Link

Physical

0010101011110010{ 1010003} 110001010101001...

ISO/0SI reference model

e presentation: allow applications to

interpret meaning of data, e.g., application
encryption, compression, machine- X
o . presentation
specific conventions
= session: synchronization, checkpointing, session
recovery of data exchange transport
¢ Internet stack “missing these layers! network
— these services, if needed, must be -
. . s link
implemented in application
— needed? physical

i Physical
CODING: Each byte encoded into a 10 bit
code-group using 8B/10B block coding scheme | L
11mnmm}f‘mmamm‘_{om1mon
MODULATION: Digital electrical signal
converted to analogue optical signal " ..
and transmitied on fiore
human protocols: network protocols:
+ “what’ s the time?” * machines rather than
* “I'have a question” humans
« introductions * all communication activity
in Internet governed by

... specific msgs sent protocols

... specific actions taken
when msgs received, or

protocols define format, order of msgs sent
other events

and received among network entities,
and actions taken on msg transmission,
receipt

20

What is a protocol?

a human protocol and a computer network protocol:

request
TCP connection

response

GET http://www.cl.cam.ac.uk/index.html
=

——<file>

time

Q: Other human protocols?

Protocol Standardization

* All hosts must follow same protocol
— Very small modifications can make a big difference
— Or prevent it from working altogether
— Cisco bug compatible!
+ This is why we have standards
— Can have multiple implementations of protocol
* Internet Engineering Task Force

— Based on working groups that focus on specific
issues

— Produces “Request For Comments” (RFCs)
— |IETF Web site is http://www.ietf.org
— RFCs archived at http://www.rfc-editor.org

22

So many Standards Problem

* Many different packet-switching networks
* Each with its own Protocol
* Only nodes on the same network could communicate

<7
/
'—</ /

h

INTERNnet Solution

)
</7

b

I

"
A
AV
~

a0

/I/

w0l

PN

"

Alternative to Standardization?

* Have one implementation used by everyone

* Open-source projects
— Which has had more impact, Linux or POSIX?

* Or just sole-sourced implementation
— Skype, many P2P implementations, etc.

A Multitude of Apps Problem

Application Skype | |SSH NFS HTTP

S -
Transmission Coaxial Fiber Radio
Media cable optic

» Re-implement every application for every technology?
» No! But how does the Internet design avoid this?

Solution: Intermediate Layers

* Introduce intermediate layers that provide set of abstractions
for various network functionality and technologies
— A new app/media implemented only once
— Variation on “add another level of indirection”

Application |Skype| |SSH| |NFS | |HTTP|

Intermediate
layers

Transmission Coaxial Fiber Packet
Media cable optic radio

Remember that slide!

* The relationship between architectural
principles and architectural decisions is crucial
to understand

Internet Design Goals (Clark ‘88)

+ Connect existing networks

* Robustin face of failures

» Support multiple types of delivery services
» Accommodate a variety of networks

* Allow distributed management

» Easy host attachment

+ Cost effective

» Allow resource accountability

Real Goals
Internet Motto

We reject kings , presidents, and voting. We believe in
rough consensus and running code.“ — David Clark

* Build something that works!

+ Connect existing networks

* Robustin face of failures

+ Support multiple types of delivery services

» Accommodate a variety of networks

+ Allow distributed management

» Easy host attachment

» Cost effective

«“Allow resetree-accountability

In the context of the Internet

Applications
...builton... email WWW phone...
Reliable (or unreliable)transport "\ smTP HTTP RTP...
...built on...
Best-effort global packet deliver:)
g p very —)

...built on...

Best-effort local packetdelivery —— omet pre

CSMA async sonet...
copper fibre radio...

...built on...

Physical transfer of bits /

Three Observations

* Each layer:
— Depends on layer below email WWW. phone...

— Supports layer above
SMTP HTTP RTP...

— Independent of others

* Multipleversionsin layer
— Interfaces differ somewhat

— Components pick which
lower-level protocol to use

ethernet PPP..

CSMA async sonet...
* Butonlyone IP layer
— Unifying protocol

copper fibre radio...

Layering Crucial to Internet’s Success

email WWW phone...

SMTP HTTP RTP...

* Reuse

+ Hides underlying detail

* Innovation at each level
can proceed in parallel

ethernet PPP..

. CSMA async sonet...
» Pursued by very different d

communities copper fibre radio...

What are some of the drawbacks of
protocols and layering?

Drawbacks of Layering

» Layer N may duplicate lower layer functionality
— e.g., error recovery to retransmit lost data

+ Information hiding may hurt performance
— e.g., packet loss due to corruption vs. congestion

» Headers start to get really big
— e.g., typical TCP+IP+Ethernet is 54 bytes

» Layer violations when the gains too great to resist
— e.g., TCP-over-wireless

 Layer violations when network doesn’t trust ends
- e.g., firewalls

Placing Network Functionality

 Hugely influential paper: “End-to-End Arguments in
System Design” by Saltzer, Reed, and Clark (‘84)
— articulated as the “End-to-End Principle” (E2E)

* Endless debate over what it means

» Everyone cites it as supporting their position
(regardless of the position!)

Basic Observation

« Some application requirements can only be correctly
implemented end-to-end
— reliability, security, etc.

» Implementing these in the network is hard
— every step along the way must be fail proof

* Hosts
— Can satisfy the requirement without network’ s help
— Will/mustdo so, since they can’ trely on the network

Example: Reliable File Transfer

Host A Host B

» Solution 1: make each step reliable, and

string them together to make reliable end-to-
end process

 Solution 2: end-to-end check and retry

Discussion

» Solution 1 is incomplete
— What happens if any network element misbehaves?
— Receiver has to do the check anyway!

» Solution 2 is complete

— Full functionality can be entirely implemented at application layer
with no need for reliability from lower layers

+ Is there any need to implement reliability at lower layers?

Summary of End-to-End Principle

» Implementing functionality (e.g., reliability) in the network
— Doesn’treduce hostimplementation complexity
— Does increase network complexity

— Probably increases delay and overhead on all applications even
if they don’t need the functionality (e.g. VoIP)

« However, implementing in the network can improve
performance in some cases
— e.g., considera very lossy link

“Only-if-Sufficient” Interpretation

» Don’timplement a function at the lower
levels of the system unless it can be
completely implemented at this level

» Unless you can relieve the burden from
hosts, don’t bother

“Only-if-Necessary” Interpretation

* Don’timplement anything in the network that
can be implemented correctly by the hosts

* Make network layer absolutely minimal
— This E2E interpretation trumps performance
issues
— Increases flexibility, since lower layers stay
simple

“Only-if-Useful” Interpretation

* If hosts can implement functionality
correctly, implement it in a lower layer only
as a performance enhancement

» But do so only if it does not impose burden

on applications that do not require that
functionality

We have some tools:

* Abstraction

* lLayering

* Layers and Communications

* Entities and Peers

* Protocol as motivation

* Examples of the architects process
* Internet Philosophy and Tensions

Topic 3: The Data Link Layer

Our goals:
« understand principles behind data link layer services:
(these are methods & mechanismsin your networking toolbox)
— error detection, correction
— sharinga broadcast channel: multiple access
— linklayer addressing
— reliable datatransfer, flow control:
¢ instantiation and implementation of various link
layer technologies
— Wired Ethernet (aka 802.3)
— Wireless Ethernet (aka 802.11 WiFi)
* Algorithms
— Binary Exponential Backoff
— SpanningTree

Link Layer: Introduction

* hosts and routers are nodes

* communication channels that
connect adjacent nodes along
communication path are links
— wired links
— wireless links
— LANs

* layer-2 packet is a frame,
encapsulates datagram

data-link layer has responsibility of 'Ei % @
transferring datagram from one node
to adjacent node over a link

Link Layer (Channel) Services

e framing, link access:
— encapsulate datagram into frame, adding header, trailer
— channel access if shared medium
— “MAC” addresses used in frame headers to identify source, dest
* different from IP address!
* reliable delivery between adjacent nodes
— we see some of this again in the Transport Topic
— seldom used on low bit-error link (fiber, some twisted pair)

— wireless links: high error rates

* Q: why both link-level and end-end reliability?

Link Layer (Channel) Services - 2

¢ flow control:
— pacing between adjacent sendingand receiving nodes

* error detection:
— errorscaused by signal attenuation, noise.
— receiver detects presence of errors:
« signals sender for retransmission or drops frame

* error correction:

— receiver identifies and corrects bit error(s) without resorting to
retransmission
e half-duplex and full-duplex

— with halfduplex, nodes at both ends of link can transmit, but not at same
time

Where is the link layer implemented?

¢ in each and every host
* link layer implemented in
“adaptor” (aka network

host schematic

interface card NIC) [Epleation
transport
— Ethernet card, PCMClI card, "Em:rk
802.11 card
— implements link, physical Zos!
us
layer (e.g., PCI)
* attaches into host’s system
buses
¢ combination of hardware, networkadapter

software, firmware

Adaptors Communicating

datagram
controler

sending host receiving

/-ﬂemlﬂ

frame

* sending side: * receiving side
— encapsulates datagramin frame — decodes data from the
— encodes data for the physical physical layer
layer — looks for errors, provide
— addserror checking bits, reliability, flow control, etc
provide reliability, flow control, — extracts datagram, passes to
etc. upper layer at receiving side

Coding — a channel function

Change the representation of data.

|Changed Data

J

. 2E http:/

222 YV,
>
/’,

MyPasswd

AASSSSff

AASSSSffff

s

b

MyPasswd

AASSS ST

AASSSSFfff

Coding
Change the representation of data.
encoag |)
|Changed Data

=)

Encryption: MyPasswd <-> AASSSSff
Error Detection: AASSSSTT <-> AASSSSFfff
Compression: AASSSSFTff <-> A254f4
Analog: A254f4 <->

L

Line Coding Examples
Non-Return-to-Zero (NRZ) (Baud = bit-rate)

0 1 0 0 1 0 0 1

Clock

U

Manchester example (Baud = 2 x bit-rate)

Jujs

Clock

Quad-level code (2 x Baud = bit-rate)

0 1 0 0 1 0 0 1 1 1

Line Coding Examples
where Baud=bit-rate

Non-Return-to-Zero (NRZ)

0 1 0 1 1 0 0 1 0 1

Non-Return-to-Zero-Mark (NRZM) 1 = transition 0 = no transition

0 1 0 1 1 0 0 1 0 1

Non-Return-to-Zero Inverted (NRZI) (note transitions on the 1)

0 1 0 1 1 0 o0

Line Coding — Block Code example

Data to send

0 1 0 0 1 0 0 1 1 1

Line-(Wire) representation

_—I 12

Line Coding Scrambling — with secrecy

.GBWDFrB

Step 1 EAFDSWb2Q7
BW2fbdTgeT REPLICAT
ImrukTYwQY E
ndYdKb4.... SECI Y
Step 2
Communications
Message Message

Channel

0 1 0 1 0 1 0 0 1 1
Name 4b 5b Description Name 4b sb Description A 2 t
o 0000 11110 hexdata0 o None 0000 auer - Block coding transfers data with a fixed
1 0001 01001 hexdatal 1 -NONE- 11111 Idle . 0, H il H
S o Ton0s nexdaal L NN oo se.. overhead: 20% less information per Baud in
3 0011 10101 hexdata3 K -NoNE- 10001 sso#2 the case of 4B/5B
4 0100 01010 hexdatad T -NONE- 01101 ESD#1
5 0101 01011 hexdata$ R -NONE- 00111 ESD#2
6 0110 01110 hexdata6 H -NONE- 00100 Hal -
7 om ounl hedanas o So to send data at 100Mbps; the line rate
8 1000 10010 hexdata8
o 1001 10011 herdatas (the Baud rate) must be 125Mbps.
A 1010 10110 hexdataA
B 1011 10111 hexdataB .
c 1100 11010 hexdataC 1Gbps uses an 8b/10b codec; encoding
) 1101 11011 hexdataD N N 3
3 1110 11100 hexdataE entire bytes at a time but with 25% overhead
F 1111 11101 hexdataF

Line Coding Scrambling— no secrecy

Scrambling Scrambling
Sequence Sequence

Communications

Wi Channel

Message

XOR XOR
Sequence Sequence

@@\?EJ

Line Coding Examples (Hybrid)

..100111101101010001000101100111010001010010110101001001110101110100...
..10011110110101000101000101100111010001010010110101001001110101110100...

Inserted bits marking “start of frame/block/sequence”

Scramble / Transmit / Unscramble

...0100010110011101000101001011010100100111010111010010010111011101111000...

Identify (and remove) “start of frame/block/sequence”
This gives you the Byte-delineations for free
64b/66b combines a scrambler and a framer. The start of frame is a pair of bits 01 or 10:01 means “this frameis

data” 10 means “this frame contains data and control” — control could be configuration information, length of
encoded data or simply “this line is idle” (no data at all)

Multiple Access Mechanisms

I frequency frequency

FDMA fime " TDMA time

Each dimension is orthogonal (so may be trivially combined)
There are other dimensions too; can you think of them?

N A N
L W-——w Y A
L W4 . —_—
1§ W BN 0 WaEm om0
_— I — I — —
_— . I —
| ANENNN NN N W —
I ' W
I N "
— ~— e c—

a— — —
A— — —
 EEEE-UEEER I
N 2 WEE Ammas 00 O =
—_— [— _—
' B .
— — . _—
W e I _—
" I _—
" — _— _—

Code Division Multiple Access (CDMA)
(not to be confused with CSMA!)

used in several wireless broadcast channels (cellular, satellite,
etc) standards

unique “code” assigned to each user; i.e., code set partitioning

all users share same frequency, but each user has own
chipping” sequence (i.e., code) to encode data

encoded signal = (original data) XOR (chipping sequence)

decoding: inner-product of encoded signal and chipping
sequence

allows multiple users to “coexist” and transmit simutaneously
with minimal interference (if codes are “orthogonal”)

CDMA Encode/Decode

channel output Z; ,,

data |
bits '}

sender

adds code code channel channel

output output

slot1 | slot0
M
D= 27
. m=1"
. : : M 1 !
received U [FRREEE R : =
input (O
I [1] / ! slot1 slot0
code E 1 channel channel
receiver ! output output

slot1 ' slot0

removes code

CDMA: two-sender interference

senders
data I
bits [] - "
Each L[TR A channe\,Z"m
code 0
Szrédef HEE O G
adds a @—»
unique data [=1 e /
code bits
M olaaolaaalanolog
o g Z = dic,
=]
sender .
removes
its unique receiver 1
code de [T [1___[TT] [
HEE B

Coding Examples summary

* Common Wired coding
— Block codecs: table-lookups
« fixed overhead, inline control signals
— Scramblers: shift registers
* overhead free

Like earlier coding schemes and error
correction/detection; you can combine these
— e.g, 10Gb/s Ethernet may use a hybrid

CDMA (Code Division Multiple Access)
— coping intelligently with competing sources
— Mobile phones

Error Detection and Correction

| [

0000 (0000 0001 (0000
Basic Idea:

1. Add additionalinformation to a message.

2. Detectan error and re-send a message.
Or, fix an error in the received message.

Error Detection and Correction

0000

0000

Basic Idea:
1. Add additional information to a message.

2. Detectan error and re-send a message.
Or, fix an error in the received message.

IN——]

Error Detection

EDC= Error Detection and Correction bits (redundancy = overhead)
D = Data protected by error checking, may include header fields

e Error detection not 100% reliable!
e protocol may miss some errors, but rarely
o |arger EDC field yields better detection and correction

e
otherwise

—_—
detected

<—d data bits—| erer

[D [EDC] [D' [EDC]

([Biterror prone ik

Error Detection Code

Sender: Receiver:

Y = generateCheckBit(X);

send(XY);
receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 !=Y2) ERROR;
else NOERROR

Error Detection Code: Parity

% 10001

oot |1
1001 (O v/ (1111 (O

v/ (0001

1

=[]
Ii
=]

1

| Problem: This simple parity cannot detect two-bit errors. |

Parity Checking

Two Dimensional Bit Parity:
Detect and correct single bit errors

Single Bit Parity:

Detect single bit errors

row
parity

. ari d ... d
«— d data bits —-IE" ty 1.1 1| 91, j
dsq tor dojdgjag
0111000110101011] 0 | R
co\umnl i coc Gy | dijes
parity divr1 00 vl digq jug
101011 10101t
11110/0 e parity
01110[1 0l1101
00101]0 Q¢1o1fo
no errors parity
error
correctable

single bit error

Internet checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted packet
(note: used at transport layer only)

Sender: Receiver:
* compute checksum of received

« treat segment contents as
segment

sequence of 1bit integers

« checksum: addition (1" s
complement sum) of segment
contents — NO - error detected

— YES - no error detected. But
maybe errors nonetheless?

* check if computed checksum
equals checksum field value:

* sender puts checksum value
into UDP checksum field

31

Error Detection Code: CRC

e CRC means “Cyclic Redundancy Check”.
¢ More powerful than parity.

e |t can detectvarious kinds of errors, including 2-bit
errors.

¢ More complex: multiplication, binary division.
e Parameterized by n-bit divisor P.

¢ Example: 3-bit divisor 101.

¢ Choosinggood P is crucial.

CRC with 3-bit Divisor 101

4 o
i 5
"\ _CRC Parity

111same check bits from Parity,
but different ones from CRC

—

Kurose p478 §5.2.3

Add three 0" s at the end S

The divisor (P) — Secret sauce of
CRC

* |If the divisor were 100, instead of 101, data 1111 and
1001 would give the same check bit 00.

* Mathematical analysis about the divisor:
— Last bit should be 1.
— Should contain at least two 1’ s.
— Should be divisible by 11.

* ATM, HDLC, Etherneteach use a CRC with well-
chosen fixed divisors

Divisor analysis keeps mathematiciansin jobs
(a branch of pure math: combinatorial mathematics)

FYI:in K&R P is called the Generator: G 34

Checksumming: Cyclic Redundancy Check
recap

« view data bits, D, as a binary number
* choose r+1 bit pattern (generator), P
* goal: choose r CRC bits, R, such that
— <D,R> exactly divisible by G (modulo 2)
— receiver knows G, divides <D,R> by G. If non-zero remainder: error
detected!
— candetect all burst errorsless than r+1 bits
« widely used in practice (Ethernet, 802.11 WiFi, ATM)

d bits <«— rbits —
bit
D: data bits to be sent| R:CRC bits| pattern
D*2f XxorR R Mathematical
FYI:in K&R P is called the Generator: G 35

CRC Another Example — this time with long

division
Want:
D2" XORR =nP 1010t
100 01110000
equivalently: p 4|:|—1' %}-1—_'> D
D-2"=nP XORR 101
000
equivalently: 1010
if we divide D2" by P, %i 0
want remainder R 000
1100
1001
. 1010
R = remainder|] 1001
011
R 4I:l_I
FYI:in K&R P is called the Generator: G 36

Error Detection Code becomes....

Sender: Receiver:
Y = generateCheckBit(X);
send(XY);

receive(X1Y1);
Y2=generateCheckBit(X1);
if (V1 = Y2) ERROR;

else NOERROR

Forward Error Correction (FEC)

Sender: Receiver:

Y = generateCheckBit(X);

send(XY);
receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 !=Y2) FIXERROR(X1Y1);
else NOERROR

Forward Error Correction (FEC)

Sender: Receiver:

Y = generateCheckBit(X);

send(XY);
receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 !'=Y2) FIXERROR(X1Y1);
else NOERROR

[
MNeica |) -

Noise

Basic Idea of Forward Error
Correction

oo 2

Error Detection vs Correction

Error Correction:

* Cons: More check bits. False recovery.

* Pros: No need to re-send.

Error Detection:

* Cons: Need to re-send.

* Pros: Less check bits.

Usage:

* Correction: A lot of noise. Expensive to re-send.
* Detection:Less noise. Easy to re-send.

* Can be used together.

Multiple Access Links and Protocols

Two types of “links”:
¢ point-to-point
— point-to-point link between Ethernet switch and host

* broadcast (shared wire or medium)
— old-fashioned wired Ethernet (here be dinosaurs — extinct)
— upstream HFC (Hybrid Fiber-Coax — the Coax may be broadcast)
— Home plug/ Powerline networking
— 802.11 wireless LAN

222 humansat a
shared wire (e.g., shared RF shared RF cocktail party
cabled Ethernet) (e.g., 802.11 WiFi) (satellite) (shared air, acoustical)

42

Multiple Access protocols

* single shared broadcast channel
* two or more simultaneous transmissions by nodes:
interference
— collision if node receives two or more signals at the same time
multiple access protocol

e distributed algorithm that determines how nodes share
channel, i.e., determine when node can transmit

e communication about channel sharing must use channel itself!
— no out-of-band channel for coordination

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. when one node wants to transmit, it can send at rate R

2. when M nodes want to transmit, each can send at average
rate R/M

3. fully decentralized:
— no special node to coordinate transmissions
— no synchronization of clocks, slots

4. simple

44

MAC Protocols: a taxonomy

Three broad classes:
e Channel Partitioning
— divide channel into smaller “pieces” (time slots, frequency, code)
— allocate piece to node for exclusive use
* Random Access
— channel not divided, allow collisions
— “recover” from collisions
» “Taking turns”

— nodes take turns, but nodes with more to send can take longer
turns

Channel Partitioning MAC protocols: TDMA
(time travel warning — we mentioned this earlier)

TDMA: time division multiple access
* access to channel in "rounds"

* each station gets fixed length slot (length = pkt trans time)
in each round

* unused slots goidle
* example: station LAN, 1,3,4 have pkt, slots 2,5,6 idle

slot
frame

: 1 |

46

Channel Partitioning MAC protocols: FDMA
(time travel warning — we mentioned this earlier)

FDMA: frequency division multiple access

¢ channel spectrum divided into frequency bands

* each station assigned fixed frequency band

¢ unused transmission time in frequency bands go idle

* example: station LAN, 1,3,4 have pkt, frequency bands 2,5,6

idle
time
M " e,
=}
c
® -
el
(z 5—4 VN) ——
5
> eeee———
o
[
FDM cable = -
IAYAV]

“Taking Turns” MAC protocols

channel partitioning MAC protocols:
— share channel efficiently and fairly at high load

— inefficient at low load: delay in channelaccess,
1/N bandwidth allocated evenif only 1 active
node!

Random access MAC protocols

— efficientat low load: single node can fully utilize
channel

— high load: collision overhead
“taking turns” protocols

look for best of both worlds!

48

“Taking Turns” MAC protocols

Polling:

* master node “invites”
slave nodes to transmit
in turn

¢ typically used with
“dumb” slave devices

* concerns:

— polling overhead
— latency slaves

— single point of failure
(master)

“Taking Turns” MAC protocols

Token passing:
7 control token passed from

one node to next 4@
sequentially.
7 token message (nothing
7 concerns: to send)
O token overhead @ @
> latency
> single point of failure (token)

> concerns fixed in part by a slotted
ring (many simultaneous tokens)
Cambridge students — this is YOUR heritage data
Cambridge RING, Cambridge Fast RING, -
Cambridge Backbone RING, these things gave us ATDM (and ATM) 0

ATM

In TDM a sender may only use a pre-allocated slot
slot
frame

w :

In ATM a sender transmits labeled cells whenever necessary

O 100 7 Yy Y

ATM = Asynchronous Transfer Mode —an ugly expression
think of it as ATDM — Asynchronous Time Division Multiplexing

That’s a variant of PACKET SWITCHING to the rest of us — just like Ethernet
but using fixed length slots/packets/cells

Use the media when you need it, but
ATM had virtual circuits and these needed setup....
Worse ATM had an utterly irrational size

Random Access MAC Protocols

* When node has packet to send
— Transmit at full channel data rate
— No a priori coordination among nodes
* Two or more transmitting nodes = collision
— Data lost
* Random access MAC protocol specifies:
— How to detect collisions
— How to recover from collisions
* Examples
— ALOHA and Slotted ALOHA
— CSMA, CSMA/CD, CSMA/CA (wireless)

Key Ideas of Random Access

* Carrier sense
— Listen before speaking, and don’t interrupt
— Checking if someone else is already sending data
— ... and waiting till the other node is done
* Collision detection
— If someone else starts talking at the same time, stop
— Realizing when two nodes are transmitting at once
— ...by detecting that the data on the wire is garbled
* Randomness
— Don’t start talking again right away
— Waiting for a random time before trying again

CSMA (Carrier Sense Multiple Access)

* CSMA: listen before transmit
— If channel sensedidle: transmit entire frame
— If channel sensed busy, defer transmission

» Human analogy: don’ t interrupt others!

* Does this eliminate all collisions?
— No, because of nonzero propagation delay

CSMA Collisions

+—— Space —

A . ¢

Propagation delay: two
nodes may not hear each
other’s before sending.

To

Would slots hurt or help?

<« time

CSMA reduces but does not
eliminate collisions

Biggest remaining problem?

Collisions still take full slot!
How do you fix that?

CSMA/CD (Collision Detection)

* CSMA/CD: carrier sensing, deferral as in CSMA
— Collisions detected within short time
— Colliding transmissions aborted, reducing wastage

* Collision detection easy in wired LANs:
— Compare transmitted, received signals

* Collision detection difficultin wireless LANs:
— Reception shut off while transmitting (well, perhaps not)
— Not perfect broadcast (limited range) so collisions local
— Leads to use of collision avoidance instead (later)

CSMA/CD Collision Detection

and D can tell that

“ <+«— space —>
collision occurred.

C

1>
1O

Note: for this to work,

need restrictions on

minimum frame size and t
maximum distance. Why?

<+« time

Limits on CSMA/CD Network
Length

>

N/
(1-’\\7

(!

P
T

/-

* Latency depends on physical length of link

— Time to propagate a packet from one end to the other
e SupposeA sends a packet at time t

— And B sees an idle line at a time just before t+d

— ... 50 B happily starts transmitting a packet
* Bdetectsa collision, and sends jamming signal

— But A can’t see collision until t+2d

@ 7\ B latency d ﬂm&s

Performance of CSMA/CD

* Time wasted in collisions
— Proportional to distanced
* Time spend transmitting a packet
— Packet length p divided by bandwidth b
* Rough estimate for efficiency (K some constant)

b
* Note: P+Kd
— For large packets, small distances, E~ 1
— As bandwidth increases, E decreases

— That is why high-speed LANs are all switched

Benefits of Ethernet

* Easy to administer and maintain
* Inexpensive

* Increasingly higher speed

* Evolvable!

Evolution of Ethernet

* Changed everything except the frame format

— From single coaxial cable to hub-based star
— From shared media to switches
— From electrical signaling to optical

* Lesson #1

— The right interface can accommodate many changes
— Implementation is hidden behind interface

e Lesson #2

— Really hard to displace the dominant technology
— Slight performance improvements are not enough

Ethernet: CSMA/CD Protocol

* Carrier sense: wait for link to be idle
* Collision detection: listen while transmitting
— No collision: transmission is complete
— Collision: abort transmission & send jam signal
* Random access: binary exponential back-off
— After collision, wait a random time before trying again
— After mt"collision, choose K randomly from {0, ..., 2™-1}

— ... and wait for K*512 bit times before trying again
* Using min packet size as “slot”

« If transmission occurring when ready to send, wait until end of
transmission (CSMA)

The Wireless Spectrum

F00H

y Spe Allecaticn - Py r.n. P Say

[ma] [ma]

[woamn]| [mme] [wean

2%

-

aa s 0004z

Metrics for evaluation / comparison of wireless
technologies

* Bitrate or Bandwidth
* Range - PAN, LAN, MAN, WAN
* Two-way / One-way
¢ Multi-Access / Point-to-Point
* Digital / Analog
e Applications and industries
* Frequency — Affects most physical properties:
Distance (free-space loss)
Penetration, Reflection, Absorption
Energy proportionality
Policy: Licensed / Deregulated
Line of Sight (Fresnel zone)
Size of antenna ,
» Determined by wavelength — \ = l_f'__)

Wireless Communication Standards

+ Cellular (800/900/7700/1800/1900Mhz):
— 2G: GSM / CDMA / GPRS /EDGE
— 3G: CDMA2000/UMTS/HSDPA/EVDO
— 4G: LTE, WiMax

 |EEE 802.11 (aka WiFi):
— b: 2.4Ghz band, 11Mbps (~4.5 Mbps operating rate)
— g: 2.4Ghz, 54-108Mbps (~19 Mbps operating rate)
— a: 5.0Ghz band, 54-108Mbps (~25 Mbps operating rate)
— n: 2.4/5Ghz, 150-600Mbps (4x4 mimo).

* |EEE 802.15— lower power wireless:
— 802.15.1: 2.4Ghz, 2.1 Mbps (Bluetooth)
— 802.15.4: 2.4Ghz, 250 Kbps (Sensor Networks)

What Makes Wireless Different?

¢ Broadcast and multi-access medium...
— efrt, so....

* BUT, Signals sent by sender don’t always end
up at receiver intact

— Complicated physics involved, which we won’t
discuss

— But what can go wrong?

Path Loss / Path Attenuation

* Free Space Path Loss: FSPL = (%)
d = distance 2
A = wave length = (ﬂ)
c

f = frequency

¢ = speed of light
* Reflection, Diffraction, Absorption
* Terrain contours (Urban, Rural, Vegetation).
* Humidity

Multipath Effects

SN L

/
o=~ ®

Floor

* Signals bounce off surface and interfere with
one another

¢ Self-interference

Interference from Other Sources

* External Interference
— Microwave s turned on and blocks your signal
— Would that affect the sender or the receiver?
* Internal Interference

— Hosts within range of each other collide with one
another’ s transmission

* We have to tolerate path loss, multipath, etc.,
but we can try to avoid internal interference

Wireless Bit Errors
* The lower the SNR (Signal/Noise) the higher the
Bit Error Rate (BER)
* We could make the signal stronger...
¢ Why is this not always a good idea?
— Increased signal strength requires more power

— Increases the interference range of the sender, so you
interfere with more nodes around you
* And then they increase their power.......

Local link-layer Error Correction schemes can
correctsome problems

Lets focus on 802.11

aka - WiFi ...
What makes it special?

Deregulation > Innovation > Adoption > Lower cost = Ubiquitous technology

JUST LIKE ETHERNET —not lovely but sufficient

802.11 Architecture

==

Internet
- Switch or router
Pabie

802.11 frames g
exchanges .

802.3 (Ethernet)
frames exchanged
Figure 6.7 + IEEE 802.11 LAN architecture

¢ Designed for limited area
« AP’ s (Access Points) set to specific channel
¢ Broadcast beacon messages with SSID (Service Set Identifier) and MAC Address
periodically
* Hosts scan all the channels to discover the AP’ s
— Host associates with AP

Wireless Multiple Access Technique?

* Carrier Sense?
— Sender can listen before sending
— What does that tell the sender?

* Collision Detection?
— Where do collisions occur?
— How can you detect them?

Hidden Terminals

transmit range

* Aand Ccan both send to B but can’ t hear each other
— A'is a hidden terminal for C and vice versa
e Carrier Sense will be ineffective

Exposed Terminals

* Exposed node: B sends a packet to A; C hears this and decides
not to send a packet to D (despite the fact that this will not
cause interference)!

* Carrier sense would prevent a successful transmission.

Key Points

* No concept of a global collision
— Different receivers hear different signals
— Different senders reach different receivers

* Collisions are at receiver, not sender
— Only care if receiver can hear the sender clearly
— It does not matter if sender can hear someone else
— As long as that signal does not interfere with receiver

* Goal of protocol:
— Detect if receiver can hear sender
— Tell senders who might interfere with receiver to shut up

Basic Collision Avoidance

* Since can’ t detectcollisions, we try to avoid
them

e Carrier sense:

— When medium busy, choose random interval
— Wait that many idle timeslots to pass before sending

* When a collision is inferred, retransmit with
binary exponential backoff (like Ethernet)
— Use ACK from receiver to infer “no collision”
— Use exponential backoff to adapt contention window

CSMA/CA -MA with Collision Avoidance

other node in

sender receiver f
sender s range

» Before every data transmission

— Sender sends a Request to Send (RTS) frame containing the length of the
transmission

— Receiver respond with a Clear to Send (CTS) frame
— Sender sends data
— Receiver sends an ACK; now another sender can send data

* When sender doesn’ t get a CTS back, it assumes collision

CSMA/CA, con’ t

receiver other node in
sender sender’s range
RTS
data data

* |f other nodes hear RTS, but not CTS: send

—Presumably, destination for first sender is out of
node’ srange ...

CSMA/CA, con’ t

other node in

sender receiver s
sender s range

RTS

CTS
data

* If other nodes hear RTS, but not CTS: send

— Presumably, destination for first sender is out of node’ s
range ...

—... Can cause problems when a CTS is lost

* When you hear a CTS, you keep quiet until scheduled
transmission is over (hear ACK)

RTS / CTS Protocols (CSMA/CA)

B sends to C

Overcome hidden terminal problems with

contention-free protocol

1. Bsends to C Request To Send (RTS)

A hears RTS and defers (to allow C to answer)
C replies to B with Clear To Send (CTS)

D hears CTS and defers to allow the data

B sends to C

vk wN

Preventing Collisions Altogether

Frequency Spectrum partitioned into several channels
— Nodes within interference range can use separate channels

— Now A and C can send without any interference!
Most cards have only 1 transceiver
— Not Full Duplex: Cannot send and receive at the same time

— Aggregate Network throughput doubles

CSMA/CA and RTS/CTS

sender receiver sender receiver
RIS data
cTs
data
RTS/CTS Without RTS/CTS
* helps with hidden terminal * lower latency -> faster!

* good for high-traffic Access Points * reduces wasted b/w
if the Pr(collision) is low

* good for when net is small and
not weird

« often turned on/off dynamically

eg no hidden/exposed terminals

wired — listen and talk

BwN e

CSMA/CD vs CSMA/CA
(without RTS/CTS)

CD Collision Detect CA Collision Avoidance

wireless — talk OR listen

Liste: for others 1. Listen for others

Busy? goto 1.) 2. Busy?

Senf:l'message (and listen) a. increaseyour BEB
Collision? b. sleep

a %AM c. gotol.

b. increaseyour BEB

¢ sleep 3. Send message

d. gotol. 4. Wait for ACK (MAC ACK)

5. Got No ACK from MAC?
a. increaseyour BEB
b. sleep
c. gotol. 84

Changing the rules: an 802.11 feature

Rate Adaptation 107

* base station, mobile
dynamically change

BE
=]
|~

transmission rate 109)
(physical layer 109 \ "
modulation technique) as tol—2 2:) &
mobile moves, SNR varies SNR(dB)

1. SNR decreases, BER increase
as node moves away from base

------ QAM?256 (8 Mbps) station
- = QAM16 (4 Mbps)
—— BPSK (1Mbps) 2. When BER becomes too high,

operating point . -
b switch to lower transmission

rate but with lower BER

85

Summary of MAC protocols

channel partitioning, by time, frequency or code

— Time Division, Frequency Division

random access (dynamic),

— ALOHA, S-ALOHA, CSMA, CSMA/CD

— carrier sensing: easy in some technologies (wire), hard in others
(wireless)

— CSMA/CD used in Ethernet

— CSMA/CA used in 802.11

taking turns

— polling from central site, token passing

— Bluetooth, FDDI, IBM Token Ring

MAC Addresses

* MAC (or LAN or physical or Ethernet) address:
— function: get frame from one interface to another
physically-connected interface (same network)
— 48 bit MAC address (for most LANs)

e burned in NIC ROM, nowadays usually software
settable and set at iy

awm22@rio:~$ ifconfig eth@
etho Link encap:Ethernet_HWaddr @0:30:48:fe:c0:64
inet addr:128.232.33.F=Raast;128. 4 55~ Mask: 255.255.240.0
inet6 addr: fe80::230:48ff:fefe:c064/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:215084512 errors:252 dropped:25 overruns:0 frame:123
TX packets:146711866 errors:@ dropped:@ overruns:® carrier:@
collisions:@ txqueuelen: 1000
RX bytes:170815941033 (170.8 GB) TX bytes:86755864270 (86.7 GB)
Memory: f0000000- 0020000

LAN Address (more)

* MAC address allocation administered by IEEE

* manufacturer buys portion of MAC address space (to assure
uniqueness)

e analogy:
(a) MAC address: like Social Security Number
(b) IP address: like postal address
* MAC flat address =¥ portability
— can move LAN card from one LAN to another
* IP hierarchical address NOT portable

— address depends on IP subnet to which node is attached

Hubs

... physical-layer (“dumb”) repeaters:
— bits coming in one link go out all other links at same rate
— all nodes connected to hub can collide with one another
— no frame buffering
— no CSMA/CD at hub: host NICs detect collisions

Collision Domain
in CSMA/CD speak

BOAINS . BEAINS

~_ . CSMA/CD Lives....

Home Plug and similar Powerline Networking....

With HomePlug technology, the electrical wires
in your home can now distribute broadband
Internet, HD video, digital music & smart energy
applications.

Switch

(like a Hub but smarter)

* link-layer device: smarter than hubs, take active role
— store, forward Ethernet frames

— examine incoming frame’ s MAC address, selectively
forward frame to one-or-more outgoing links when
frame is to be forwarded on segment, uses CSMA/CD to
access segment

* transparent
— hosts are unaware of presence of switches
* plug-and-play, self-learning

— switches do not need to be configured

Switch: allows multiple simultaneous
transmissions

* hosts have dedicated, direct
connection to switch

* switches buffer packets

* Ethernet protocol used on each
incoming link, but no collisions;
full duplex

— each link is its own collision
domain

* switching: A-to-A’ and B-to-B’
simultaneously, without

o switch with six interfaces
collisions (1,2,3,4,5,6)
— not possible with dumb hub

Switch Table

Q: how does switch know that A’
reachable via interface 4, B’
reachable via interface 5?
A: each switch has a switch table,
each entry:
— (MAC address of host, interface to
reach host, time stamp)

looks like a routing table!

Q: how are entries created,
maintained in switch table? switch with six interfaces

— something like a routing protocol? (12,3,4,5,6)

Switch: self-learning (recap)«s"

* switch /earns which hosts can
be reached through which
interfaces
— when frame received, switch

“learns” location of sender:
incoming LAN segment

— records sender/location pair in

switch table
MAC addr | interface TTL
A 1 60 Switch table
(initially empty)
94
H N :A
Self-learning, //D"e“s;fj\,
forwarding:

example

¢ frame destination
unknown: flood

7 destination A location
known:
selectivesend

MAC addr | interface | TTL

A 1 60 Switch table
A’ 4 60 (initially empty)

Switch: frame filtering/forwarding

When frame received:

1. record link associated with sending host
2. index switch table using MAC dest address

3. if entry found for destination
then {

if dest on segment from which frame arrived
then drop the frame

else forward the frame on interface indicated
}

else flood

forward on all but the interface
on which the frame arrived

Interconnecting switches

* switches can be connected together

T Q:sending from Ato G - how does S; know to forward
frame destined to F via S, and S3?

T A: self learning! (works exactly the same as in single-switch
case — flood/forward/drop)

Flooding Can Lead to Loops
* Flooding can lead to forwarding loops

— E.g,, if the network contains a cycle of switches
— “Broadcast storm”

wee OOlution: Spanning Trees

+ Ensure the forwarding topology has no loops
— Avoid using some of the links when flooding

— ... to prevent loop from forming
* Spanning tree

— Sub-graph that covers all vertices but contains no
cycles

— Links not in the spanning tree do not forward frames

Graph Has Cycles!

< \ _— A\

/ \ No Cycles! /
/N

What Do We Know?

* Shortest paths to (or from) a node form a tree
* So, algorithm has two aspects :
— Pick a root

— Compute shortest paths to it

* Only keep the links on shortest-path

Constructing a Spanning Tree

» Switches need to elect a root
— The switch w/ smallest identifier (MAC addr)

« Each switch determines if each interface
is on the shortest path from the root
— Excludes it from the tree if not root

« Messages (Y, d, X) / \

— From node X

— Proposing Y as the root /(7
One hop

— And the distance is d

Three hopse

Steps in Spanning Tree Algorithm

« Initially, each switch proposes itself as the root
— Switch sends a message out every interface
— ... proposing itself as the root with distance 0
— Example: switch X announces (X, 0, X)
» Switches update their view of the root
— Upon receiving message (Y, d, Z) from Z, check Y’s id
— If new id smaller, start viewing that switch as root
» Switches compute their distance from the root
— Add 1 to the distance received from a neighbor
— Identify interfaces not on shortest path to the root
— ... and exclude them from the spanning tree

If root or shortest distance to it changed, “flood”
updated message (Y, d+1, X

Example From Switch #4’ s Viewpoint

» Switch #4 thinks it is the root
— Sends (4, 0, 4) messageto 2and 7
» Then, switch #4 hears from #2
— Receives (2, 0, 2) message from 2 1
— ... and thinks that #2 is the root
— And realizes it is justone hop away 3 5
» Then, switch #4 hears from #7 \
- Receives (2,1,7) from7 froot _— 2 \
— And realizes this is a longer path & ~. / 6
— So, prefers its own one-hop path 7
— And removes 4-7 link from the tree

Example From Switch #4’ s Viewpoint

» Switch #2 hears about switch #1
— Switch 2 hears (1, 1, 3) from 3
— Switch 2 starts treating 1 as root
— And sends (1, 2, 2) to neighbors

1
+ Switch #4 hears from switch #2 / \

— Switch 4 starts treating 1 as root 5
. #root
— And sends (1, 3, 4) to neighbors \
» Switch #4 hears from switch #7 _— 2\
— Switch 4 receives (1, 3, 7) from 7 & / 6
— And realizes this is a longer path 7

— So, prefers its own three-hop path
— And removes 4-7 link from the tree

Robust Spanning Tree
Algorithm

» Algorithm must react to failures
— Failure of the root node
« Need to elect a new root, with the next lowest identifier
— Failure of other switches and links
* Need to recompute the spanning tree
* Root switch continues sending messages
— Periodically reannouncing itself as the root (1, 0, 1)
— Other switches continue forwarding messages
» Detecting failures through timeout (soft state)
— If no word from root, times out and claims to be the root
— Delay in reestablishing spanning tree is major problem
— Work on rapid spanning tree algorithms...

Topic 3: Summary

* principles behind data link layer services:
— error detection, correction
— sharing a broadcast channel: multiple access
— link layer addressing

* instantiation and implementation of various link layer
technologies
— Ethernet
— switched LANS
— WiFi

* algorithms
— Binary Exponential Backoff
— Spanning Tree

Topic 4: Network Layer

Our goals:
* understand principles behind network layer
services:
— network layer service models
— forwarding versus routing (versus switching)
— how a router works
— routing (path selection)
—IPv6
* Forthe most part, the Internetis our
example —again.

Name: a something
Address: Where a something is

Routing: How do | get to the
something

Addressing (at a conceptual level)

Assume all hosts have unique IDs

* No particularstructureto those IDs

* Laterintopicl will talk about real IP addressing
* Dol route on location or identifier?

* If a host moves, should its address change?
— If not, how can you build scalable Internet?
— If so, then what good is an address for identification?

Packets (at a conceptual level)

* Assume packet headers contain:
— Source ID, Destination ID, and perhaps other

information —
Destination)
Identifier Why include
Source this?
Identifier
Payload

Switches/Routers

* Multiple ports (attached to other switches or hosts)

incoming links Switch outgoing links

* Ports are typically duplex (incoming and outgoing)

A Variety of Networks

* ISPs: carriers
— Backbone
— Edge
— Border (to other ISPs)
* Enterprises: companies, universities
— Core
— Edge
— Border (to outside)
* Datacenters: massive collections of machines
— Top-of-Rack
— Aggregation and Core
— Border (to outside)

Switches forward packets
|

—— EDINBURGH
switch# switch#2

Forwarding Table
111010010

= m
d <~ ey T >
A

GLASGOW
N:%witch!lﬁ

OXFORD
EDIN

[N RITIN

UL

OXFO ucL

switch#3

Forwarding Decisions

* When packet arrives..
— Must decide which outgoing port to use
— In single transmission time
— Forwarding decisions must be simple

* Routing state dictates where to forward packets
— Assume decisions are deterministic

* Global routing state means collection of routing state
in each of the routers

— Will focus on where this routing state comes from
— But first, a few preliminaries....

Forwarding vs Routing

* Forwarding: “data plane”
— Directing a data packet to an outgoinglink
— Individual router using routing state
* Routing: “control plane”
— Computing paths the packets will follow
— Routers talking amongstthemselves
— Jointly creating the routing state
* Two very different timescales....

Router definitions

N-1 4—> 3 R bits/sec

* N = number of external router “ports”
* R = speed (“line rate”) of a port
* Router capacity=N x R

Networks and routers

Examples of routers (core)

Cisco CRS
* R=10/40/100 Gbps
* NR =922 Thps
* Netflix: 0.7GB per
hour (1.5Mb/s)

* ~600 million
concurrent Netflix
users

72 racks, > 1MW

Examples of routers (edge)

Cisco ASR
* R=1/10/40 Gbps
* NR =120 Gbps

Examples of routers (small business)

Cisco 3945E
* R=10/100/1000 Mbps
* NR < 10 Gbps

What’sinside a ro

Route/Control
Processor_|

2 >

& Interconnect
b4 (Switching)
Fabric

What’sinside a router?

Route/Control
Processor

Linecards (input) Linecards (output)

o

v Interconnect
(Switching)
Fabric

What’sinside a rout

—————

’ Route/Control
N,
S~ Processor

-

——————

o EE ‘
2 Ly
AT
! \; Interconnect N
! hd Fabric Py ,'
\ ° !
N A

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“End hosts”
“Clients”, “Users”
“End points”

Context and Terminology

are responsible for constructing
and updating the forwarding tables at routers

Routing Protocols

* Routing protocols implement the core function of a network
— Establish paths between nodes
— Part of the network’s “control plane”

* Network modeled as a graph
— Routers are graph vertices
— Links are edges
— Edges have an associated “cost”
* e.g., distance, loss

¢ Goal: compute a “good” path from source to destination
— “good” usually means the shortest (least cost) path

21

Internet Routing

* Internet Routing works at two levels

¢ Each AS runs an intra-domain routing protocol that
establishes routes within its domain
— (AS -- region of network under a single administrative entity)
— Link State, e.g., Open Shortest Path First (OSPF)
— Distance Vector, e.g., Routing Information Protocol (RIP)

* ASes participate in an inter-domain routing protocol that
establishes routes between domains
— Path Vector, e.g., Border Gateway Protocol (BGP)

Addressing (for now)

* Assume each host has a unique ID (address)
* No particular structure to those IDs

* Later in course will talk about real IP
addressing

Outline

* Link State
* Distance Vector
* Routing: goals and metrics (if time)

Link-State

Link State Routing

» Each node maintains its local “link state” (LS)
— i.e., alist of its directly attached links and their costs

(N1,N2)
(N1,N4)
(NLN5) Host C

Host a i%i Host D

N2 /
IE N3
Host B
Host E
--' NE/IW

Link State Routing

Each node floods its local link state

— onreceiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host C

Link State Routing

* Each node floods its local link state

* Hence, each node learns the entire network topology
— Can use Dijkstra’s to compute the shortest paths between nodes

Host A

= F l =
===
=

Dijkstra’s Shortest Path Algorithm

* INPUT:
— Network topology (graph), with link costs

+ OUTPUT:

— Least cost paths from one node to all other nodes

* lterative: after k iterations, a node knows the
least cost path to its k closest neighbors

Example

Notation

c(i,j): link cost from node i
to j; cost is infinite if not
direct neighbors; 2 0

* D(V): total cost of the
current least cost path from
source to destination v

* p(Vv): v's predecessor along
path from source to v

* S: set of nodes whose least
cost path definitively known

1
2
3
4
5
6
7
8

9

10
1
12

13
14

Dijkstra’ s Algorithm

* c(i,j): link costfrom nodei to j

Initialization:
S ={A}; » D(v): current cost source — v
for all nodes v * p(v): v's predecessoralong path
if v adjacentto A from source to v
then D(v) = c(A,v); + S:setof nodes whose least cost
else D(v) = o0; path definitively known
Loop
find w notin S such that D(w) is a minimum;
addwtoS;

update D(v) for all v adjacentto w and notin S:
if D(w) + c(w,v) < D(v) then
Il w gives us a shorter pathto v thanweve found so far
D(v) = D(w) + c(w,v); p(v) = w;
until all nodes in S;

Example: Dijkstra’ s Algorithm

tep setS D(B),p(B) D(C),p(C) D(D).p(D)
A 2,A

)]

D(E).p(E) D(F),p(F)
5A 1,A o0 °g

Ul-b(;.)l\.)—\%

1 Initialization:

2 S={A}

3 forallnodes v

4 if vadjacentto A

5 then D(v) = c(A,v);
6 else D(v) = o0;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C),p(C) D(D).p(D) D(E).p(E) D(F),p(F)
0 A 2,A 5A 1A () ® o0
-t L

2

3

4

5

8 Loop \

9 ind w notin S s.t. D(w) is a minimum;
10 addwios;

11 update D(v) for all v adjacent
to wand notin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D).p(D)

D(E),p(E) D(F),p(F)
© ©

0 A 2,A 5A 1,A
—t AD)

2 _/‘\

3

4

5

towandnotin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
“—14 until all nodesin S;

= 8 Loop
\g pd-w-notin S s.t. D(w) is @ minimum;
#‘0 addwto S;
11 update D(v) for all v adjacent

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
0 A 2.A 5A 1A 00 00
—t AD 4D 2D >

2 1

3 \

4 \

5

\

8 Loop
9 find wnotin S s.t. D(w) is @ minimum;
10 addwtd S;

A1 update D(v) for all v adjacent 1

to wandnotin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) =Ww;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D).p(D) D(E).p(E) D(F),p(F)

0 A 2,A 5A 1,A o o

1 AD 4,D 2D

-2 ADE 3,E 4,E

3

4

5
8 Loop
9 find wnotin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
to wandnotin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodesin S;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C),p(C) D(D).p(D) D(E),pcgE) D(F),%gF)

0 A 2,A 5A 1,A

1 AD 4,D 2D

2 ADE 3,E 4.E

-3 ADEB

4

5
8 Loop
9 find wnotin S s.t. D(w) is a minimum;
10 addwto S;

11 update D(v) for all v adjacent
to wand notin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodesin S;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C).p(C) D(D),p(D) D(E).p(E) D(F),p(F)
0 A 2A 5A 1A o0 o0
1 AD 4,0 2,0

2 ADE 3,E 4.E

3 ADEB

- ADEBC
5

8 Loop
9 find wnotin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
to w and notin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C).p(C) D(D),p(D) D(E).p(E) D(F),p(F)

0 A 2,A 5A 1,A 0 9

1 AD 4D 2,D

2 ADE 3,E 4,E

3 ADEB

4 ADEBC

-5 ADEBCF

8 Loop
9 find wnotin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
to wand notin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) =w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) P{D),p(D) D(E),p(E) D(F),p(F)
0__A 2.A 5.A .A) ES 00
1 AD 4,D_ —__——(2D)

2 ADE BE)— 4E

3 ADEB

4~ ADEBC

5 ADEBCF

To determine path A — C (say),
work backward from C via p(v)

The Forwarding Table

* Running Dijkstraat node A gives the shortest
path from A to all destinations

» We then construct the forwarding table

5 Destination Link
B (AB)
c (AD)
D (AD)
E (AD)
F (AD)

Issue #1: Scalability
How many messages needed to flood link state messages?
— O(N x E), where N is #nodes; E is #edges in graph
Processing complexity for Dijkstra’s algorithm?
— O(N?), because we check all nodes w not in S at each
iteration and we have O(N) iterations

— more efficient implementations: O(N log(N))

How many entries in the LS topology database? O(E)

How many entries in the forwarding table? O(N)

Issue#2: Transient Disruptions

* Inconsistent link-state database

— Some routers know about failure before
others

— The shortest paths are no lonaer consistent
- sient forws

Loop!

A and D think that this E thinks that this
is the pathto C is the pathto C

Distance Vector

Learn-By-Doing

Let’s try to collectively develop
distance-vector routing from first principles

Experiment

* Your job: find the (route to) the youngest person in the room

Ground Rules

— You may not leave your seat, nor shout loudly
across the class

— You may talk with your immediate neighbors
(N-S-E-W only)
(hint: “exchange updates” with them)

At the end of 5 minutes, | will pick a victim and ask:
— who is the youngest person in the room? (date&name)
— which one of your neighbors first told you this info.?

Go!

Distance-Vector

Fvamnla of Distributed Computation

I am three hops away
| am two hops away

I am two hops away

N -
| am two hops away
\

I am three hops away

Destination

| am three hops away

I am two hops away

Distance Vector Routing

Each router knows the links to its neighbors

— Does not flood this information to the whole network
Each router has provisional “shortest path” to
every other router

— E.g.: Router A: “I can get to router B with cost 11”
Routers _exch_an%e this distance vector
information with their neighboring routers

— Vector because one entry per destination
Routers look over the set of options offered by
their neighbors and select the best one
Itetrre]\tive process converges to set of shortest
paths

A few other inconvenient truths

¢ What if we use a non-additive metric?
— E.g., maximal capacity

* What if routers don’t use the same metric?
— | want low delay, you want low loss rate?

* What happens if nodes lie?

Can You Use Any Metric?

* | said that we can pick any metric. Really?
* What about maximizing capacity?

What Happens Here?

Problem: “cost” does not change around loop

—

Additive measures avoid this problem!

No agreement on metrics?

* If the nodes choose their paths according to
different criteria, then bad things might happen
* Example
— Node A is minimizing latency
— Node B is minimizing loss rate
— Node C is minimizing price
* Any of those goals are fine, if globally adopted
— Only a problem when nodes use different criteria

* Consider a routing algorithm where paths are
described by delay, cost, loss

What Happens Here?

Cares about price,
then loss

Cares about delay,
Low price link then price
®

Cares about loss,
then delay

Must agree on loop-avoiding metric

* When all nodes minimize same metric
* And that metric increases around loops

* Then process is guaranteed to converge

Link State vs. Distance Vector

* Coreidea
— LS: tell all nodes about yourimmediate neighbors

— DV: tell yourimmediate neighbors about (your least
cost distance to) all nodes

What happenswhen routers lie?

* What if a router claims a 1-hop path to
everywhere?

All traffic from nearby routers gets sent there
* How can you tell if they are lying?

* Can this happenin real life?
— It has, several times....

Link State vs. Distance Vector

e LS: each node learns the complete network map; each node
computes shortest paths independently and in parallel

¢ DV: no node has the complete picture; nodes cooperate to
compute shortest paths in a distributed manner

LS has higher messaging overhead
LS has higher processing complexity
LS is less vulnerable to looping

Link State vs. Distance Vector

Message complexity Robustness: what happens if router
LS: O(NXE) messages; malfunctions?
— Nis #nodes; E is #edges ¢ LS:
DV: O(#lterations x E) — node can advertise incorrect /ink
— where #lterations is ideally cost
O(network diameter) but varies due — each node computes only its own
to routing loops or the table

count-to-infinity problem

DV:

— node can advertise incorrect path

Processing complexity cost

LS: O(N2)
DV: O(#flterations x N)

— each node’ s table used by others;
error propagates through network

Routing: Just the Beginning

* Link state and distance-vector are the
deployed routing paradigms for intra-domain
routing

* Inter-domain routing (BGP)

— more Part Il (Principles of Communications)
— A version of DV

What are desirable goals for a routing
solution?

* “Good” paths (least cost)
* Fast convergence after change/failures
— no/rare loops
* Scalable
— #messages
— table size
— processing complexity
* Secure
* Policy
* Rich metrics (more later)

Delivery models

* What if a node wants to send to more than
one destination?
— broadcast:send to all
— multicast: send to all members of a group
— anycast: send to any member of a group

* What if a node wants to send along more
than one path?

Metrics

* Propagation delay

* Congestion

¢ Load balance

* Bandwidth (available, capacity, maximal, bbw)
* Price

¢ Reliability

¢ Loss rate

¢ Combinations of the above

In practice, operators set abstract “weights” (much
like our costs); how exactly is a bit of a black art

From Routing back to Forwarding

Routing: “control plane”

— Computing paths the packets will follow
— Routers talking amongst themselves

— Jointly creating the routing state
Forwarding: “data plane”

— Directing a data packet to an outgoinglink
— Individual router using routing state

Two very different timescales....

Basic Architectural Components
of an IP Router

Management
& CLI (7))
o
Routing =+
:
Routing 3 Control Plane
Table
T
O
Forwarding Switching 3 Datapath
Table = = per-packet
% processing

67

Per-packet processing in an IP
Router

1. Accept packet arriving on an incoming link.

2. Lookup packet destination address in the
forwarding table, to identify outgoing port(s).

3. Manipulate packet header: e.g., decrement
TTL, update header checksum.

4. Send packet to the outgoing port(s).
5. Buffer packetin the queue.
6. Transmit packet onto outgoing link.

68

Generic Router Architecture

Data [lglels Data [glel¢

Update Queue
Packet

Lookup
IP Address

12

~1M prefixes | Address Buffer | ~1M packets
Off-chip DRAM Table Memory Off-chip DRAM

69

Generic Router Architecture

Header Processing Buffer
Lookup | Update
° e

Header Processing

Lookup | Update
° °

Table

Forwarding tables
[_Paddress] 132 bits wide - ~ 4 billion unique address

Naive approach:
One entry per address

Entry Destination Port
1 0.0.0.0 1

2 0.0.0.1 2 - }
. A g ~ 4 billion entries

P2z 255.255.255.255 12

Improved approach:
Group entries to reduce table size

Entry Destination Port
1 0.0.0.0-127.255.255.255 1

2 128.0.0.1-128.255.255.255 2

50 248.0.0.0-255.255.255.255 12

IP addresses as a line

Your computer My computer

&mbridge Oxford

USA Europe

T
All IP addresses
Entry Destination Port
1 Cambridge
Oxford
Europe
USA

Everywhere (default)

us WwN
VR WN R

Longest Prefix Match (LPM)

Entry Destination Port
; C%n;tf);:%ge ; } Universities
3 Europe 3 } Continents
4 USA 4
5 l—> Everywhere (default) 5 Planet

l- Cambridge
* Europe

Most specific]

* Everywhere

To:

Cambridge| bata

Longest Prefix Match (LPM)

Entry Destination Port
; Ca&?;jge ; } Universities
3 Europe 3 } Continents
4 USA 4
5 —> Everywhere (default) 5 Planet

Most specific]

l° Europe
. verywhere

Data ‘

To: France

Implementing Longest Prefix Match

Router Architecture Overview

Two key router functions:
* run routing algorithms/protocol (RIP, OSPF, BGP)
* forwarding datagrams from incoming to outgoing link

input port output port
=08 004
: switching M
o Ll
input port fabric output port
=i OO0
| A |

routing
processor

Entry Destination Port

1 Cambridge 1 Searching Most specific

A Oxtord

3 Europe 3

| 4 USA 4 FOUND |

5 Everywhere (default) 5 Least specific

75
Input Port Functions

termination

Physical layer:
bit-level reception

Data link layer:
e.g., Ethernet
see chapter 5

— lookup,

. data link forwarding | | qyitch

e P 500 Lo IR
(protocol, ueusin fabric
decapsulation) g 9

Decentralized switching:

given datagram dest., lookup output port using
forwarding table in input port memory

goal: complete input port processing at ‘line
speed’

queuing: if datagrams arrive faster than
forwarding rate into switch fabric

Three examples of switching fabrics
(comparison criteria: speed, contention, complexity)

A
+|:||:|m1ml»\ .
B
O Jmm-|memory _ﬂma.’
C 4
-~ Jmm»| -]
memory
-~
B
oL jm crossbar
C
>

Fae

Switching Via Memory

First generation routers:
« traditional computers with switching under direct control of CPU

« packet copied to system’ s memory
« speed limited by memory bandwidth (2 bus crossings per datagram)

Memory Output

Input
Port

Port

‘ ‘ System Bus

Switching Via a Bus

« datagram from input port memory
to output port memory via a shared bus
bus contention: switching speed limited by
bus bandwidth

B
>~ Jmm

* Lots of ports?? speed up the bus
no contention bus speed =
2 x port speed x port count

32 Gbps bus, Cisco 5600: sufficient speed for
access routers

Switching Via An Interconnection Network

* overcome bus bandwidth limitations
Banyan networks, other interconnection nets initially
developed to connect processors in multiprocessor stages
advanced design: fragmenting datagram into fixed length
cells, switch cells through the fabric.

Cisco CRS-1: switches 1.2 Tbps through the
interconnection network

Output Ports

itch) i
; buffer Ly line
fabric management (protoco!, termination
decapsulation)

Buffering required when datagrams arrive from fabric faster than the
transmission rate

Scheduling discipline chooses among queued datagrams for

transmission
= Who goes next?

Output port queueing

Epe7 s
T O
-

Qutput Port Contention
ot Time t Time Loter

— Ok

buffering when arrival rate via switch exceeds output line speed
queueing (delay) and loss due to output port buffer overflow!

Input Port Queuing

Fabric slower than input ports combined -> queueing may

occur at input queues
Head-of-the-Line (HOL) blocking: queued datagram at front
of queue prevents others in queue from moving forward

queueing delay and loss due to input buffer overflow!

_El" ,D
K -
output port contention

at time t - only one red
packet can be transferred

switch
fabric

ARG

plsle

green packet
experiences HOL blocking

Buffers in Routers

* So how large should the buffers be?

Buffer size matters
— End-to-end delay
* Transmission, propagation, and queueing del
* The only variable part is queueing delay
— Router architecture
* Board space, power consumption, and co
* On chip buffers: higher density, higher
* Optical buffers: all-optical routers

1.4m long spiral
waveguide with input
from HeNe laser

You are now touching the edge of the research zone......

Buffer

2T xC |¢ 2

<
@
=
)\——

Continuous ARQ (TCP) adapting to congestion

Rule for adjusting W

|
Only W packets — If an ACK is received: W & W+1/W

may be outstanding

oaits 2| 1000000 | 10000 | 20-50
2 s s
ntution T TCP m| Sawtooth g | Non-bursty
o1 Sawtooth = Smoothing > Arrivals
] c
% Single TCP e Many Flows, | Paced TCP,
Assume ' | Flow, 100% 2 100% 85-90%
Utilization Utilization Utilization
Simulations,
Simulati Test-bed and Simulations,
Evidence E"r:ﬂIZtlig: Real Test-bed
Network Experiments
Experiments
Rule-of-thumb — Intuition
Rule for adjusting W
Only W packets

o Ifan ACK isreceived: W & W+1/W
o If a packet is lost: W & W/2

may be outstanding

|

Source [T 1] Dest

Window size
Woas -
W/\ 2TxC

2T xC

A

l — If a packet is lost: W & W/2
o]
util = 0%
w
time
Small Buffers — Intuition
Synchronized Flows Many TCP Flows
+ Aggregate window has same -+ Independent, desynchronized
dynamics « Central limittheorem says the
* Therefore buffer occupancy aggregate becomes Gaussian
has same dynamics « Variance (buffer size)

* Rule-of-thumb still holds. decreases as N increases

‘Gaussian wityMoan 77291 Packets, SKiDev 2523

L
23 [Buffer Size

The Internet version of a Network layer

Host, router network layer functions:

IP protocol
eaddressing conventions

‘ Routing protocols
edatagram format

epath selection
*RIP, OSPF, BGP

Network epacket handling conventions
Iayer \. forwarding
ICMP protocol
table ;
T eerror reporting
erouter “signaling”

IPv4 Packet Structure
20 Bytes of Standard Header, then Options

8-bit
Type of Service 16-bit Total Length (Bytes)
(TOS)

4-bit
Header
Length

4-bit
Version

3-bit

16-bit Identification Flags

13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

(Packet) Network Tasks One-by-One

* Read packet correctly

* Get packet to the destination

* Get responses to the packet back to source

* Carry data

* Tell host what to do with packet once arrived

* Specify any special network handling of the
packet

* Deal with problems that arise along the path

Reading Packet
Correctly

* Version number (4 bits) =
— Indicates the version of the IP protocol
— Necessary to know what other fields to expect
— Typically “4” (for IPv4), and sometimes “6” (for IPv6)
* Header length (4 bits)
— Number of 32-bit words in the header
— Typically “5” (for a 20-byte IPv4 header)
— Can be more when IP options are used
* Total length (16 bits)
— Number of bytes in the packet
— Maximum size is 65,535 bytes (216 -1)
— ... though underlying links may impose smaller limits

Getting Packet to
Destination and Back

X7

* Two IP addresses J
— Source IP address (32 bits) o
— Destination IP address (32 bits)
* Destinationaddress
— Unique identifier/locator for the receiving host
— Allows each node to make forwarding decisions
* Source address
— Unique identifier/locator for the sending host
— Recipient can decide whether to accept packet
— Enables recipient to send a reply back to source

Telling Host How to
Handle Packet

* Protocol (8 bits)
— Identifies the higher-level protocol
— Important for demultiplexing at receiving host

* Most common examples
— E.g., “6” for the Transmission Control Protocol (TCP)
— E.g., “17” for the User Datagram Protocol (UDP)

protocol=6 protocol=17

IP header IP header
TCP header UDP header

Special Handling

* Type-of-Service (8 bits)
— Allow packets to be treated differently based on
needs
— E.g., low delay for audio, high bandwidth for bulk
transfer

— Has been redefined several times

* Options

96

Potential Problems

* Header Corrupted: Checksum
Loop: TTL

* Packet too large: Fragmentation

Preventing Loops

(aka Internet Zombie plan)

* Forwardingloops cause packetsto cycle forever
— As these accumulate, eventually consume all capacity

el

¢ Time-to-Live (TTL) Field (8 bits)
— Decremented at each hop, packet discarded if reaches 0

— ...and “time exceeded” message is sent to the source
9 * Using “ICMP” control message; basis for traceroute

IP Fragmentation & Reassembly

network links have MTU
(max.transfer size) - largest
possible link-level frame.
— different link types, different
MTUs
large IP datagram divided
(“fragmented”) within net
— one datagram becomes
several datagrams
— “reassembled” only at final
destination
— IP header bits used to identify,
order related fragments

IPv6 does things differently...

fragmentation:
in: one large datagram
out: 3 smaller datagrams

Header Corruption

Checksum (16 bits)
— Particular form of checksum over packet header

If not correct, router discards packets
— So it doesn’t act on bogus information

Checksumrecalculated at every router
— Why?

— Why include TTL?

— Why only header?

98

Fragmentation

(some assembly required)

* Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

* Must reassemble to recover original packet

— Need fragmentation information (32 bits)
— Packet identifier, flags, and fragment offset

100

IP Fragmentation and Reassembly

]

length
=4000 | =

offset
=0

fragflag
=0

Example |
T 4000 byte datagram
7 MTU = 1500 bytes

One large datagram becomes
several smaller datagrams

length |ID fragflag offset
A [=1500 | =
1480 bytes in
data field length fragflag | offset
=150Q_, R i A "=185
(11 = ——
1480/8 length fragflag | offset
=1040 =0 =370

Pop quiz question: What happens when a fragment is lost?

Fragmentation

Details

¢ |dentifier (16 bits): used to tell which fragments
belong together
* Flags (3 bits):
— Reserved (RF): unused bit
— Don’t Fragment (DF): instruct routers to not fragment
the packet even if it won’t fit

* Instead, they drop the packet and send back a “Too Large”
ICMP control message

¢ Forms the basis for “Path MTU Discovery”
— More (MF): this fragment is not the last one
Offset (13 bits): what part of datagram this
fragment covers in 8-byte units

Pop quiz question: Why do frags use offset and not a frag number? 103

IP Addressing: introduction

e |P address: 32-bit @2‘3»1-1»1

identifier for host, router 223.1.2.1 @
) @33,1.11

interface 223114223129
interface: connection @_ # y231

122
between host/router and 223113 22313.27 »—@

physical link
223.1.3@@.1.3.2

— router’ s typically have
223.1.1.1=11011111,00000001 00000001 00000001

multiple interfaces

— host typically has one
interface

— IP addresses associated
with each interface

223 1 1 1

Options

* End of Options List

* Record Route
 Strict Source Route
* Loose Source Route
* Timestamp

* Traceroute

* Router Alert

* No Operation (padding between options)

R)
o5

Lngth

* |IP address:
— subnet part (high order bits)
— host part (low order bits)

* What’s a subnet ?

— device interfaces with same
subnet part of IP address

— can physically reach each
other without intervening
router

subnet host

part par
11011111 00000001 00000011 00000000

223.1.3.0/24
CIDR: Classless InterDomain Routing
— subnet portion of address of arbitrary length

— address format: a.b.c.d/x, where xis # bits in
subnet portion of address

Subnets

223.1.1.0/24
223.1.1.1

223.1.2.0/24

B

subnet

223.1.3.1 223.1.3.2

223.1.3.0/24

Subnet mask: /24

network consisting of 3 subnets

IP addresses: how to get one?

Q: How does a host get IP address?

* hard-coded by system admin in a file
— Windows: control-panel->network->configuration-
>tcp/ip->properties
— UNIX: /etc/rc.config (circa 1980’s your mileage will vary)

* DHCP: Dynamic Host Configuration Protocol: dynamically get address
from as server

— “plug-and-play”

DHCP client-server scenario

Goal: allow host to dynamically oucpserver:223.125 arriving

obtain its IP address from network
server when it joins network
Can renew its lease on address in use
Allows reuse of addresses (only hold
address while connected an “on”)
Support for mobile users who want to
join network (more shortly)

223.1.1.1 DHCP 223.1.21
serve
223.1.1.2

«»
223014 223129 | 4

arriving DHCP
client needs
address in this
network

223113 2231327

223.1.3¢ 223.1.3.2

DHCP discover dlient

51c:0.0.0.0,68 «n
dest.: 255.255.255.255,67
yiaddr: [

: 0.0.0.0

transaction ID: 654
5r¢:223.1.2.5,67
dest: 255.255.255.255,68
T | yiaddm 223024
transaction ID: 654
Lifetime: 3600 secs >
DHCP request
src: 0.0.0.0,68
dest:: 255.255.255.255,67
yiaddrr: 223.1.2.4 L—
transaction ID: 655
«—|_Lifetime: 3600 secs time
DHCP ACK
T [scmsiase
dest: 255.255.255.255,68
yiaddrr: 223.1.2.4 ~
transaction ID: 655
Lifetime: 3600 secs

IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’ s
address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization2 11001000 00010111 00010100 00000000 200.23.20.0/23

Organization7 11001000 00010111 00011110 00000000 200.23.30.0/23

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing
information:

Organization 0

200.23.16.0/23

Organization 1 \ rsond y
200.23.18.0/23 end me anything

with addresses
Organization 2 — beginning

200.23.20.0/23 « Fly-By-Night-ISP 00.23.16.0/20”
. . Internet
Organization7 | /

200.23.30.0/23

“Send me anything
SPs-R-Us with addresses
beginning
199.31.0.0/16”

™~

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Organization 0

200.23.16.0/23
\ “Send me anything

with addresses
Organization 2

beginning
200.23.20.0/23 . Fly-By-Night-ISP %
. . Internet
Organization 7 & /
200.23.30.0/23
“Send me anything
P with addresses
Organization 1 / beginning 199.31.0.0/16

200.23.18.0/23 / 0r200.23.18.0/23"

IP addressing: the last word...

Q: How does an ISP get a block of addresses?
A ICANN: Internet Corporation for Assigned

Names and Numbers

— allocates addresses

— manages DNS

— assigns domain names, resolves disputes

Cant get more IP addresses? well there is always.

NAT: Network Address Translation

rest of local network —_—
Internet (e.g., home network)
10.0.0/24 10001
10.0.0.4
10.0.0.2
s i]
138.76.29.7
10.0.0.3

All datagrams leaving local Datagrams with source or

network have same single source NAT IP destination in this network
address: 138.76.29.7, have 10.0.0/24 address for
different source port numbers source, destination (as usual)

NAT: Network Address Translation

Motivation: local network uses just one IP address as far as
outside world is concerned:

— range of addresses not needed from ISP: just one IP
address for all devices

— can change addresses of devicesin local network
without notifying outside world

— can change ISP without changing addresses of
devicesin local network

— devicesinside local net not explicitlyaddressable,
visible by outside world (a security plus).

NAT: Network Address Translation

Implementation: NAT router must:

— outgoing datagrams: replace (source IP address, port #)
g{ every outgoing datagram to (NAT IP address, new port

... remote clients/servers will respond using (NAT IP address,
new port #) as destination addr.

— remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

— incoming datagrams: replace (NAT IP address, new port
#) in dest fields of every incoming datagram with
coglresponding (source IP address, port #) stored in NAT
table

NAT: Network Address Translation

NAT translation table
2: NAT router WAN side addr [LAN side addr

changes datagram 138.76.29.7,5001 [10.0.0.1,3345
source addr from |

10.0.0.1,3345to
138.76.29.7,5001,
updates table

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

5:10.0.0.1,3345
D:128.119.40.186, 80

5:138.76.29.7,5001
D:128.119.40186,80 :}0.0.0.4

I 10.0.0.2
’ y
138.76.29.7 5:128.119.40.186,80
§.0:1000.1,3345
5:128.119.40.186,80

D:138.76.29.7,5001 47» NAT router

changes datagram

dest addr from
138.76.29.7,5001t010.0.0.1, 3345

3: Reply arrives
dest. address:
138.76.29.7,5001

NAT: Network Address Translation

* 16-bit port-number field:
— 60,000 simultaneous connections with a single
LAN-side address!
* NAT is controversial:
— routers should only process up to layer 3

— violates end-to-end argument (?)

* NAT possibility must be taken into account by app
designers, eg, P2P applications

— address shortage should instead be solved by IPv6

NAT traversal problem

+ client wants to connect to
server with address 10.0.0.1

— server address 10.0.0.1 local to Client 10001
LAN (client can’ tuse it as ?
destination addr)

— only one externally visible NATted \

address: 138.76.29.7
* solution 1: statically configure
NAT to forward incoming
connection requests at given
port to server

— e.g., (138.76.29.7, port 2500)
always forwarded to 10.0.0.1 port
25000

NAT
router

138.76.29.7

NAT traversal problem

* solution 2: Universal Plug and Play
(UPNP) Internet Gateway Device
(IGD) Protocol. Allows NATted host
to:

“»*learn public IP address
(138.76.29.7) 138.76.29.7

+*add/remove port mappings router
(with lease times)

i.e., automate static NAT port
map configuration

NAT traversal problem

* solution 3: relaying (used in Skype)
— NATed client establishes connection to relay
— External client connects to relay
— relay bridges packets between to connections

2. connection to

Skype relay initiated
by client

1. connection to
relay initiated
by NATted host

10.0.0.1

3. relaying
established

7
138.76.29.7 ~ NAT
router

& @

Remember this? Traceroute at work...

traceroute: rio.cl.cam.ac.uk to munnari.oz.au
(tracepath on pwf is similar)

%Three delay measurements from
traceroute munnari.oz.au rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk

traceroute to munnari.oz.au (202.29.151.3), 30 hops max, 60 byte packets

gatwick.net.cl.cam.ac.uk (128.232.32.2) 0.416 ms 0.384ms 0.427 ms .
cl-sby.route-nwest.net.cam.ac.uk (193.60.89.9) 0.393ms 0.440 ms 0.494 ms trans-continent
route-nwest.route-mill.net.cam.ac.uk (192.84.5.137) 0.407 ms 0.448 ms 0.501 ms link
route-mill.route-enet.net.cam.ac.uk (192.84.5.94) 1.006 ms 1.091 ms 1.163 ms
xe-11-3-0.camb-rbrl.eastern.ja.net (146.97.130.1) 0.300 ms 0.313ms 0.350 ms
ae24.lowdss-sbrl ja.net (146.97.37.185) 2.679 ms 2.664 ms 2.712ms
ae28.londhx-sbrl ja.net (146.97.33.17) 5.955ms 5.953ms 5.901 ms

8 janet.mx1.lon.uk.geant.net (62.40.124.197) 6.059 ms 6.066 ms 6.052ms

9 ae0.mx1.par.fr.geant.net (62.40.98.77) 11.742ms 11.779 ms 11.724 ms

10 ael.mx1.mad.es.geantnet (62.40.98.64) 27.751 ms 27.734ms 27.704 ms

11 mb-50-02-v4 bb.tein3 net (202.179.249.117) 138296 ms 138.314 ms 138.282 ms

12 sg-50-04-v4 bb.tein3.net (202.179.249.53) 196.303ms 196.293 ms 196.264 ms

13 th-pr-v4.bb tein3.net (202.179.249.66) 225.153 ms 225.178 ms 225.196 ms

14 pyt-thairen-to-02-bdr-pyt.uni.net.th (202.29.12.10) 225.163 ms 223.343 ms 223.363 ms

15 202.28.227.126 (202.28.227.126) 241.038 ms 240.941 ms 240.834 ms

16 202.28.221.46(202.28.221.46) 287.252ms 287.306 ms 287.282 ms

17 * %%

18 %%, *means no response (probe lost, router not replying)
19 %% *

20 coe-gw.psu.ac.th (202.29.149.70) 241.681 ms 241.715ms 241.680 ms

21 munnari.0Z.AU (202.29.151.3) 241.610ms 241.636 ms 241.537 ms

AU L —

-

ICMP: Internet Control Message Protocol

« used by hosts & routers to

communicate network-level Type Code description)
information 0 0 echo reply (ping)
. 3 0 dest. network unreachable
— errorreporting: unreachable 3 1 dest host unreachable
host, network, port, protocol 3 2 dest protocol unreachable
— echo request/reply (used by 3 3 dest portunreachable
ping) 3 6 dest network unknown
* network-layer “above” IP: 3 7 dest host unknown
— ICMP msgs carried in IP 4 0 source quench (congestion
datagrams control - not used)
* |ICMP message: type, code plus first 8 8 0 echo reques§ (ping)
bytes of IP datagram causing error 9 0 routeadvertisement
10 0 router discovery
1 0 TTL expired
12 0 bad IP header

Switches vs. Routers Summary

* both store-and-forward devices

— routers: network layer devices (examine network layer headers)

— switchesare link layer devices
* routers maintain routing tables, implement routing algorithms
¢ switches maintain switch tables, implement filtering, learning

algorithms

5 5
4 4
3 3 3
2] [2
1 Ha 4 1 1

Host Bridge Router Host 125

Traceroute and ICMP

* Source sends series of UDP ¢ When ICMP message arrives,
segments to dest source calculates RTT
— Firsthas TTL =1 * Traceroute does this 3 times

— Second has TTL=2, etc.
— Unlikely port number

Stopping criterion
* UDP segment eventually arrives
* When nth datagram arrives to nth at destination host

router: * Destination returns ICMP “host

unreachable” packet (type 3,
— And sends to source an ICMP code 3)
message (type 11, code 0)
— Message includes name of
router& IP address

— Router discards datagram

* When source gets this ICMP,
stops.

Gluing it together:
How does my Network (address) interact
with my Data-Link (address) ?

MAC Addresses (and IPv4 ARP)
or How do | glue my network to my data-link?

* 32-bit IP address:
— network-layer address
— used to get datagram to destination IP subnet
* MAC (or LAN or physical or Ethernet) address:

— function: get frame from one interface to another
physically-connected interface (same network)

— 48 bit MAC address (for most LANs)

* burned in NIC ROM, also (commonly) software settable

126

LAN Addresses and ARP

Each adapter on LAN has unique LAN address

QlA—ZF—BB—709AD Ethernet

Broadcast address =
FF-FF-FF-FF-FF-FF

LAN

(wired or = adapter
wireless)
71-6F7-28-08-53

58-23-D7-FA-20-B0

;‘* 0C-C4-11-6F-E3-98

127

Address Resolution Protocol

* Every node maintains an ARP table
— <IP address, MAC address> pair

* Consultthe table when sending a packet
— Map destination IP address to destination MAC address
— Encapsulate and transmit the data packet

* But: what if IP address not in the table?
— Sender broadcasts: “Who has IP address 1.2.3.156?”
— Receiver responds: “MAC address 58-23-D7-FA-20-B0”
— Sender caches result in its ARP table

128

Example: A Sending a Packet to B

How does host A send an IP packet to host B?

74-20-9C-E8-FF-55 88-B2-2F-54-1A-0F
E£6-E9-00-17-B8-48 -
| T
1114111114 14-23-F9-CD-06-9 222.222.222.221

A ROUTE
222.222.222.222
111.111.411.4 222.222.222.23

111.411.111.110

R 48-8D-D2-C7-56-24
CC-48-DE-D0-AB-7D B

129

Example: A Sending a Packet to B

How does host A send an IP packet to host B?

74-20-0C-E8-FF-55 88-B2-2F-54-1A-0F

E6-E9-00-17-BB-4B .

| N
111.111.1111 1A-23-F9-CD-06-9 222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

111.111.111.1 222.222.222.23

114111.311.110
CC-49-DE-D0-AB-7D B
1. A sends packet to R.

2. R sends packet to B.
130

Host A Decides to Send Through R

* Host A constructsan IP packet to send to B

— Source 111.111.111.111, destination 222.222.222.222
* Host A has a gateway router R

— Used to reach destinations outside of 111.111.111.0/24
— Address 111.111.111.110for R learned via DHCP/config

74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F
E6-E9-00-17-BB-4B
| e
111.111.111.4 1A-23-F9-CD-06-9 222.222.222.221

I ROUTE

222.222.222.23

222.222.222.222

R 49-BD-D2-C7-56-24

111.111.111.110

CC-49-DE-D0-AB-7D B

Host A Sends Packet Through R

* Host A learns the MAC address of R’s interface

— ARP request: broadcast request for 111.111.111.110
— ARP response: R responds with E6-E9-00-17-BB-4B

* Host A encapsulatesthe packet and sendsto R

74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F
E6-EQ-00-17-BB-4B
| T~
1114114114 1A-23-F8-CD-06-9 222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

222.222.222.23
111.111.111.110

CC-49-DE-D0-AB-7D B

R Decides how to Forward Packet

* Router R’s adaptor receives the packet
— R extracts the IP packet from the Ethernet frame
— R sees the IP packet is destined to 222.222.222.222
* Router R consultsits forwarding table
— Packet matches 222.222.222.0/24 via other adaptor
88-52-2F-54-1A.0F

E6-E9-00-17-BB-48

1A-23-F9-CD-06-98

74-20-9C-E8-FF-55

222.222.222.221

A O ROUTE
222.222.222.222
111.111.411.4 222.222.222.23 ‘
111111111410 m
R 48-BD-D2-C7-56-24
CC-49-DE-D0-AB-7D B

R Sends Packetto B

 Router R’ s learns the MAC address of host B
— ARP request: broadcast request for 222.222.222.222
— ARP response: B responds with 49-BD-D2-C7-52A

* Router R encapsulatesthe packet and sendsto B

88-B2-2F-54-1A-0F

E6-E9-00-17-BB-48

1A-23-F9-CD-06-98

74-29-9C-E8-FF-55

222.222.222.221

A W ROUTE
222.222.222.222
222.222.222.2}
1114111111
111411411110
R 48-BD-D2-C7-58-24
CC-49-DE-D0-AB-7D B

Security Analysis of ARP
* Impersonation
— Any node that hears request can answer ...
— ... and can say whatever they want

* Actual legit receiver never sees a problem

— Because eventhough later packets carry its IP
address, its NIC doesn’t capture them since not its
MAC address

135

Key Ideas in Both ARP and DHCP

* Broadcasting: Can use broadcast to make contact
— Scalable because of limited size

* Caching: remember the past for a while
— Store the information you learn to reduce overhead
— Remember your own address & other host’s addresses

* Soft state: eventually forget the past
— Associate a time-to-live field with the information
— ... and either refresh or discard the information
— Key for robustness in the face of unpredictable change

136

Why Not Use DNS-Like Tables?

¢ When host arrives:

— Assign it an IP address that will last as long it is
present

— Add an entry into a table in DNS-server that maps
MAC to IP addresses

* Answer:
— Names: explicit creation, and are plentiful
— Hosts: come and go without informing network
* Must do mapping on demand
— Addresses: not plentiful, need to reuse and remap
* Soft-state enables dynamic reuse

No More IPv4 Addresses

* IPv4 address space in terms of /8’s

<1 o1ge e L

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
24 25 26 27 2. 9 20 ¥ 0 Iy

200 241 242 243 248 285 246 247 248 249 250 251 252 253 254 255

No More IPv4 Addresses

* 24 /8’sonJanuary 12,2010

139

No More IPv4 Addresses

* 20/8’s on April 10,2010

140

No More IPv4 Addresses

* 13/8’son May 8, 2010

No More IPv4 Addresses

e 7/8's on November 30, 2010

No More IPv4 Addresses

¢ 0/8’s onJanuary 31%,2011!

143

IPve

* Motivated (prematurely) by address exhaustion
— Address field four times as long

* Steve Deering focused on simplifying IP
— Got rid of all fields that were not absolutely necessary

— “Spring Cleaning” for IP

* Resultis an elegant, if unambitious, protocol

Larger Address Space

* IPv4 =4,294,967,295 addresses

* IPv6 = 340,282,366,920,938,463,374,607,432,768,211,456 addresses
* 4xin number of bits translates to huge increase in address space!

IPv4 = 32 Bits

IPv6

28 Bits

Other Significant Protocol Changes

* Increased minimum MTU from 576 to 1280

* Noenroute fragmentation... fragmentation only at source
* Header changes

* Replace broadcast with multicast

Type of

IPv4 Version I8 Total Length IPv6 .
Seivice version | WHIS Flow Label
Of
Next
sesderCiessin e
Source Address
Destination Address
source Address

Field’s Name Kept from IPv4 to IPv6

I Fields NotKept in 1Pv6

Name and Position Changed in IPv6 DESiTETm ALl s

Legend

New Field in IPv6

Addresses are 32 bits (4 bytes) in length.

Address (A) resource records in DNS to map
host names to IPv4 addresses.

Pointer (PTR) resource records in the IN-
ADDR.ARPA DNS domain to map IPv4 addresses
to host names.

IPSec is optional and should be supported
externally

Header does not identify packet flow for QoS
handling by routers

Both routers and the sending host fragment
packets.

Header includes a checksum.
Header includes options.

ARP uses broadcast ARP request to resolve IP to
MAC/Hardware address.

Internet Group Management Protocol (IGMP)
manages membership in local subnet groups.

Broadcast addresses are used to send traffic to
all nodes on a subnet.

Configured either manually or through DHCP.

Must support a 576-byte packet size (possibly
fragmented).

Addresses are 128 bits (16 bytes) in length

Address (AAAA) resource records in DNS to map
host names to IPv6 addresses.

Pointer (PTR) resource records in the IP6.ARPA
DNS domain to map IPv6 addresses to host
names.

IPSec support is not optional

Header contains Flow Label field, which
Identifies packet flow for QoS handling by
router.

Routers do not support packet fragmentation.
Sending host fragments packets

Header does not include a checksum.
Optional data is supported as extension headers.

Multicast Neighbor Solicitation messages resolve
IP addresses to MAC addresses.

Multicast Listener Discovery (MLD) messages
manage membership in local subnet groups.

IPv6 uses a link-local scope all-nodes multicast
address.

Does not require manual configuration or DHCP.

Must support a 1280-byte packet size (without
fragmentation).

Roundup: Why IPv6?

* Larger address space
* Auto-configuration

¢ Cleanup

* Eliminate fragmentation

¢ Eliminate checksum

* Pseudo-header (w/o Hop Limit) covered by transport layer
* Flow label

* Increase minimum MTU from 576 to 1280

* Replace broadcasts with multicast

No Checksum!

* Provided by transport layer, if needed

e Ala TCP, includes pseudo-header

¢ Pseudo-header doesn’t include Hop Limit

— No per-hop re-computation!

— Allows end-to-end implementation (transport layer)

e UDP checksum required (wasn’t in IPv4) rfc6936: No more zero

* Pseudo-header added to ICMPv6 checksum

149

IPv6 Address Notation

* RFC5952
¢ 128-bit IPv6 addresses are represented in:
— Eight 16-bit segments
— Hexadecimal (non-case sensitive) between 0000 and FFFF
— Separated by colons
¢ Example:
— 3ffe:1944:0100:000a:0000:00bc:2500:0d0b
¢ Two rules for dealing with 0’s

Hex. Binary Dec. Hex Binary
0000 8 1000
0001 9 1001
One Hex digit 0010 10 1010
. 0011 11 1011
= 4 bits

da e wN R o
B S Y
o
2
°
8
"

IS
MmE U AQDP o
B
s
°
3

0’s Rule 1 — LeadingQ’s

The leading zeroes in any 16-bit segment do not have to be written.

* Example
— 3ffe : 1944 : 0100 : 000a : 0000 : 00bc : 2500 : 0dOb
— 3ffe : 1944 : 100 : a : 0 : bc : 2500 : dOb

3ffe:1944:100:a:0:bc:2500:d0b

0’s Rule 1 — LeadingQ’s

¢ Can only apply to leading zeros... otherwise ambiguous results

* Example
- 3ffe : 1944 : 100 : a: 0 : bc : 2500 : dOb

* Could be either

— 3ffe : 1944 : 0100 : 000a : 0000 : OObc : 2500 : 0dOb
— 3ffe : 1944 : 1000 : a000 : 0000 : bcOO : 2500 : dObO
— Which is correct?

0’s Rule 1 — Leading 0’s

Can only apply to leading zeros... otherwise ambiguous results

* Example
— 3ffe : 1944 : 100 : a : 0 : bc : 2500 : dOb

* Could be either

— 3ffe : 1944 : 0100 : 000a : 0000 : OObc : 2500 : 0dOb
— 3ffe : 1944 : 1000 : a000 : 0000 : bcO0 : 2500 : dObO
— Which s correct?

0’s Rule 2 — Double Colon

Any single, contiguous string of 16-bit segments consisting of all zeroes
can be represented with a double colon.

££02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0005
££02 : 0 : 0 : 0 : 0 : 0 : 0 : 5
££02

£f£f02::

0’s Rule 2 — Double Colon

Only a single contiguous string of all-zero segments can be represented
with a double colon.

* Example:
2001 : 0402 : 0000 : 0000 : 0014 : 0000 : 0000 : 0095
* Both of these are correct
2001 : doO2 :: 14 : 0 : 0 : 95
OR

2001 : do2 : 0 : 0 : 14 :: 95

0’s Rule 2 — Double Colon

However, using double colon more than once creates ambiguity
¢ Example

2001:d02::14::95
2001:0d02:0000:0000:0000:0014:0000:0095

2001:0d02:0000:0000:0014:0000:0000:0095
2001:0d02:0000:0014:0000:0000:0000:0095

Network Prefixes

* In IPv4, network portion of address can by identified by either
— Netmask: 255.255.255.0
— Bitcount: /24

* Only use bitcount with IPv6

3ffe:1944:100:a::/64

Special IPv6 Addresses

* Default route: ::/0

e Unspecified Address: ::/128
— Used in SLAAC (coming later)

* Loopback/Local Host: ::1/128

— No longer a /8 of addresses but a single address

Types of IPv6 Addresses

* RFC4291-“IPv6 Addressing Architecture”

* Global Unicast
— Globally routable IPv6 addresses

* Link Local Unicast
— Addresses for use on a given subnet

* Unique Local Unicast
— Globally unique address for local communication

¢ Multicast

¢ Anycast
— Aunicast address assigned to interfaces belonging to different nodes

Types of IPv6 Addresses

* Global Unicast
— Globally routable IPv6 addresses

Global Unicast Addresses

Global Prefix Subnet ID Interface ID
* Globally routable addresses 23 /32 P P
— RFC3587 [[2001 Jookss] : - Interface 1D
Registry —»>+ H
ISP Prefix ——»! 1 |
Site Prefix ——————>"
* 3parts Subnet Prefix ——————————————>!

— 48 bit global routing prefix
* Hierarchically-structured value assigned to a site
* Further broken down into Registry, ISP Prefix, and Site Prefix fields
— 16 bit Subnet ID
* Identifier of a subnet within a site
— 64(!) bit Interface ID
+ Identify an interface on a subnet
* Motivated by expected use of MAC addresses (IEEE EUI-64 identifiers) in SLAAC...
— Except GUAs that start with ‘000...” binary
* Used for, e.g., “IPv4-Mapped IPv6 Addresses” (RFC 4308)

Global Unicast Addresses

* Current ARIN policy is to assign no longer than /32 to an ISP

— American Registry for Internet Numbers —

4

| T

o

— https://www.arin.net/policy/nrpm.html [0t Jocke]
— UCSC allocation is 2607 :F5F0: : /32 i

* |IANA currently assigning addresses that start with ‘001..." binary
— 2000::/3
* (2000:: - 3FFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF)
— Supports
¢ Maximum 2% (536,870,912... 1/8 of an Internet address space of) ISPs
« 2% sites (equivalent to 8,192 1ASs of sites!)

* ISP can delegate a minimum of 216, or 65,535 site prefixes
— Difference between Global Prefix (48 bits) and ISP Prefix (32 bits)

Subnetting GUAs

Each site can identify 216 (65,535) subnets

2340:1111:AARA:1::/64 48 Bits 16 Bits 64 Bits
2340:1111:ARAA:2::/64 Prefix (ISP-assigned) | oo Host
2340:1111:AAAA:3::/64 2340:1111:AAAA (Interface ID)
: : tdi: .
2340:1111:AARA:4::/64 Y4 N
Subnet Prefix Host

Subnet has address space of 2%4... an IAS of IASs!

Can extend the subnet ID into the interface ID portion of the address...
— Sacrifice ability to use EUI-64 style of SLAAC...
— Maybe not a bad thing... more later

These are huge numbers!!

« Assume average /16’s allocated to ISPs and /22’s allocated to sites in IPv4

IPv6 2000::/3 block

Sie Prefi
Subnet Prefix ——————————1

Description Range Count Scale vs IPv4
Total # ISPs /3-/32 22=512M 9,362
Total # Sites /3-/48 292=47 1.2M
Sites/ISP /48-/64 216=64K 1,024
IPv4 class A, B, and C blocks
Total # ISPs /16*7/8 57K
Total # Sites /22*7/8 3.6M
GooalPreix SnalD Intotgce D
Sites/ISP /16-/22 26=64 23 132 e 61
ENCIEN D
A : ! :
* And this keeps assumption of /64 subnets! 157 prefc ——! : :

IPv6 Address Space

Allocated * Unallocated (“Reserved by IETF”)
~2000::/3Global Unicast ~ /3's=4000:;, 6000::, 8000::, AO0O::, CO00::

— FC00::/7Unique Local Unicast — /4’s—100
— FE80::/10 Link Local Unicast — /5's—080
— FF00::/8Multicast — /6's=040
Accounts for a bit more than 2125 - § 7's =020
— /8’s—0000:;,0100::
of the address space. _ oe FE00:
— /10's—FECO::

* Accountsfor a little more than 21?7,
or more than half, of the address
space!!

http://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xm|

Problem with /64 Subnets

* Scanning a subnet becomes a DoS attack!
— Creates IPv6 version of 2% ARP entries in routers
— Exhaust address-translation table space

* So now we have:
ping6 ££f02::1 All nodes in broadcast domain
ping6 ££f02::2 All routers in broadcast domain

¢ Solutions
— RFC 6164 recommends use of /127 to protect router-router links
— RFC 3756 suggest “clever cache management” to address more generally

Types of IPv6 Addresses

Link Local Unicast
— Addresses for use on a given subnet

Link-Local Addresses

* ‘11111110 10.." binary (FE80::/10)
— According to RFC 4291 bits 11-64 should be 0’s... soreally FE80: : /647?

* Foruse ona single link. 128 Bits

— Automatic address configuration
— Neighbor discovery (IPv6 ARP)
— When no routers are present

— Routers must not forward

10 Bits.

« Addresses “chicken-or-egg” problem... need an address to get an address.
* Address assignment done unilaterally by node (later)

¢ IPv4 has link-local address (169.254/16, RFC 3927)
— Only used if no globally routable addresses available

Types of IPv6 Addresses

* Unique Local Unicast
— Globally unique address for local communication

Unique Local Addresses

‘1111110... binary (FC00::/7)

Globally unique addresses intended for local communication
— IPv6 equivalent of IPv4 RFC 1918 addresses

Defined in RFC 4193
— Replace “site local” addresses defined in RFC 1884, deprecated in RFC 3879

Should not be installed in global DNS
— Can be installed in “local DNS”

Unique Local Addresses

* 4parts
— “L” bit always 1
— Global ID (40 bits) randomly generated to enforce the idea that these
addresses are not to be globally routed or aggregated
— Subnet ID (16 bits)... same as Globally Unique Subnet ID
— Interface ID (64 bits)... same as Globally Unique Interface ID

128 Bits
I ckbaipsosrs [N Interface ID

= R T T —
FD00::/7 16 Bits

—
7 Bits 1 Bit: L= 1 Locally assigned: L = 0 Future Use

31401

Types of IPv6 Addresses

Multicast

Multicast Addresses

¢ ‘11111111.." binary (FF0O::/8)
* Equivalent to IPv4 multicast (224.0.0.0/8)
¢ 3parts

— Flag (4 bits)

— Scope (4 bits)

[112 Bits
1M M1 Flag = 0 if permanent
F Flag Scope '49°= " 1 if temporary
——sBits— sl s Bis—]

1 Interface-Local
2 Link-Local

3Subnet-tocat
Scope= 4 Admin-Local
5 Site-Local
8 Organization
E Global

Reserved Multicast Addresses

All nodes
— FFO01::1 —interface-local; used for loopback multicast transmissions
— FFO02::1 —link-local; replaces IPv4 broadcast address (all 1’s host)

All routers
— FF01::2 (interface-local), FF02::2 (link-local)

Solicited-Node multicast

— Used in Neighbor Discovery Protocol (later)

— FF02::FF00:0/104 (FF02: :FFXX:XXXX)

— Construct by replacing ‘XX : XXXX’ above with low-order 24 bits of a nodes unicast or

anycast address

— Example
 Forunicast address 4037:
* Solicited-Node multicast is FF02:

01:800:200E:8C6C
1:FFOE:8C6C

Types of IPv6 Addresses Anycast Addresses

* Allocated from unicast address space
— Syntactically indistinguishable from unicast addresses

* An address assigned to more than one node
« Anycast traffic routed to the “nearest” host with the anycast address
« Typically used for a service (e.g. local DNS servers)

* Nodes must be configured to know an address is anycast
— Don’tdo Duplicate Address Detection
— Advertise a route?

* Anycast
— Aunicast address assigned to interfaces belonging to different nodes

A Node’s Required Addresses Roundup: IPv6 Addresses

* Link-local address for each interface ¢ “Interface ID” (host part) is 64 bits

. . Red = new for IPv6
* Configured unicast or anycast addresses .

& v * New addresses required by all nodes (host or router)
¢ Loopback address — Link-local address

« All-Nodes multicast interface and link addresses — All-nodes interface-local and link-local multicast

— Solicited-node multicast for each unicast/anycast address
* Solicited-Node multicast for each configured unicast and anycast address
* New addresses required by routers

— All-routers interface-local, link-local and site-local multicast

* Multicast addresses for all groups the node is a member of

¢ Routers must add .

— Subnet-Router anycast for each interface?

— Subnet-Router anycast address for each interface
* Subnet prefix with all 0’s host part

— All-Routers multicast address

Assigning Address to Interfaces

¢ Static (manual) assignment
— Needed for network equipment

Host Configuration * DHCPV6

— Needed to track who uses an IP address

e StateLess Address AutoConfiguration (SLAAC)
— New to IPv6

* Describe SLAAC in the following...

SLAAC

* RFC 4862 — IPv6 Stateful Address Autoconfiguration

* Used to assign unicast addresses to interfaces
— Link-Local Unicast
— Global Unicast
— Unique-Local Unicast?

* Goal is to minimize manual configuration
— No manual configuration of hosts
— Limited router configuration
— No additional servers

* Use when “not particularly concerned with the exact addresses hosts use”
— Otherwise use DHCPv6 (RFC 3315)

SLAAC Building Blocks

* Interface IDs
* Neighbor Discovery Protocol

* SLAAC Process

SLAAC Building Blocks

¢ |nterface IDs

Interface IDs

* Used to identify a unique interface on a link

* Thought of as the “host portion” of an IPv6 address.

* 64 bits: To support both 48 bit and 64 bit IEEE MAC addresses
¢ Required to be unique on a link

* Subnets using auto addressing must be /64s.

* EUI-64 vs Privacy interface IDs

; 128 Bit
Lias Bits ————>}e 16 Bits >« sits

’ Global Routing Prefix

Subnet ID Interface 1D

IEEE EUI-64 Option for Interface ID

¢ Use interface MAC address
* Insert FFFE to convert EUI-48 to EUI-64
* FlipUniversal/Local bit to “1”

— Section 2.5.1RFC4291 1 % 32 “© “
sg-pitiEEe [39 A | w o [e | oo |

2 MAC
Address 00111001 10100111[10010100 [00000111 11001011 11010000

7 Organizationally Unique " ", T e

Identifier (OUI)
16 24 32 40 a8 56 .64
1. Spit MAC Address | 00111001 10100111| 10010100 00000111 (11001011 | 11010000

2 Add FFFE" BitPattern
e e 6 ges 00111001 10100111 10010100| 11111111 11111110| 00000111 | 11001011 [11010000

3. Change Bt 7 To~1~ | 00111011{ 10100111 10010100 11111111 [11111110| 00000111 | 11001011 | 11010000

Modifed EUL64 enttr
W Hexadecmaiotsion | 2 o ¢ FF FE o7 8 0o

P Wentifer I Calon
Hexadecmal Notaton

3BAT-94FF-FE07:CBD0

84-Bit IPV6 Modified EUI-64 Interface Identifier

Privacy Option for Interface ID

* Using MAC uniquely identifies a host... security/privacy concerns!
* Microsoft(!) defined an alternative solution for Interface IDs (RFC 4941)
* Hosts generates a random 64 bit Interface ID

128 Bits _[
48 Bits ————>}« 16 Bits >« |
Global Routing Prefix Subnet ID Interace ID
J ‘ Randomly generated

SLAAC Building Blocks

* Neighbor Discovery Protocol

NDP

* RFC 4861 — Neighbor Discovery for IPv6

* Used to
— Determine MAC address for nodes on same subnet (ARP)
— Find routers on same subnet
— Determine subnet prefix and MTU
— Determine address of local DNS server (RFC 6106)

¢ Uses 5ICMPv6 messages
— Router Solicitation (RS) — request routers to send RA
— Router Advertisement (RA) —router’s address and subnet parameters
— Neighbor Solicitation (NS) — request neighbor’s MAC address (ARP Request)
— Neighbor Advertisement (NA) —MAC address for an IPv6 address (ARP Reply)
— Redirect—inform host of a better next hop for a destination

NDP RS & RA

* Router Solicitation (RS)
— Originated by hosts to request that a router send an RA
— Source = unspecified (::) or link-local address,
— Destination = All-routers multicast (FF02::2)
* Router Advertisement (RA)
— Originated by routers to advertise their address and link-specific parameters
— Sent periodically and in response to Router Solicitation messages
— Source = link-local address,
— Destination = All-nodes multicast (FF02::1)

@ipvs unicast-routing

RA (Address, prefix, link MTU) —

4————— RS (Need RA from
Router) -~

NDP NS & NA

* Neighbor Solicitation (NS)
— Request target MAC address while providing target of source (IPv4 ARP Request)
— Used to resolve address or verify reachability of neighbor
— Source = unicast or “::” (Duplicate Address Detection... next slide)
— Destination = solicited-node multicast
* Neighbor Advertisement (NA)
— Advertise MAC address for given IPv6 address (IPv4 ARP Reply)
— Respond to NS or communicate MAC address change
— Source = unicast, destination = NS’s source or all-nodes multicast (if source “::”)

@ ipv6 unicast-routing
Q.

NS (Request for another == <= NA (Sentin
node’s Link Layer Address) response to NS)

Duplicate Address Detection

* Duplicate Address Detection (DAD) used to verify address is unique in
subnet prior to assigning it to an interface

* MUST take place on all unicast addresses, regardless of whether they are
obtained through stateful, stateless or manual configuration

* MUST NOT be performed on anycast addresses
* Uses Neighbor Solicitation and Neighbor Advertisement messages
* NSsent to solicited-node multicast; if no NA received address is unique

« Solicited-node multicast: FF02::1:FF:0/104 w/ last 24 bits of target

Duplicate Address Detection

My Global Address s
2340:1111:AAAA:1:213:19FF:FE7B:5004

“Tentative”: Need to do Duplicate Address Detection

I need to make sure nobody
else has this Global Unicast
Address...

@———————————"_ NS (Neighbor Solicitation) —_—
- Target Address = 2340:1111:AAAA:1:213:19FF:FE7B:5004

Destinat
FF02:

Solicited-Node Multicast Address =

SLAAC Building Blocks

* SLAACProcess

SLAAC Steps

* Select link-local address
« Verify “tentative” address not in use by another host with DAD
* Send RS to solicit RAs from routers

* Receive RA with
— router address,
— subnet MTU,
— subnet prefix,
— local DNS server (RFC 6106)

* Generate global unicast address

* Verify address is not in use by another host with DAD

Create Link-local address

Link-local Address =
Link-local Prefix + Interface Identifier (EUI-64 format)
FESO [64 bits] +[48 bit MAC /I flipped + 16 bit FFFE] - -

Make sure Link-local address is unique
NS (Neighbor Solicitation) <_I, ! a

Make sure Link-local address is unique
DAD: Okay if no NAreturned

Destination: Solicited-Node Multicast Address
Target address = Link-local address

Get Network Prefix to create Global unicast address
<———————————— RS (Router Solicitation)
Get Prefix and other information
RA (Router Advertisement) —_—
Source = Link-local address IPv6 Address =

Destin = FF02::1 All nodes multicast address Prefix + Interface ID (EUI-64 format)
Query = Prefix, Default Router, MTU, options [64 bits] + [48 bit MAC u/I flipped + 16 bit FFFE]

DAD . .
«———— 5 NS(Neighbor Solicitation)
Make sure IPv6 Addressis unique
Target Address = IPv6 Address
DAD: Okay if no NA returned

Prefix Leases

* Prefix information contained in RA includes lifetime information

— Preferred lifetime: when an address’s preferred lifetime expires SHOULD only
be used for existing communications

— Valid lifetime: when an address’s valid lifetime expires it MUST NOT be used
as a source address or accepted as a destination address.

* Unsolicited RAs can reduce prefix lifetime values
— Can be used to force re-addressing

Roundup: ICMPv6

* Implements router discovery and ARP functions

* ICMPv6 messages
— Router Solicitation/Router Advertisement
— Neighbor Solicitation/Neighbor Advertisement
— (Next hop) Redirect

* Duplicate Address Detection (DAD)
— verify unique link-local and global-unicast addresses
— Uses:
* NS/NA (i.e. gratuitous ARP)
* Solicited node multicast address

197

Review - SLAAC

¢ Assigns link-local and global-unicast addresses

* Goals

— Eliminate manual configuration
— Require minimal router configuration
— Require no additional servers

* Host part options

— EUI-64
— Random (“privacy” addresses)

Steps
— Generate link-local address and verify with DAD
— Find router - RS/RA
— Generate global unicast address and verify with DAD

Improving on IPv4 and IPv6?

Why include unverifiable source address?

— Would like accountability and anonymity (now neither)
— Return address can be communicated at higher layer
Why packet header used at edge same as core?

— Edge: host tells network what service it wants

— Core: packet tells switch how to handle it

* Oneis local to host, one is global to network

Some kind of payment/responsibility field?

— Who is responsible for paying for packet delivery?

— Source, destination, other?

Other ideas?

Summary Network Layer

* understand principles behind network layer
services:
— network layer service models
— forwarding versus routing (versus switching)
— how a router works
— routing (path selection)
— IPv6
¢ Algorthims
— Two routing approaches (LS vs DV)
— One of these in detail (LS)
— ARP

Topic 5 — Transport

Our goals:
» understand principles * learn about transport layer

behind transport layer protocols in the Internet:
— UDP: connectionless transport

services:
— multiplexing/demultiplex — TCP: connection-oriented
ing transport

— reliable data transfer — TCP congestion control

— flow control
— congestion control

Transport Layer

* Commonly a layer at end-hosts, between the
application and network layer

_-Application- |- e L Appiication -,
{_|_Transport -3 ¢+ |Transport
- Networlke{ Metwark I Networkc-T
Datalink |patalink Datalink
Physical 'r'nysil.a Physical
] = [
/IR JZIIEN
e Router =]
Host A Host B

'~

3

Why a transport layer?

* |P packets are addressed to a host but end-to-
end communication is between application
processes at hosts
— Need a way to decide which packets go to which

applications (more multiplexing)

Why a transport layer?

Application Application
Transport Transport
Network Network
Datalink Datalink
Physical Physical
[] []
Host A Host B

Why a transport layer?

many application
processes

Application
Transport
Network
Datalink
Physical

Seivers Datalink

+NIC Physical l!]

Host A Host B

Why a transport layer?

many application
processes

Communication
between processes
at hosts

Physical Communication Physical
between hosts
(128.4.5.6 €-162.99.7.56)
Host A Host B

Why a transport layer?

* |P provides a weak service model (best-effort)

— Packets can be corrupted, delayed, dropped,
reordered, duplicated

— No guidance on how much traffic to send and when
— Dealing with this is tedious for application developers

8

Role of the Transport Layer

* Communication between application processes
— Multiplexing between application processes
— Implemented using ports

Role of the Transport Layer

Communication between application processes
Provide common end-to-end services for app
layer [optional]

— Reliable, in-order data delivery

— Paced data delivery: flow and congestion-control
* too fast may overwhelm the network
* too slow is not efficient

Role of the Transport Layer

* Communication between processes
* Provide common end-to-end services for app
layer [optional]

* TCP and UDP are the common transport
protocols

—also SCTP, MTCP, SST, RDP, DCCP, ...

11

Role of the Transport Layer

e Communication between processes

* Provide common end-to-end services for app

layer [optional]

TCP and UDP are the common transport

protocols

* UDP is a minimalist, no-frills transport protocol
— only provides mux/demux capabilities

12

Role of the Transport Layer

Communication between processes

Provide common end-to-end services for app layer
[optional]

TCP and UDP are the common transport protocols
UDP is a minimalist, no-frills transport protocol
TCP is the totus porcus protocol

— offers apps a reliable, in-order, byte-stream abstraction
— with congestion control

— but no performance (delay, bandwidth, ...) guarantees

13

Role of the Transport Layer

e Communication between processes
— mux/demuxfrom and to application processes
— implemented using ports

14

Context: Applications and Sockets

Socket: software abstraction by which an application process
exchanges network messages with the (transport layer in the)
operating system

— socketID = socket(..., socket.TYPE)

— socketID.sendto(message, ...)

— socketID.recvfrom(...)

Two important types of sockets
— UDP socket: TYPE is SOCK_DGRAM
— TCP socket: TYPE is SOCK_STREAM

15

Ports

Problem: deciding which app (socket) gets which packets

— Solution: port as a transport layer identifier
* 16 bitidentifier
— OS stores mappingbetween sockets and ports
— apacket carries a source and destination port numberinits
transport layer header

For UDP ports (SOCK_DGRAM)
— OS stores (local port, local IP address) €= socket

For TCP ports (SOCK_STREAM)
— OS stores (local port, local IP, remote port, remote IP) €-> socket

16

4t | 4bit 8-bit)
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
. —— 3-bit X
16-bit Identification Flags | 13-bit Fragment Offset
8-bit Time q y
Live E??L;) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

17

8-bit
4 5 Type of Service 16-bit Total Length (Bytes)
(TOS)
16-bit Identification oit

Flags | 13-bit Fragment Offset

8-bit Time to R
Live (TTL) 8-bit Protocol

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

8-bit
4 | B |fypeofSenice | 16-bit Total Length (Bytes)
(TOS)
o R 3-bit B
16-bit Identification Flags | 13-bit Fragment Offset
8-bit Time to 6=TCP }
- i 17 = UDP 16-bit Header Checksum
32-bit Source IP Address
32-bit Destination IP Address

20

More on Ports

Separate 16-bit port address space for UDP and TCP

“Well known” ports (0-1023): everyone agrees which
services run on these ports

— e.g., ssh:22, http:80

— helps client know server’s port
.

Ephemeral ports (most 1024-65535): dynamically selected: as the
source port for a client process

22

8-bit
4 5 Type of Service 16-bit Total Length (Bytes)
(TOS)
R —— 3-bit X
16-bit Identification Flags 13-bit Fragment Offset
8-bit Time to 6 =TCP N
tve() N 17 = upp 16-bit Header Checksum
) 32-bit Source IP Address
/' 32-bit Destination IP Address

19

Recap: Multiplexing and Demultiplexing

* Host receives IP packets

— Each IP header has source and destination IP
address

— Each Transport Layer header has source and
destination port number

* Host uses IP addresses and port numbers to direct the
message to appropriate socket

21

UDP: User Datagram Protocol

» Lightweight communication between processes
— Avoid overhead and delays of ordered, reliable delivery

» UDP described in RFC 768 — (1980!)

— Destination IP address and port to support demultiplexing
— Optional error checking on the packet contents
* (checksum field of 0 means “don’t verify checksum”)

SRC port DST port

checksum

length

DATA

23

Why a transport layer?

* |P provides a weak service model (best-effort)

— Packets can be corrupted, delayed, dropped,
reordered, duplicated

Principles of Reliable data transfer

* important in app., transport, link layers
¢ top-10 list of important networking topics!
e Ina perfect world, reliable
transport is easy

process

(Jreliable channel

But the Internet default is best-effort

application
layer

e All the bad things best-effort can
do

e apacket is corrupted (bit errors)

fransport
layer

e apacket is lost

e apacket is delayed (why?)
(a) provided service o packets are reordered (why?)

e apacket is duplicated (why?)

25

24
Principles of Reliable data transfer
* important in app., transport, link layers
* top-10 list of important networking topics!
c
0
ge
= lsending receiver
T
o]
5 (Jreliable channel
Qg
& >
c
G e}
L‘ Eunrelioble channel] J
(@) provided service (b) service implementation
(chdar'acteristics of unreliable channel will determine complexity of reliable data transfer protocol
rdt)
26

Principles of Reliable data transfer

« important in app., transport, link layers
« top-10 list of important networking topics!

sending
process

process

dt_send
(Jrelicble channel zdt_send)

application
layer

rdt_rcv(

= I

8 ol reliable data reliablg data
gL transfer protocol transfer protocol
% o} (sending side) (receiving side)
=

uat_send 0} Iudt_rcv()

L{ unreliable chonne\’:

(a) provided service (b) service implementation

characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)

27

Reliable data transfer: getting started

rdt_send() : called from above, rdt_rcv () : called by rdt to

(e.g., by app.). Passed data to deliver data to upper
deliver to receiver upper layer /
rdt_send() rdt_rcv()
send reliable data receive
) transfer protocol .
side (receiving side) side

udt_send ()} [pacter] 1 udt_rev)

/ L{ iunrelioble channel)J

udt_send() : called by rdt,
to transfer packet over

udt_rcv () : called when packet
arrives on rcv-side of channel

unreliable channel to receiver

Reliable data transfer: getting started

we' Il

* incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

* consider only unidirectional data transfer
— but control info will flow on both directions!

* use finite state machines (FSM) to specify sender,
receiver

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event

KR state machines — a note.

Beware
Kurose and Ross has a confusing/confused attitude to
state-machines.

I've attempted to normalise the representation.
UPSHOT: these slides have differing information to the
KR book (from which the RDT example is taken.)

in KR “actions taken” appear wide-ranging, my

interpretation is more specific/relevant.
Relevant event causing state transition

state: when in this “state”
next state uniquely
determined by next

event

Relevant action taken on state transition

State
name

.

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable

— no bit errors

— no loss of packets

separate FSMs for sender, receiver:

— sender sends data into underlying channel
— receiver read data from underlying channel

/ Fent \
) rdt_send(data) ™) udt_rcv(packet)

udt_send(packet) rdt_rcv(data)

\ Action /

sender receiver 3

Rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
— checksum to detect bit errors
¢ the question: how to recover from errors:
— acknowledgements (ACKs): receiver explicitly tells sender that
packet received is OK
— negative acknowledgements (NAKs): receiver explicitly tells sender
that packet had errors

— sender retransmits packet on receipt of NAK
* new mechanismsin rdt2.0 (beyond rdtl1.0):
— error detection
— receiver feedback: control msgs (ACK,NAK) receiver->sender

Dealing with Packet Corruption

—_

 ,2

ack

“
2 ,

Sender Receiver
Time

33

rdt2.0: FSM specification

rdt_send(data)
udt_send(packet) receiver

udt_rcv(reply) &&

isNAK(reply)
Waiting —_— udt_rcv(packet) &&
forreply udt_send(packet) corrupt(packet)
udt_send(NAK)
udt_rcv(reply) && isACK(reply) AN
A
sender
udt_rcv(packet) &&
Note: the sender holds a copy notcorrupt(packet)
of the packet being sent until rdt_rcv(data)
the delivery is acknowledged. udt_send(ACK)

rdt2.0: operation with no errors

rdt_send(data)
udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)

udt_rcv(packet) &&

Waiting _—
udt_send(packet) corrupt(packet)

forreply

udt_send(NAK)

udt_rcv(reply) && isACK(reply)
A

udt_rcv(packet) &&
notcorrupt(packet)
rdt_rcv(data)

udt_send(ACK)

35

rdt2.0: error scenario

rdt_send(data)
udt_send(packet)

udt_rcv(packet) &&
corrupt(packe

udt_send(NAK)

Waiting
forreply

udt_send(packet)

udt_rcv(reply) && isACK(reply) RN

A

udt_rcv(packet) &&

notcorrupt(packet)

rdt_rcv(data)
udt_send(ACK)

rdt2.0 has a fatal flaw!

What happens if ACK/NAK Handling duplicates:
corrupted? « sender retransmits current
+ sender doesn’ t know what packet if ACK/NAK garbled
happened at receiver! * sender adds sequence number
+ can’ tjust retransmit: possible to each packet
duplicate « receiver discards (doesn’t
deliver) duplicate packet

stop and wait

Sender sends one packet,
then waits for receiver
response

Dealing with Packet Corruption

P(1)

’/y/

P(1

e
ZN)\

Data and ACK packets carry sequence numbers

e

[J

37
rdt2.1: sender, handles garbled ACK/NAKs
rdt_send(data)
sequence=0
udt_send(packet) udt_rev(reply) &&
S~ (corrupt(reply) | |
Waiting isNAK(reply))
Forreply udt_send(packet)
udt_rcv(reply)
&& notcorrupt(reply) udt_rcv(reply)
&& isACK(reply) && r\otcorrupt(reply)
—_— &&isACK(reply)
A A
Waiting
udt_rcv(reply) && forreply
(corrupt(reply) | |
isNAK(reply)) rdt_send(data)
udt_send(packet) sequence=1
udt_send(packet)
39

rdt2.1: receiver, handles garbled ACK/NAKs

udt_rcv(packet) && not corrupt(packet)
&& has_seq0(packet)

udt_send(ACK)
rdt_rcv(data)

receive(packet) && corrupt(packet) udt_rev(packet) && corrupt(packet)
udt_send(NAK) udt_send(NAK)

receive(packet) &&
not corrupt(packet) && (
has_seq1(packet)

udt_send(ACK)

receive(packet) &&
not corrupt(packet) &&
has_seq0(packet)

udt_send(ACK)

udt_rcv(packet) &8& not corrupt(packet)
&& has_seq1(packet)

udt_send(ACK)
rdt_rcv(data)

40

rdt2.1: discussion

Sender: Receiver:

seq # added to pkt * must check if received

two seq. #' s (0,1) will packet is duplicate

suffice. Why? — state indicates whether O or 1
must check if received Is expected pkt seq #
ACK/NAK corrupted
twice as many states

* note: receiver can not know
if its last ACK/NAK received

W . OK at sender
— state must “remember

whether “current” pkt has a
0 or 1 sequence number

41

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only
instead of NAK, receiver sends ACK for last pkt received OK
— receiver must explicitly include seq # of pkt being ACKed

duplicate ACK at sender results in same action as NAK:
retransmit current pkt

42

New assumption: underlying

rdt3.0: channels with errors and loss

Approach: sender waits

channel can also lose “reasonable” amount of

packets (data or ACKs) time for ACK
— checksum, seq. #, ACKs, ¢ retransmits if no ACK received in
retransmissions will be of this time
help, but not enough « if pkt (or ACK) just delayed (not
lost):

— retransmission will be
duplicate, but use of seq. #' s
already handles this

— receiver must specify seq # of
pkt being ACKed

* requires countdown timer

44

Dealing with Packet Loss

Timeout

1
Pa)
1
P(1
=
P(2

Timer-driven loss detection

Set timer when packet is sent; retransmit on timeout

rdt2.2: sender, receiver fragments

rdt_send(data)
sequence=0
udt_send(packet)

rdt_rcv(reply) &&
(corrupt(reply) | |
udt_send(packet)

sender FSM
fragment udt_rev(reply)

&& not corrupt(reply)

&& isACKO(reply)

A

udt_rcv(packet) &&
(corrupt(packet) ||
has_seq1(packet))

udt_send(ACK1)

receiver FSM
fragment
receive(packet) && not corrupt(packet)
&& has_seq1(packet)

send(ACK1)
rdt_rcv(data)

43
rdt3.0 sender
rdt_send(data) udt_rovireply) &&
\ sequence=0 (corrupt(reply) | |
\ udt_send(packet) isACK(reply,1))
udt_rcv(reply) ‘. A
A . IDLE timeout
state 0 udt_send(packet)
udt_rev(reply)
&& notcorrupt{reply) udt_rcv(reply)
&& isACK(reply,1) && notcorrupt(reply)
A && isACK(reply,0)
A
timeout
udt_send(packet) C
(J udt_rcv(reply)
A
udt_rcv(packet) && %
(corrupt(packet) | | sequence=1
iSACK(reply,0)) udt_send(packet)
A
45
Dealing with Packet Loss
1
P(1)
Timeout
3] /
1
P(1
i |
ackl1) duplicate!
P2
Sender Receiver
Time e

Dealing with Packet Loss

P(1)
Timeout

—

P(1) ack(1)

P2

Timer-driven retx. can lead to duplicates

.“\

rdt3.0: stop-and-wait operation

sender
first packet bit transmitted, t=0
last packet bit transmitted,t=L/R

receiver P q
Inefficient if

t << RTT

first packet bit arrives

RTT last packet bit arrives, send ACK

ACK arrives, send nextJ
packet, t =RTT+L/R [T

L/R .008

dor™ ——— =i = 0.00027
sender RTT+L/R 30008

Performance of rdt3.0

rdt3.0 works, but performance stinks

ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:
L 8000bits

trans

R 10°bps

O U gender: Utilization —fraction of time sender busy sending

= 8 microseconds

- L/R 008 00027
sender prT ., L/R 30008
> 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
O network protocol limits use of physical resources!

49

Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts

— range of sequence numbers must be increased
— buffering at sender and/or receiver

s

<+— ACK packets

data packet—s

(a) a stop-and-wait profocol in operation (b) a pipelined protocol in operation

51

A Sliding Packet Window

* window = set of adjacent sequence numbers

— The size of the set is the window size; assume window size is n
* General idea: send up to n packets at a time
— Sender can send packets in its window
— Receiver can accept packets in its window

— Window of acceptable packets “slides” on successful
reception/acknowledgement

A Sliding Packet Window

* Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, .., A+n}

n

AI—A—\
IIIiDDIIDDIDDDDDDD

sequence number >

I Already ACK'd

D Sent but not ACK’d

D Cannot be sent

Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,...,, B+n}

n

B
IIIIIiDDIIDDIDDDDD

I Received and ACK’d

Acceptable but not
yet received

D Cannot be received;

Acknowledgements w/ Sliding Window

* Two common options

— cumulative ACKs: ACK carries next in-order
sequence number that the receiver expects

Cumulative Acknowledgements (1)

* At receiver

n Received and ACK'd

—— ey
T e

e After receiving B+1, B+2

D Cannot be received

Bew= B+2 n

IIIIIIIi Joonooooo

e Receiversends ACK(B,.,+1) .

Cumulative Acknowledgements (2)

* At receiver
n I Received and ACK’d

!—A—\ Acceptable but not

yet received

IIIIIiDDDDDDDDDDDD [] connot e recetved

e After receiving B+4, B+5

n

— How do we
IIIIIiDDDIIDDDDDDD recover?

e Receiversends ACK(B+1)

Go-Back-N (GBN)

¢ Sender transmits up to n unacknowledged packets

* Receiver only accepts packets in order
— discards out-of-order packets (i.e., packets other than B+1)

* Receiver uses cumulative acknowledgements
— i.e, sequencett in ACK = next expected in-order sequence#

» Sender sets timer for 15t outstanding ack (A+1)
* |If timeout, retransmit A+1, ... , A+n

57

Sliding Window with GBN

« Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, ..., A+n}

n I Already ACK'd

1 I—A—\ D Sent but not ACK'd
IIIiDDDDDDDDDDDDDD [] camnot be sent

sequence number >

* Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,..., B+n}

n I Received and ACK'd

—— [st v
LT e

D Cannot be received g

GBN Example w/o Errors

Sender Window ‘Window size = 3 packets ‘ Receiver Window

1} —

{1, 2}
{1, 2,3}
{2,3,4}
{3,4,5}
{4, 5, 6}

O b w N -

Sender Receiver

Time s

GBN Example with Errors

‘Window size = 3 packets ‘

1
2 ‘
3
]
4 / o
5 p—
limeout 6 H

—
Packet 4 :

/ﬁ/@

Sender Receiver
60

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
udt_send(packet[nextseqnum])
nextseqnum-++

b
else
refuse_data(data) Block?

A
base=1
nextseqgnum=1

timeout

e udt_send(packet[base])
O udt_send(packet[base+1])

udt_rcv(reply)
&& corrupt(reply)

A

udt_send(packet[nextseqnum-1])
udt_rcv(reply) &&

notcorrupt(reply)
base = getacknum(reply)+1

61

GBN: receiver extended FSM

A
udt_send(reply) udt_rcv(packet)
""""" Q && notcurrupt(packet)

A ~-—_ && hassegnum(rcvpkt,expectedsegnum)
expectedseqnum=1 Qrdtfrcv(data)
udt_send(ACK)

expectedsegnum++

ACK-only: always send an ACK for correctly-received packet with
the highest in-order seq #
— may generate duplicate ACKs
— need only remember expectedsegnum
* out-of-order packet:
— discard (don’t buffer) -> no receiver buffering!
— Re-ACK packet with highest in-order seq #
62

Acknowledgements w/ Sliding Window

* Two common options

— cumulative ACKs: ACK carries next in-order sequence
number the receiver expects

— selective ACKs: ACK individually acknowledges
correctly received packets

* Selective ACKs offer more precise information but
require more complicated book-keeping

* Many variants that differ in implementation
details

63

Selective Repeat (SR)

* Sender: transmit up to n unacknowledged packets
* Assume packet k is lost, k+1 is not
* Receiver: indicates packet k+1 correctly received

* Sender: retransmit only packet k on timeout

» Efficientin retransmissions but complex book-keeping
— need a timer per packet

64

SR Example with Errors

‘Window size = 3 packets ‘

{1
1,2}
{1,2,3}

2,343

w N -

Timeout ’
Packet 4

[)C I 3

{4,5,6}
{4,5,6}

Time

ACK=4

{7,8,9} 7

\

Sender Receiver &

Observations

* With sliding windows, it is possible to fully utilize a
link, provided the window size (n) is large enough.
Throughputis ~ (n/RTT)

— Stop & Wait is like n=1.

* Sender has to buffer all unacknowledged packets,
because they may require retransmission

* Receiver may be able to accept out-of-order
packets, but only up toits buffer limits

* Implementation complexity depends on protocol
details (GBN vs. SR)

66

Recap: components of a solution

* Checksums (forerror detection)
* Timers (for loss detection)
* Acknowledgments
— cumulative
— selective
» Sequence numbers (duplicates, windows)
* Sliding Windows (for efficiency)

* Reliability protocols use the above to decide
when and what to retransmit or acknowledge

67

What does TCP do?

Most of our previous tricks + a few differences
* Sequence numbers are byte offsets

* Sender and receiver maintain a sliding window

* Receiver sends cumulative acknowledgements (like GBN)

¢ Sender maintains a single retx. timer

* Receivers do not drop out-of-sequence packets (like SR)

* Introduces fast retransmit : optimization that uses duplicate
ACKSs to trigger early retx

* Introduces timeout estimation algorithms

Automatic Repeat Request (ARQ)

+ Self-clocking (Automatic) Next lets move from
the generic to the
+ Adaptive specific....
+ Flexible TCP arguably the most
successful protocolin the

- Slow to start / adapt Internet.....

consider high Bandwidth/Delay product

its an ARQ protocol

TCP Header
| Source port ‘ Destination port >
Used to mux / Sequence number

and demux
Acknowledgment

Heren‘ o‘ Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

Last time: Components of a solution
for reliable transport

* Checksums (forerror detection)
* Timers (for loss detection)
* Acknowledgments
— cumulative
— selective
* Sequence numbers (duplicates, windows)
* Sliding Windows (for efficiency)
— Go-Back-N (GBN)
— Selective Replay (SR)

What does TCP do?

Many of our previous ideas, but some key
differences
¢ Checksum

TCP Header

Computed

and data

over header

Source port

Destination port

Sequence number

Acknowledgment

Heren‘ 0 ‘ Flags

Advertised window

Checksum

> Urgent pointer

Options (variable)

What does TCP do?

Many of our previous ideas, but some key
differences

* Sequence numbers are byte offsets

TCP: Segments and
Sequence Numbers

TCP “Stream of Bytes” Service...

Application @ Host A

mxmw
‘—Nw

AN

AN

Application @ Host B

.. Provided Using TCP “Segments”

Host A

tsssvia|

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out

TCP Segment

IP Data

IP Hdr

| TCP Data (segment) ‘TCP Hdr

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
— E.g., up to 1500 bytes with Ethernet

* TCP packet
— IP packet with a TCP header and data inside
— TCP header = 20 byteslong

* TCP segment
— No more than Maximum Segment Size (MSS) bytes
— E.g., up to 1460 consecutive bytes from the stream
— MSS = MTU — (IP header) — (TCP header)

Sequence Numbers

ISN (initial sequence number)

k bytes

k—>

Host A

Sequence number
= 1% byte in segment =
ISN + k

Sequence Numbers

ISN (initial sequence number)

Lok
rosta (TN

Sequence number

Tcp
TCP Data HOR

=1t byte in segment =
ISN + k

ACK sequence number
= next expected byte

=seqno + length(data)

TCcP
TCP Data HOR

e {[[[T1 TN

TCP Header

Starting byte Source port ‘ Destination port

offset of data .

carried in this — Sequence number >
segment Acknowledgment

Heren‘ o‘ Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

* What does TCP do?

What does TCP do?

Most of our previous tricks, but a few differences

* Receiver sends cumulative acknowledgements (like GBN)

ACKing and Sequence Numbers

- Sender sends packet
- Data starts with sequence number X
- Packet contains B bytes [X, X+1, X+2, ... X+B-1]

- Upon receipt of packet, receiver sends an ACK
- If all data prior to X already received:
- ACK acknowledges X+B (because thatis next expected byte)
- If highestin-order byte receivedis Y s.t. (Y+1) < X
- ACKacknowledges Y+1
- Even if this has been ACKed before

Normal Pattern

* Sender: seqno=X, length=B

* Receiver: ACK=X+B

* Sender: seqno=X+B, length=B
* Receiver: ACK=X+2B

e Sender: seqno=X+2B, length=B

* Seqgno of next packet is same as last ACK field

TCP Header

Acknowledgment
gives seqgno just
beyond highest

seqno receivedin

order /<

(“What Byte
is Next”)

Source port ‘ Destination port

Sequence number

Acknowledgment

Heren‘ 0 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

What does TCP do?

Most of our previous tricks, but a few differences

* Receivers can buffer out-of-sequence packets (like SR)

Loss with cumulative ACKs

* Sender sends packets with 100B and seqnos.:
—100, 200, 300, 400, 500, 600, 700, 800, 900, ...

* Assume the fifth packet (seqno 500) is lost,
but no others

¢ Stream of ACKs will be:
— 200, 300, 400, 500, 500, 500, 500,...

What does TCP do?

Most of our previous tricks, but a few differences

* Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

Loss with cumulative ACKs

* “Duplicate ACKs” are a sign of an isolated loss
— The lack of ACK progress means 500 hasn’t been delivered
— Stream of ACKs means some packets are being delivered

* Therefore, could trigger resend upon receiving k

duplicate ACKs
* TCP uses k=3

* But response toloss is trickier....

Loss with cumulative ACKs

* Two choices:
— Send missing packet and increase W by the
number of dup ACKs
— Send missing packet, and wait for ACK to increase
w

* Which should TCP do?

What does TCP do?

Most of our previous tricks, but a few differences

* Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

Retransmission Timeout

* If the sender hasn’t received an ACK by
timeout, retransmit the first packet in the
window

* How do we pick a timeout value?

Timing lllustration

1 K 1
T \X TTimeout
RTT R Ll
| l
Timeout
1 \
Timeout too long = inefficient Timeout too short >

duplicate packets

Retransmission Timeout

* How to set timeout?

— Too long: connection has low throughput

— Too short: retransmit packet that was just delayed
* Solution: make timeout proportional to RTT
* But how do we measure RTT?

RTT Estimation Exponential Averaging Example

e Use exponential ave raging Of RTT sam p|es EstimatedRTT = a*EstimatedRTT + (1 — a)*SampleRTT
Assume RTT is constant = SampleRTT = RTT

SampleRTT= AckRcvdTime — SendPacketTime

EstimatedRTT = a x EstimatedRTT + (1 -) x SampleRTT x EstimatedRTT (0= 0.5)

O<a=l RTT /

'/»/“/' EstimatedRTT (0.= 0.8)
=~ SampleRTT
£ .
3
S
5
]
—t—t—t— _ -
Time 012 3 45 6 9 time

Problem: Ambiguous Measurements

Karn/Partridge Algorithm

* How do we differentiate between the real ACK, and ACK of

the retransmitted packet? * Measure SampleRTT only for original transmissions
— Once a segment has been retransmitted, do not use it for any
further measurements
Sender Receiver Sender Receiver * Computes EstimatedRTT using a = 0.875

Qrigi
inaj .
ANSmiss
sion

» Timeout value (RTO) =2 x EstimatedRTT
« Employs exponential backoff

”ansm;ssio,, v s — Every time RTO timer expires, set RTO < 2-RTO
— (Up to maximum = 60 sec)
ack — Every time new measurement comes in (= successful original

transmission), collapse RTO back to 2 x EstimatedRTT

5
= S
z
(3
3
5
2
3
7
g
s
SampleRTT

SampleRTT
15

Karn/Partridge in action Jacobson/Karels Algorithm

Figure 5: Performance of an RFC793 retransmit timer

* Problem: need to better capture variability in
RTT

—Directly measure deviation

.

Deviation = | SampleRTT — EstimatedRTT |
EstimatedDeviation: exponential average of Deviation

RTO = EstimatedRTT + 4 x EstimatedDeviation

from Jacobson and Karels, SIGCOMM 1988

With Jacobson/Karels

Figure 5: Performance of an RFC793 retransmit timer

Figure 6: Performance of a Mean+Variance retransmit timer

What does TCP do?

Most of our previous ideas, but some key

differences

* Checksum

e Sequence numbers are byte offsets

e Receiver sends cumulative acknowledgements (like GBN)

* Receivers do not drop out-of-sequence packets (like SR)

e Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

e Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

TCP Header: What’s left?

“Must Be Zero”
6 bits reserved

Number of 4-byte
words in TCP
header;

5 =no options

Source port ‘ Destination port

Sequence number

Acknowledgment

P
HdrLen Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Data

104

TCP Header: What'’s left?

Source port ‘ Destination port

Sequence number

Used with URG
flag to indicate
urgent data (not
discussed further)

Acknowledgment

\W‘ Flags | Advertised window

Qrgent pointer

Checksum

Options (variable)

Data

TCP Header: What's left?

Source port ‘ Destination port

Sequence number

Acknowledgment

Heren‘ 0 KFlags Advertised window

Checksum Urgent pointer

Options (variable)

Data

TCP Connection Establishment and
Initial Sequence Numbers

Initial Sequence Number (ISN)

» Sequence number for the very first byte

* Why not just use ISN = 0?

» Practical issue
— IP addresses and port #s uniquely identify a connection
— Eventually, though, these port #s do get used again
— ... small chance an old packetis still in flight

» TCP therefore requires changing ISN
Hosts exchange ISNs when they establish a connection

Establishing a TCP Connection

Each host tells
its ISN to the
other host.

+ Three-way handshake to establish connection

— Host A sends a SYN (open; “synchronize sequence numbers”) to
hostB

— Host B returns a SYN acknowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

TCP Header

Source port ‘ Destination port
Sequence number
Flags: syN
ACK Acknowledgment
FIN HdrLen Flags) Advertised window
RST
PSH Checksum Urgent pointer
URG

Options (variable)

Data

Step 1: A’ s Initial SYN Packet

A's port ‘ B’s port ‘

A's Initial Sequence Number

ACK (Irrelevant since ACK not set)

FIN @h‘ﬁlags Advertised window
RST

PSH Checksum Urgent pointer
URG

A tells B it wants to open a connection...

Step 2: B’ s SYN-ACK Packet

B’ s port

A’ s port ‘

B’ s Initial Sequence Number
ACK =A’s ISN plus 1

FIN W Advertised window
RST
PSH Checksum Urgent pointer
URG

Flags:;/SYN

B tells A it accepts, and is ready to hear the next byte...

Step 3: A’ s ACK of the SYN-ACK

... upon receiving this packet, A can start sending data

A’ s port ‘ B’ s port ‘
A’s Initial Sequence Number
Flags: SYN B’s ISN plus 1
FIN 20B | 0 | Flags | Advertised window
RST
PSH Checksum Urgent pointer
URG

Atells B it’ s likewise okay to start sending

.. upon receiving this packet, B can start sending data 13

Timing Diagram: 3-Way Handshaking

Passive
Open
Active

Open Server

Client (initiator)

listen()
connect ()

)

W

=x+1

= K
SYN+ ACK, seqNum =Y, Ac

A

CK:ACk=y+1

SYN Loss and Web Downloads

User clicks on a hypertext link

— Browser creates a socket and does a “connect”

— The “connect” triggers the OS to transmita SYN
» Ifthe SYNis lost...

— 3-6 seconds of delay: can be very long

— User may become impatient

— ... and click the hyperlink again, or click “reload”
User triggers an “abort” of the “connect”

— Browser creates a new socket and another “connect”
— Essentially, forces a faster send of a new SYN packet!
— Sometimes very effective, and the page comes quickly

What if the SYN Packet Gets Lost?

» Suppose the SYN packet gets lost
— Packetis lost inside the network, or:
— Server discards the packet (e.g., it's too busy)

» Eventually, no SYN-ACK arrives
— Sender sets a timer and waits for the SYN-ACK
— ... and retransmits the SYN if needed

How should the TCP sender set the timer?

— Sender has no idea how far away the receiveris

— Hard to guess a reasonable length of time to wait

— SHOULD (RFCs 1122 & 2988) use default of 3 seconds
« Some implementations instead use 6 seconds

Tearing Down the Connection

» Finish (FIN) to close and receive remaining

» Other host acks the byte to confirm

Normal Termination, One Side At A Time

RLA%

timeg — >

CN N)‘S
SOV
SEl
Ack

\

Connection
now closed

tes
— FIN occupies one byte in the sequence space Connectior
now half-cloged
Closes A's side of the connection, but not B's tiwe wair:
— Until B likewise sends a FIN
— WhichA then acks

Avoid reincarnation

B will retransmit FIN
ifACK islost 118

Normal Termination, Both Together

B

RAAR

timg ——mM >

3\1 N"S
oV * [k
Ack

TIME_WAIT.
Avoid reincarnation
Can retransmit

FIN ACK if ACK lost Connection

now closed

Same as before, but B sets FIN with their ack of A's FIN

Abrupt Termination

Dal‘a
eed
RST

B
w
A
z 7 S = &
s \z7 R
7
L N]
A

time ———>

* AsendsaRESET (RST) toB
— E.g., because application process on A crashed
* That'sit
— Bdoesnotackthe RST
— Thus, RST is not delivered reliably
— And: any datain flight is lost
— But: if B sends anything more, will elicit anotherRST

TCP Header

Source port ‘ Destination port
Sequence number
Flags: syN
ACK Acknowledgment
FIN HdrLen Flags) Advertised window
RST
PSH Checksum Urgent pointer
URG

Options (variable)

Data

TCP State Transitions

CLOSED [~
“\ Active open /SYN
N N
Passive open [|Close N\
Close\
Y

LISTEN

An Simpler View of the Client Side

SYN (Send)

Rev. FIN,
Send ACK

Rev. SYN+ACK,
Send ACK

ESTABLISHED
Rev. ACK, %N
Send Nothing

SIS+ ACK N\ SendSYN |
ACK N /“SYN + ACK/ACK
\ [Data, ACK
'
coseren Eece
T 1 arein here
Close/FIN_~" _FIN/ACK
FN_WAT_T [*—— T CLOSE_WAIT
5 t
[owarz] %, [Ccrosne | [[astack |
€ ack Tmeout after o [
U mvack segment lfetimes
122
Source port ‘ Destination port

Sequence number

Used to negotiate

use of additional Acknowledgment

features eren‘ 0 ‘ Fla Ad . .
.) gs vertised window
(details in section) H\

Chegksum Urgent pointer

~

Options (variable)

TCP Header

Source port ‘ Destination port

Sequence number

Acknowledgment

Heren‘ 0 ‘ Flags @sedwindow

Checksum Urgent pointer

Options (variable)

Data

* What does TCP do?
— ARQ windowing, set-up, tear-down
* Flow Control in TCP

Recap: Sliding Window (so far)
» Both sender & receiver maintain a window

* Left edge of window:
— Sender: beginning of unacknowledged data
— Receiver: beginning of undelivered data

* Right edge: Left edge + constant

— constantonly limited by buffer size in the
transport layer

Sliding Window at Sender (so far)

Sending process

TCP

Buffer size

; byte written
Previously
ACKed bytes |

First unACKed byte

Last byte
can send

Sliding Window at Receiver (so far)

Receiving process

Last byte read Buffer size (B)

Received and /J/7 ‘/’ ‘ U

ACKed 1 Sender might overrun
Next byte needed the receiver’s buffer
(1stbyte not received)

Last byte received

Solution: Advertised Window (Flow
Control)

- Receiver uses an “Advertised Window” (W)
to prevent sender from overflowing its
window
- Receiverindicates value of W in ACKs

- Sender limits number of bytes it can have in
flight<=W

Sliding Window at Receiver

W= B - (LastByteReceived - LastByteRead)

Last byte read Buffer size (B)

Next byte needed
(1stbyte not received)

Last byte received

Sliding Window at Sender (so far)

Sending process

TCP

w
‘ | l Last byte written
First unACKed byte
Last byte
can send

Sliding Window w/ Flow Control

» Sender: window advances when new data
ack’d

* Receiver: window advances as receiving
process consumes data

» Receiver advertises to the sender where
the receiver window currently ends
(“righthand edge”)

— Sender agrees not to exceed this amount

Advertised Window Limits Rate

« Sender can send no faster than W/RTT
bytes/sec

* Receiver only advertises more space when it
has consumed old arriving data

* In original TCP design, that was the sole
protocol mechanism controlling sender’ s rate

* What’s missing?

TCP

* The concepts underlying TCP are simple
— acknowledgments (feedback)
— timers
—sliding windows
— buffer management
— sequence numbers

TCP

* The concepts underlying TCP are simple
* But tricky in the details
— How do we set timers?
— What is the segno for an ACK-only packet?
— What happens if advertised window = 0?
— What if the advertised window is % an MSS?
— Should receiver acknowledge packets right away?
— What if the application generates data in units of 0.1 MSS?

— What happens if | get a duplicate SYN? Or a RST while I’'m in
FIN_WAIT, etc., etc., etc.

TCP

* The concepts underlying TCP are simple
e But tricky in the details
* Do the details matter?

Sizing Windows for
Congestion Control
* What are the problems?
* How might we address them?

* What does TCP do?

— ARQ windowing, set-up, tear-down
* Flow Control in TCP
* Congestion Control in TCP

We have seen:

— Flow control: adjusting the sending rate to
keep from overwhelming a slow receiver

Now lets attend...

— Congestion control: adjusting the sending rate
to keep from overloading the network

Statistical Multiplexing = Congestion

 If two packets arrive at the same time

— Arouter can only transmit one

— ... and either buffers or drops the other
» If many packets arrive in a short period of time

— The router cannot keep up with the arriving traffic

— ... delays traffic, and the buffer may eventually overflow
 Internet traffic is bursty

Congestion is undesirable

Typical queuing system with bursty arrivals

Average
Packet delay

)

Load Load

Average
Packet loss

Must balance utilization versus delay and loss

Who Takes Care of Congestion?

* Network? End hosts? Both?

* TCP’s approach:
— End hosts adjust sending rate

— Based on implicit feedback from network

* Not the only approach

— A consequence of history rather than planning

Some History: TCP in the 1980s

Sendingrate only limited by flow control

— Packet drops = senders (repeatedly!) retransmit a full
window’s worth of packets

* Led to “congestion collapse” starting Oct. 1986

— Throughput on the NSF network dropped from
32Kbits/s to 40bits/sec

* “Fixed” by Van Jacobson’s development of TCP’s
congestion control (CC) algorithms

Jacobson’s Approach

* Extend TCP’s existing window-based protocol but adapt the
window size in response to congestion
— required no upgrades to routers or applications!
— patch of a few lines of code to TCP implementations

¢ A pragmatic and effective solution
— but many other approaches exist

* Extensively improved on since
— topic now sees less activity in ISP contexts
— but is making a comeback in datacenter environments

Three Issues to Consider

* Discovering the available (bottleneck)
bandwidth

* Adjusting to variations in bandwidth

* Sharing bandwidth between flows

Abstract View

Sending Host Buffer in Router Receiving Host

* Ignore internal structure of router and model it as
having a single queue for a particular input-
output pair

Discovering available bandwidth

A TP

* Pick sending rate to match bottleneck bandwidth
— Without any a priori knowledge
— Could be gigabit link, could be a modem

Adjusting to variationsin bandwidth

[T+

* Adjust rate to match instantaneous bandwidth
— Assumingyou have rough idea of bandwidth

Multiple flows and sharing bandwidth

Two Issues:
* Adjust total sending rate to match bandwidth

¢ Allocation of bandwidth between flows

View from a single flow
knee cliff pTcket
+ Knee — point after which 5 y loss
— Throughput increases slowly o
> .
— Delay increases fast [congestion
1= collapse
Load
5
* Cliff — point after which 2
— Throughput starts to drop to zero
(congestion collapse)
— Delay approaches infinity
Load

General Approaches

(0) Send without care

(1) Reservations
— Pre-arrange bandwidth allocations
— Requires negotiation before sending packets
— Low utilization

Reality

Congestion control is a resource allocation problem involving many flows,
many links, and complicated global dynamics

General Approaches

(0) Send without care
— Many packetdrops

General Approaches

(0) Send without care

(1) Reservations

(2) Pricing
— Don’t drop packets for the high-bidders
— Requires payment model

General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

(3) Dynamic Adjustment
— Hosts probe network; infer level of congestion; adjust
— Network reports congestion level to hosts; hosts adjust
— Combinations of the above

— Simple to implement but suboptimal, messy dynamics

General Approaches

(0) Send without care
(1) Reservations
(2) Pricing

(3) Dynamic Adjustment

All three techniques have their place
* Generality of dynamic adjustment has proven powerful

* Doesn’t presume business model, traffic characteristics,
application requirements; does assume good citizenship

TCP’s Approach in a Nutshell

* TCP connection has window
— Controls number of packets in flight

* Sending rate: “Window/RTT

* Vary window size to control sending rate

All These Windows...

* Congestion Window: CWND
— How many bytes can be sent without overflowing routers
— Computed by the sender using congestion control algorithm

¢ Flow control window: AdvertisedWindow (RWND)
— How many bytes can be sent without overflowing receiver’s buffers
— Determined by the receiver and reported to the sender

» Sender-side window = minimum{cwND,RWND}
» Assume for this material that RWND >> CWND

Note

¢ This lecture will talk about CWND in units of
MSS

— (Recall MSS: Maximum Segment Size, the amount of
payload data in a TCP packet)

— This is only for pedagogical purposes

* In reality this is a LIE: Real implementations
maintain CWND in bytes

Two Basic Questions

* How does the sender detect congestion?

* How does the sender adjust its sending rate?
— To address three issues
* Finding available bottleneck bandwidth
* Adjusting to bandwidth variations
* Sharing bandwidth

Detecting Congestion

+ Packet delays
— Tricky: noisy signal (delay often varies considerably)

* Router tell endhosts they’'re congested

» Packet loss
— Fail-safe signal that TCP already has to detect
— Complication: non-congestive loss (checksum errors)

* Two indicators of packet loss
— No ACK after certain time interval: timeout
— Multiple duplicate ACKs

Not All Losses the Same

» Duplicate ACKs: isolated loss
— Still getting ACKs

« Timeout: much more serious
— Not enough dupacks

— Must have suffered several losses

* We will adjust rate differently for each case

Rate Adjustment

* Basic structure:
— Upon receipt of ACK (of new data): increase rate
— Upon detection of loss: decrease rate

* How we increase/decrease the rate depends on
the phase of congestion control we're in:
— Discoveringavailable bottleneckbandwidth vs.
— Adjusting to bandwidth variations

Bandwidth Discovery with Slow Start

* Goal: estimate available bandwidth
— start slow (for safety)
— but ramp up quickly (for efficiency)

» Consider
— RTT = 100ms, MSS=1000bytes
— Windowsize to fill 1Mbps of BW = 12.5 packets
— Windowsize to fill 1Gbps = 12,500 packets
— Eitheris possible!

“Slow Start” Phase

« Sender starts at a slow rate but increases
exponentially until first loss

« Start with a small congestion window
— Initially, CWND =1
— So, initial sending rate is MSS/RTT

» Double the CWND for each RTT with no loss

Slow Start in Action

For each RTT: double CWND

Simpler implementation: for each ACK, CWND +=1

Dest

Adjusting to Varying Bandwidth

* Slow start gave an estimate of available bandwidth

* Now, want to track variations in this available
bandwidth, oscillating around its current value

— Repeated probing (rate increase) and backoff (rate
decrease)

* TCP uses: “Additive Increase Multiplicative
Decrease” (AIMD)

— We'll see why shortly...

AIMD

« Additive increase

— Window grows by one MSS for every RTT with no
loss

— For each successful RTT, CWND = CWND + 1
— Simple implementation:
« for each ACK, CWND = CWND+ 1/CWND

» Multiplicative decrease

— On loss of packet, divide congestion window in half
— On loss, CWND = CWND/2

Leads to the TCP “Sawtooth”

Window
Loss \

N\

Exponential t
“slow start”

* What does TCP do?
— ARQ windowing, set-up, tear-down
* Flow Control in TCP

* Congestion Control in TCP
—AIMD

Slow-Start vs. AIMD

* When does a sender stop Slow-Start and start
Additive Increase?

* Introduce a “slow start threshold” (ssthresh)
— Initialized to a large value
— On timeout, ssthresh=CWND/2

* When CWND = ssthresh, sender switches from
slow-start to AIMD-style increase

Why AIMD?

Recall: Three Issues

* Discovering the available (bottleneck)

bandwidth
— Slow Start

* Adjusting to variations in bandwidth

—AIMD

* Sharing bandwidth between flows

Why AIMD?

* Some rate adjustment options: Every RTT, we can
— Multiplicative increase or decrease: CWND—

a*CWND

— Additiveincrease or decrease: CWND— CWND + b

¢ Four alternatives:

— AIAD: gentleincrease, gentle decrease
— AIMD: gentleincrease, drastic decrease
— MIAD: drastic increase, gentle decrease
— MIMD: drastic increase and decrease

Example

Inefficient: x4 +x,=0.7

User 2: x, R

/

Efficient: x4 +x,=1

/]
s | Efficient: x4+x,=1

Not fair

fairness
line

efficiency
line

User 1: x,

Goals for bandwidth sharing

* Efficiency: High utilization of link bandwidth
* Fairness: Each flow gets equal share

Simple Model of Congestion Control

Two users
— rates x4 and x,

Congestion when
Xq+Xo > 1

Unused capacity
when x;+x, < 1

Fair when x; =x,

[y

User 2’s rate (x,)

Fairness
7 line
/

Efficiency
line

User 1’s rate (x,) 1

* Increase: x + g
+ Decrease: x - ap

* Does not
converge to
fairness

User 2: x,

AIAD

(xj-aptay), / line
X-aptay)) 7

efficiency
line

* Increase: x*b;

« Decrease: x*bp,

* Does not
converge to
fairness

User 2: x,

fairness
line

efficiency
line

Recall: Three Issues

* Discovering the available (bottleneck)
bandwidth
— Slow Start

* Adjusting to variations in bandwidth
— AIMD

* Sharing bandwidth between flows

* Increase: x+a,
* Decrease: x*bp

» Converges to
fairness

User 2: x,

fairness
/ line
/
(bpxtay,
bpx,tay) /
DA2 l)/

/
/

efficiency
line

User 1: x;

Why is AIMD fair?

(a pretty animation...)

Two competing sessions:
* Additive increase gives slope of 1, as throughout increases
* multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Bandwidth for Connection 2 =

Bandwidth for Connection 1 R

183

AIMD Sharing Dynamics

A
D]

50 pkts/sec B

60

40

=1 Rates equalize - fair share —

30

—
!

20

T~
=
~

I
¥

MMM
i i

rrvvy

55
82
109
136

163
190
217
244
271
298
325
352
379
406
433
460
487

AIAD Sharing Dynamics
I.>-< e
D [E]

N AAAAAAAAAAAAAAAAAAAA

Vv

55

82
109
136
163
190
217
244
271
208
325
352
379
406
433
460
487

TCP Congestion Control
(Gruesome) Details

Event: ACK (new data)

e |f CWND < ssthresh T CWND packets per RIT

—CWND+=1 « Hence after one RTT
with no drops:
CWND = 2xCWND

Implementation

 State at sender
— CWND (initialized to a small constant)
— ssthresh (initialized to a large constant)
— [Also dupACKcount and timer, as before]

* Events
— ACK (new data)

— dupACK (duplicate ACK for old data)
— Timeout

Event: ACK (new data)

* If CWND < ssthresh
Slow start phase
—CWND+=1

* Else “Congestion
— CWND=CWND + 1/CWND Avoidance” phase
(additive increase)

* CWND packets per RTT
* Hence after one RTT
with no drops:
CWND =CWND +1

Event: TimeOut

* On Timeout

— ssthresh € CWND/2
—CWND < 1

Event: dupACK

* dupACKcount ++

If dupACKcount = 3 /* fast retransmit */
— ssthresh=CWND/2
— CWND = CWND/2

Example

Window
Fast Timeout ggThresh
Retransmission Set to Here

Slow start in operation until
it reaches half of previous
CWND, Le., SSTHRESH

Slow-start restart: Go back to CWND = 1 MSS, but take
advantage of knowing the previous value of CWND

* What does TCP do?
— ARQ windowing, set-up, tear-down

* Flow Control in TCP
* Congestion Control in TCP
— AIMD, Fast-Recovery

One Final Phase: Fast Recovery

* The problem: congestion avoidance too slow
in recovering from an isolated loss

Example (in units of MSS, not bytes)

* Consider a TCP connection with:
— CWND=10 packets

— Last ACK was for packet # 101
* i.e., receiver expecting next packet to have seq. no. 101

» 10 packets [101, 102, 103,..., 110] are in flight
— Packet 101 is dropped
— What ACKs do they generate?
— And how does the sender respond?

Timeline

¢ ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
* ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
* ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
* RETRANSMIT 101 ssthresh=5 cwnd=5

* ACK 101 (due to 105) cwnd=5 + 1/5 (no xmit)

¢ ACK 101 (due to 106) cwnd=5 +2/5 (no xmit)

¢ ACK 101 (due to 107) cwnd=5 + 3/5 (no xmit)

¢ ACK 101 (due to 108) cwnd=5 + 4/5 (no xmit)

¢ ACK 101 (due to 109) cwnd=5 +5/5 (no xmit)

¢ ACK 101 (due to 110) cwnd=6 + 1/5 (no xmit)

¢ ACK 111 (due to 101) € only now can we transmit new packets

* Plus no packets in flight so ACK “clocking” (to increase CWND) stalls for
another RTT

Solution: Fast Recovery

Idea: Grant the sender temporary “credit” for each dupACK so as
to keep packets in flight

e If dupACKcount =3
— ssthresh = cwnd/2
— cwnd = ssthresh + 3

¢ While in fast recovery
— cwnd = cwnd + 1 for each additional duplicate ACK

* Exit fast recovery after receiving new ACK
— set cwnd = ssthresh

Example

* Consider a TCP connection with:
— CWND=10 packets
— Last ACK was for packet # 101

* i.e., receiver expecting next packet to have seq. no. 101

* 10 packets [101, 102, 103,..., 110] are in flight
— Packet 101 is dropped

Timeline

ACK 101 (due to 102) cwnd=10 dup#l

ACK 101 (due to 103) cwnd=10 dup#2

ACK 101 (due to 104) cwnd=10 dup#3

REXMIT 101 ssthresh=5 cwnd= 8 (5+3)

ACK 101 (due to 105) cwnd=9 (no xmit)

ACK 101 (due to 106) cwnd=10 (no xmit)

ACK 101 (due to 107) cwnd=11 (xmit 111)

ACK 101 (due to 108) cwnd=12 (xmit 112)

ACK 101 (due to 109) cwnd=13 (xmit 113)

ACK 101 (due to 110) cwnd=14 (xmit 114)

ACK 111 (due to 101) cwnd =5 (xmit 115) €= exiting fast recovery
Packets 111-114 already in flight

ACK 112 (due to 111) cwnd =5 + 1/5 € back in congestion avoidance

Putting it all together:
The TCP State Machine (partial)

timeou new
slow cwnd > ssthresh ongstn. Ak
start \ avoid.
timeout

new ACK

timeout new ACK
dupACK=3

dupACK=3

fast
dupACK recovery,

TCP Flavors

TCP-Tahoe

— cwnd =1 on triple dupACK

TCP-Reno

— cwnd =1 on timeout

— cwnd = cwnd/2 on triple dupack
TCP-newReno

— TCP-Reno + improved fast recovery
TCP-SACK

— incorporates selective acknowledgements

* What does TCP do?

— ARQ windowing, set-up, tear-down
* Flow Control in TCP
* Congestion Control in TCP

— AIMD, Fast-Recovery, Throughput

TCP Throughput Equation

cwnd

xxxxx

A Simple Model for TCP Throughput

Timeouts

A Simple Model for TCP Throughput

cwnd Timeouts

S

Packet drop rate, p=1/ A, where A = gW,iax

Throughput, B =

A \E 1
(Wm)m—r 2 RITfp

2

Some implications: (1) Fairness

3 1
Throughput, B =, |—
=P \/;RTT\/;

* Flows get throughput inversely proportional to

RTT

— Is this fair?

Some Implications:
(2) How does this look at high speed?

* Assumethat RTT = 100ms, MSS=1500bytes

* What value of p is required to go 100Gbps?
— Roughly 2 x 1012

* How long between drops?
— Roughly 16.6 hours

* How much data has been sent in this time?
— Roughly 6 petabits

* These are not practical numbers!

Some implications:
(3) Rate-based Congestion Control

1

3
Throughput, B = \/:
£ 2 RTT+[p

¢ One can dispense with TCP and just match eqtn:

— Equation-based congestion control
— Measure drop percentage p, and set rate accordingly
— Useful for streaming applications

Some Implications: (4) Lossy Links

* TCP assumes all losses are due to congestion
* What happens when the link is lossy?
* Throughput ~ 1/sqrt(p) where p is loss prob.

* This applies even for non-congestion losses!

Other Issues: Cheating
* Cheating pays off

* Some favorite approaches to cheating:
— Increasing CWND faster than 1 per RTT
— Using large initial CWND
— Opening many connections

Increasing CWND Faster

X
A
L E——

X increases by 2 per RTT
y increases by 1 per RTT

What does TCP do?
— ARQ windowing, set-up, tear-down
* Flow Control in TCP
* Congestion Control in TCP
— AIMD, Fast-Recovery, Throughput
* Limitations of TCP Congestion Control

A Closer look at problems
with
TCP Congestion Control

TCP State Machine

timeout

dupAck cwnd > ssthresh

timeout
new ACK

timeout new ACK

dupACK=3

dupACK=3

dupACK

TCP State Machine

timeout

dupAck cwnd > ssthresh

timeout

new ACK

imeout new ACK

dupACK=3

dupACK=3

dupACK

TCP State Machine

timeout

dupAck cwnd > ssthresh

timeout

new ACK

imeout new ACK

AupACK=3

dupACK=3

dupACK

TCP State Machine

timeout

dupAck cwnd > ssthresh

timeout

new ACK

imeout new ACK
AupACK=3

dupACK=3

dupACK

TCP Flavors
* TCP-Tahoe
— CWND =1 on triple dupACK
* TCP-Reno

— CWND =1 on timeout

— CWND = CWND/2 on triple dupack Our default
* TCP-newReno assumption

— TCP-Reno + improved fast recovery
* TCP-SACK
— incorporates selective acknowledgements

Interoperability

* How can all these algorithms coexist? Don’t
we need a single, uniform standard?

* What happens if I'm using Reno and you are
using Tahoe, and we try to communicate?

TCP Throughput Equation

A Simple Model for TCP Throughput

A Simple Model for TCP Throughput

cwnd Loss

A

—

Packet drop rate, p=1/ A, where A = %szM

N

S}

A 3 1
Throughput, B= —~——= \ﬁ
(Wg) rrr V2 RITp

Implications (1): Different RTTs

3 1
Throughput =, [~
£ \/;RTT\/;

Flows get throughput inversely proportional to RTT
TCP unfair in the face of heterogeneous RTTs!

@ bottl‘l{:zeck @

Implications (2): High Speed TCP

3 1
Through ut=\/:7
£ 2 RTT\[p
e Assume RTT = 100ms, MSS=1500bytes

* What value of p is required to reach 100Gbps throughput
— ~2x1012

* How long between drops?
— ~16.6 hours

* How much data has been sent in this time?
— ~ 6 petabits

* These are not practical numbers!

Adapting TCP to High Speed

— Once past a threshold speed, increase CWND faster

— A proposed standard [Floyd’03]: once speed is past some threshold,
change equation to p~8 rather than p~°

— Let the additive constantin AIMD depend on CWND

e Other approaches?

— Multiple simultaneous connections (hack but works
today)
— Router-assisted approaches (will see shortly)

Implications (3): Rate-based CC

3 1
Throughput = \/:
£ 2 RTT\[p

e TCP throughput is “choppy”
— repeated swings between W/2 to W

* Some apps would prefer sending at a steady rate
— e.g., streaming apps

* Asolution: “Equation-Based Congestion Control”
— ditch TCP’s increase/decrease rules and just follow the equation
— measure drop percentage p, and set rate accordingly

* Following the TCP equation ensures we’re “TCP friendly”
— i.e., use no more than TCP does in similar setting

Other Limitations of TCP
Congestion Control

(4) Loss not due to congestion?

* TCP will confuse any loss event with congestion
* Flow will cut its rate
— Throughput ™ 1/sqrt(p) where p is loss prob.

— Applies even for non-congestion losses!

* We'll look at proposed solutions shortly...

(5) How do short flows fare?

¢ 50% of flows have < 15008 to send; 80% < 100KB

Implication (1): short flows never leave slow start!
— short flows never attain their fair share

Implication (2): too few packets to trigger dupACKs
— lIsolated loss may lead to timeouts

— At typical timeout values of ~500ms, might severely impact
flow completion time

(6) TCP fills up queues = long delays

* Aflow deliberately overshoots capacity, until it
experiences a drop

* Means that delays are large for everyone

— Considera flow transferring a 10GB file sharing a
bottlenecklink with 10 flows transferring 100B

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT

Increasing CWND Faster

clV ,
N X increases by 2 per RTT
.\)ﬁ y increases by 1 per RTT
<

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT
— Opening many connections

Open Many Connections

Assume

e A starts 10 connections to B

e D starts 1 connection to E

* Each connection gets about the same throughput

Then A gets 10 times more throughput than D

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT
— Opening many connections
— Using large initial CWND

* Why hasn’t the Internet suffered a congestion
collapse yet?

(8) CCintertwined with reliability

Mechanisms for CC and reliability are tightly coupled
e CWND adjusted based on ACKs and timeouts
e Cumulative ACKs and fast retransmit/recovery rules

Complicates evolution
e Consider changing from cumulative to selective ACKs
e A failure of modularity, not layering

Sometimes we want CC but not reliability
e e.g., real-time applications

Sometimes we want reliability but not CC (?)

/ ’- AIMD impractical for high speed links D

A e Unfalr under heterogeneous RTTs

Recap: TCP problems

I/" “Misled by non-congestion losses “\-
I

“~e_ Fills up queues leading to hlgh delays -

AN

\
* Sawtooth discovery too choppy for some apps:

-

[Could fix many of these with some help from routers! j

What does TCP do?

— ARQ windowing, set-up, tear-down
Flow Control in TCP

Congestion Control in TCP

— AIMD, Fast-Recovery, Throughput
Limitations of TCP Congestion Control
Router-assisted Congestion Control

Router-Assisted Congestion Control

* Three tasks for CC:
— Isolation/fairness
— Adjustment
— Detecting congestion

How can routers ensure each flow gets its “fair
share”?

Fairness: General Approach

Routers classify packets into “flows”
— (For now) flows are packets between same source/destination

Each flow has its own FIFO queue in router

Router services flows in a fair fashion

— When line becomes free, take packet from next flow in a fair order

What does “fair” mean exactly?

Max-Min Fairness

» Given set of bandwidth demands r; and total bandwidth
C, max-min bandwidth allocations are:

a; = min(f, r)
where f is the unique value such that Sum(a;) = C

r

2
r, C bits/s 97

r3/

.

Example

C=10; rn=8,n=6,n=2;, N=3
C/3=3.33 —

— Can serviceallof ry

— Remove r; from the accounting: C=C-r;=8; N=2
Cl2=4—

— Can'tserviceall ofryorr,

— So hold them to the remaining fair share: f= 4

f=4
8 10 4 | minE.4)=4
min(©, 4) =
2 2 min(2, 4) = 2

Max-Min Fairness

* Property:
— If you don’t get full demand, no one gets more than you

» This is what round-robin service gives if all packets are
the same size

How do we deal with packets of
different sizes?

Mental model: Bit-by-bit round robin (“fluid
flow”)

Can you do this in practice?
No, packets cannot be preempted

But we can approximate it
— This is what “fair queuing” routers do

Fair Queuing (FQ)

* For each packet, compute the time at which
the last bit of a packet would have left the
router if flows are served bit-by-bit

* Then serve packets in the increasing order of
their deadlines

Example

Flow' (1 EL BB EE

Fair Queuing (FQ)

Think of it as an implementation of round-robin generalized
to the case where not all packets are equal sized

Weighted fair queuing (WFQ): assign different flows
different shares

Today, some form of WFQ implemented in almost all routers
— Not the case in the 1980-90s, when CC was being developed
— Mostly used to isolate traffic at larger granularities (e.g., per-prefix)

(arrival traffic) time
_FIowZ) 1 | 2 | 3 | 4 | 5 |

(arrival traffic) time
Service | 1 | o T 2T 3T aT5s5Te |

in fluid flow s T« T 5 1 time
system

ro o[z fa]s [afa[s [a]s] 5 [o]

Packet time
system

* FQ advantages:
— Isolation: cheating flows don’t benefit
— Bandwidth share does not depend on RTT

— Flows can pick any rate adjustment scheme they
want

* Disadvantages:

— More complexthan FIFO: per flow queue/state,
additional per-packet book-keeping

FQin the big picture

* FQ does not eliminate congestion = it just
manages the congestion

Will drop an additional
400Mbps from
the green flow

If the green flow doesn’t drop its sending rate to
100Mbps, we're wasting 400Mbps that could be
usefully given to the blue flow

Blue and Green get
0.5Gbps; any excess
will be dropped

FQin the big picture

* FQdoes not eliminate congestion = it just
manages the congestion

— robust to cheating, variations in RTT, details of delay,
reordering, retransmission, etc.

* But congestion (and packet drops) still occurs

* And v¥e, still wapt end-hoststo discover/adapt to
their fair share!

* What would the end-to-end argument say w.r.t.
congestion control?

Fairness is a controversial goal

What if you have 8 flows, and | have 4?
— Why should you get twice the bandwidth

What if your flow goes over 4 congested hops, and mine only
goes over 1?
— Why shouldn’t you be penalized for using more scarce bandwidth?

And what is a flow anyway?
— TCP connection

— Source-Destination pair?

— Source?

Router-Assisted Congestion Control

* CC has three different tasks:
— Isolation/fairness
— Rate adjustment
— Detecting congestion

Why not just let routers tell endhosts what rate
they should use?
Packets carry “rate field”

Routers insert “fair share” f in packet header
— Calculated as with FQ

End-hosts set sending rate (or window size) to f
— hopefully (still need some policing of endhosts!)

This is the basic idea behind the “Rate Control
Protocol” (RCP) from Dukkipati et al. ‘07

Flow Duration (secs) vs. Flow Size

100

0.1

Flow Completion Time: TCP vs. RCP (Ignore XCP)

Active Flows vs. time

9000 T T T T i

7000 i 1
3
3

6000

5000 s

4000 - q

4 XCP
L TCP _
3000 ep
- 2000 | .
o
/
1000 L
0 50 100 150 200 250 300

0 2000 4000 6000 8000 10000

Flow Size [pkts] Time (secs)

Why the improvement?

250
200
150
100

50

sequence number

0
02

4000
3500
3000
2500
2000
1500
1000

500

sequence number

Router-Assisted Congestion Control

* CC has three different tasks:
— Isolation/fairness

— Detecting congestion

Explicit Congestion Notification (ECN)

Single bit in packet header; set by congested routers
— If data packet has bit set, then ACK has ECN bit set

Many options for when routers set the bit

— tradeoff between (link) utilization and (packet) delay
Congestion semantics can be exactly like that of drop

— lLe., endhost reacts as though it saw a drop

Advantages:
— Don’t confuse corruption with congestion; recovery w/ rate adjustment
— Can serve as an early indicator of congestion to avoid delays

— Easy (easier) to incrementally deploy
+ defined as extension to TCP/IP in RFC 3168 (uses diffserv bits in the IP header)

One final proposal: Charge people for
congestion!

¢ Use ECN as congestion markers
* Whenever | get an ECN bit set, | have to pay $$
* Now, there’s no debate over what a flow is, or what fair is...
* Idea started by Frank Kelly here in Cambridge
— “optimal” solution, backed by much math

— Great idea: simple, elegant, effective
— Unclear that it will impact practice — although London congestion works

Some TCP issues outstanding...

Synchronized Flows Many TCP Flows
+ Aggregate window has same * Independent, desynchronized
dynamics « Central limittheorem says the
« Therefore buffer occupancy aggregate becomes Gaussian
has same dynamics « Variance (buffer size)

* Rule-of-thumb still holds. decreases as N increases

S
23 “ Buffer Size

v

TCP in detail

* What does TCP do?
— ARQ windowing, set-up, tear-down

* Flow Control in TCP

* Congestion Control in TCP
— AIMD, Fast-Recovery, Throughput

* Limitations of TCP Congestion Control
* Router-assisted Congestion Control

Recap

* TCP:
— somewhat hacky
— but practical/deployable

— good enough to haveraised the bar for the
deployment of new, more optimal, approaches

— though the needs of datacenters might change the
status quos

Topic 6 — Applications
* Overview
* Traditional Applications (web)
* Infrastructure Services (DNS)
* Multimedia Applications (SIP)

e P2P Networks

Client-server architecture Pure P2P architecture

server: -
* no always-on server

— always-on host

e arbitrary end systems

<=
— permanent IP address directly communicate peerpeer S N
— server farms for scaling * peers are intermittently
clients: connected and change IP
- ; =
— communicate with server addresses =

— may be intermittently connected
— may have dynamiclP addresses

— do notcommunicate directly ()
with each other Highly scalable but difficult to ; W
manage 2 & @
3
Hybrid of client-server and P2P Addressing processes
Skype * toreceive messages, identifier includes both IP
— voice-over-IP P2P application FZOC?S? must have address and port numbers
. . entifie : :

— centralized server: finding address of remote identifi ') associated with process on

party: ¢ host device has unique 32- host.
— client-client connection: direct (not through bit IP address - Example port numbers:

server) * Q:does IP address of host e 80

Instant messaging on which process runs) server:
— chatting between two users is P2P suffice for identifying the = Mail server: 25
: - . ? .

— centralized service: client presence process: to send HTTP message to

detection/location — A: No, many processes yuba.stanford.edu web

* user registers its IP address with central server can be running on same server:
when it comes online host — IP address: 171.64.74.58
. ga?jrdicgsntacts central server to find IP addresses of _ Port number: 80
* more shortly...
5

Recall: Multiplexing is a service
provided by (each) layer too!

* Types of messages Public-domain protocols:
o exchanged, + defined in RFCs
Hultiplexing T penultipexing ~ €8, request, response « allows for interoperability
* Message syntax: « eg, HTTP, SMTP
— what fields in messages &

how fields are delineated Proprietary protocols:

App-layer protocol defines

Lower channel . .
Application: one web-server multiple sets of content ° Message semantics e.g., Skype
Host: one machine multiple services — meaning of information in
Network: one physical box multiple addresses (like vns.cl.cam.ac.uk) fields
* Rules for when and how
UNIX: /etc/protocols = examples of different transport-protocols on top of IP processes send & respond

UNIX: /etc/services = examples of different (TCP/UDP) services — by port to messages

(These files are an example of a (static)

What transport service does an app need?

Data loss Throughput
. 3 some apps (e.g., multimedia) require
some apps (e-g-: aUd|°) can minimum amount of throughput to be
tolerate some loss “effective”

3 other apps (“elastic apps”) make use of

other apps (e.g., file transfer, whatever throughput they get

telnet) require 100% reliable

Security
data transfer T Encryption, data integrity, ...
Timing Mysterious secret of Transport
. * There is more than sort of transport layer
some apps (e.g., Internet
telephony, interactive Shocked?
games) require low delay I seriously doubt it...

to be “effective”
Recall the two most common TCP and UDP

Naming

* Internet has one global system of addressing: IP
— By explicit design

* And one global system of naming: DNS
— Almost by accident

* At the time, only items worth naming were hosts
— A mistake that causes many painful workarounds

* Everythingis now named relative to a host
— Content is most notable example (URL structure)

Logical Steps in Using Internet

Human has name of entity she wants to access
— Content, host, etc.

Invokes an application to perform relevant task
— Using that name

App invokes DNS to translate name to address

App invokes transport protocol to contact host
— Using address as destination

Addresses vs Names

* Scope of relevance:
— App/user is primarily concerned with names
— Network is primarily concerned with addresses
* Timescales:
— Name lookup once (or get from cache)
— Address lookup on each packet
* When moving a host to a different subnet:
— The address changes
— The name does not change
* When moving content to a differently named host
— Name and address both change!

Relationship Between
Names&Addresses

Addresses can underneath
— Move www.bbc.co.uk to 212.58.246.92
— Humans/Apps should be unaffected

Name could map to IP addresses
— www.bbc.co.uk to multiple replicas of the Web site
— Enables

* Load-balancing

* Reducing latency by picking nearby servers

for the same address
— E.g., aliases like www.bbc.co.uk and bbc.co.uk

— Mnemonic stable name, and dynamic canonical name
* Canonical name = actual name of host

Mapping from Names to Addresses

* Originally: per-host file /etc/hosts
— SRI (Menlo Park) kept master copy
— Downloaded regularly
— Flat namespace

* Single server not resilient, doesn’t scale
— Adopted a distributed hierarchical system

* Two intertwined hierarchies:
— Infrastructure: hierarchy of DNS servers
— Naming structure: www.bbc.co.uk

Domain Name System (DNS)

* Top of hierarchy: Root
— Location hardwired into other servers

* Next Level: Top-level domain (TLD) servers
— .com, .edu, etc.
— .uk, .au, .to, etc.
— Managed professionally

* Bottom Level: Authoritative DNS servers
— Actually do the mapping
— Can be maintained locally or by a service provider

Distributed Hierarchical Database

unnamed root

SOIo

generic domains country domains
@ Top-Level Domains (TLDs) @ @

my.east.bar.edu cl.cam.ac.uk

DNS Root

* Located in Virginia, USA
* How do we make the root scale?

Verisign, Dulles, VA

DNS Root Servers

¢ 13 root servers (see http://www.root-servers.org/)

— Labeled A through M
¢ Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G USDoD Vienna, VA KRIPE London

H ARL Aberdeen, MD

J Verisign | Autonomica, Stockholm

E NASA Mt View, CA _
F Internet Software "
Consortium)

M WIDE Tokyo
Palo Alto, CA

B USC-ISI Marina del Rey, CA
LICANN Los Angeles, CA

18

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)
— Labeled A through M
* Replication via any-casting (localized routing for addresses)

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD

M WIDE Tokyo
plus Seoul, Paris,
San Francisco

G USDoD Vienna, VA K RIPE London (plus 16 other locations)
H ARL Aberdeen, MD
J Verisign (21 i 1A i (plus
£ NASAMt View, CA Other locations|
F Internet Software > " =
Consortium,

PaloAlio,CA ~—__]

(and 37 other locations)

B USC-ISI Marina del Rey, CA
LICANN Los Angeles, CA

19

Using DNS

* Two components
— Local DNS servers
— Resolver software on hosts

Local DNS server (“default name server”)
— Usually near the endhosts that use it

— Local hosts configured with local server (e.g.,
/etc/resolv.conf) or learn server via DHCP

Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() to trigger resolver code

20

How Does Resolution Happen?
(Iterative example)

root DNS server
Hostatcl.cam.ac.uk
wants IP address for

iterated query:
O Hostenquiry is delegated

www.stanford.edu > 3
TLD DNS server
to local DNS server

local DNS server 4
—
5 @
O Consider

dns.cam.ac.uk
transactions 2 — 7 only 1118
O contacted server replies
with name of next server
to contact
T “Idon’ tknow this name, requesting host
but ask this server” cl.cam.ac.uk

21

authoritative DNS server
dns.stanford.edu

www.stanford.edu

DNS name resolution recursive example

root DNS server

recursive query:
O puts burden of name
resolution on contacted

name server TLD DNS server
? tl
O heavy load? local DNS server
dns.cam.ac.uk 5|4
1 8 -

authoritative DNS server
dns.stanford.edu

requesting host
cl.cam.ac.uk

=
www.stanford.edu

22

Recursive and lterative Queries - Hybrid case

* Recursive query
— Ask server to get
answer for you
— E.g., requests 1,2

and responses Site DNS server
9,10

dns.cam.ac.uk

root DNS server

3
4
TLD DNS server

* |terative query
— Ask server who
to ask next
—E.g., all other
request-
response pairs

Site DNS server
dns.cam.ac.uk

authoritative DNS server
dns.stanford.edu

requesting host
my-host.cl.cam.ac.uk

DNS Caching

Performing all these queries takes time

— And all this before actual communication takes place
— E.g., 1-second latency before starting Web download
Caching can greatly reduce overhead

— The top-level servers very rarely change

— Popular sites (e.g., www.bbc.co.uk) visited often

— Local DNS server often has the information cached
How DNS caching works

— DNS servers cache responses to queries

— Responses include a “time to live” (TTL) field

— Server deletes cached entry after TTL expires

Negative Caching

* Remember things that don’ t work
— Misspellings like bbcc.co.uk and www.bbc.com.uk
— These can take a long time to fail the first time
— Good to remember that they don’t work
— ... so the failure takes less time the next time around

* But: negative cachingis optional
— And not widely implemented

26

Reliability

DNS servers are replicated (primary/secondary)
— Name service available if at least one replica is up

— Queries can be load-balanced between replicas
Usually, UDP used for queries

— Need reliability: must implement this on top of UDP
— Spec supports TCP too, but not always implemented
Try alternate servers on timeout

— Exponential backoff when retrying same server
Same identifier for all queries

— Don’t care which server responds

DNS Measurements (MiT data from 2000)

* What is being looked up?
— ~60% requests for A records
— ~25% for PTR records
— ~5% for MX records
— ~6% for ANY records

* How long does it take?
— Median ~100msec (but 90t percentile ~500msec)
— 80% have no referrals; 99.9% have fewer than four

* Query packets per lookup: ~2.4
— But this is misleading....

DNS Measurements (MIT data from 2000)

* Does DNS give answers?
— ~23% of lookups fail to elicit an answer!
— ~13% of lookups result in NXDOMAIN (or similar)
* Mostly reverse lookups
— Only ~64% of queries are successful!
* How come the web seems to work so well?

* ~63% of DNS packetsin unanswered queries!
— Failing queries are frequently retransmitted
— 99.9% successful queries have <2 retransmissions

28

DNS Measurements (MIT data from 2000)

Top 10% of names accounted for ~70% of lookups
— Caching should really help!

9% of lookups are unique

— Cache hit rate can never exceed 91%

Cache hit rates ~ 75%
— But caching for more than 10 hosts doesn’t add much

A Common Pattern.....

* Distributions of various metrics (file lengths, access
patterns, etc.) often have two properties:

— Large fraction of total metric in the top 10%
— Sizable fraction (~10%) of total fraction in low values

* Not an exponential distribution
— Large fraction is in top 10%
— But low values have very little of overall total

* Lesson: have to pay attention to both ends of dist.
* Here: caching helps, but not a panacea

Moral of the Story

* If you design a highly resilient system, many
things can be going wrong without you
noticing it!

and this is a good thing

Cache Poisoning, an old badness example

* Suppose you are a Bad Guy and you control
the name server for foobar.com. You receive a

variiact A racaliun unamaifanhar crava and vanli.

;; QUESTION SECTION:
;www.foobar.com. IN A

;; ANSWER SECTION:

www.foobar.com. 300 IN 212.44.9.144

;; AUTHORITY SECTION:
foobar.com. 600 NS dnsl.foobar.com.
foobar.com. 600 NS google.com.

;; ADDITIONAL SEC
google.com.

32 A foobar.com machine, not google.com

DNS and Security

* No way to verify answers
— Opens up DNS to many potential attacks
— DNSSEC fixes this

* Most obvious vulnerability: recursive resolution
— Using recursive resolution, host must trust DNS server
— When at Starbucks, server is under their control
— And can return whatever values it wants

* More subtle attack: Cache poisoning
— Those “additional” records can be anything!

Why is the web so successful?

What do the web, youtube, facebook, tumblr, twitter, flickr,
..... have in common?

— The ability to self-publish
Self-publishing that is easy, independent, free

No interest in collaborative and idealistic endeavor
— People aren’t looking for Nirvana (or even Xanadu)
— People also aren’t looking for technical perfection

Want to make their mark, and find something neat
— Two sides of the same coin, creates synergy
— “Performance” more important than dialogue....

Web Components

Infrastructure:
— Clients
— Servers
— Proxies

Content:
— Individual objects (files, etc.)
— Web sites (coherent collection of objects)

* Implementation
— HTML: formatting content
— URL: naming content

— HTTP: protocol for exchanging content
Any content not just HTML!

HTML: HyperText Markup Language

* A Web page has:
— Base HTML file
— Referenced objects (e.qg., images)

* HTML has several functions:
— Format text
— Reference images
— Embed hyperlinks (HREF)

URL Syntax

protocol : //hostname| : port] /directorypath /resource

protocol http, ftp, https, smtp, rtsp, etc.
hostname DNS name, IP address
port Defaults to protocol’ s standard port

e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4
0B240Bulk&MsgId=2604 1744106_29699_1123_1261_0_289
17_3552_1289957100&Search=&Nhead=f&YyY=31454&order=
down&sort=date&pos=0&view=a&head=b

HyperText Transfer Protocol (HTTP)

* Request-response protocol

Reliance on a global namespace
* Resource metadata

* Stateless

ASCIl format

$ telnet www.cl.cam.ac.uk 80
GET /~awm22/win HTTP/1.0
<blank line, i.e., CRLF>

Steps in HTTP Request

* HTTP Client initiates TCP connection to server

— SYN

— SYNACK

— ACK
* Client sends HTTP request to server

— Can be piggybacked on TCP’s ACK
* HTTP Server responds to request
* Client receives the request, terminates connection
* TCP connection termination exchange

How many RTTs for a single request?

Different Forms of Server

. Response
Return a file

— URL matchesa file (e.g., /www/index.html)
— Server returns file as the response
— Server generates appropriate response header

* Generate response dynamically
— URL triggers a program on the server
— Server runs program and sends output to client

Return meta-data with no body

41

Client-Server Communication

* two types of HTTP messages: request, response
e HTTP request message: (GET POST HEAD)

requestline

T~

ands GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close

| Accept-language:£r

HTTP response message

T mrres1.1 200 ox

(extracarriagereturn, linefeed) status phrase) Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
header Last-Modified: Mon, 22 Jun 1998
lines Content-Length: 6821
Content-Type: text/html

___——~ data data data dsta data ...
data, e.g
requested
HTML file

40

HTTP Resource Meta-Data

* Meta-data
— Info about a resource, stored as a separate entity

* Examples:

— Size of resource, last modification time, type of
content

* Usage example: Conditional GET Request
— Client requests object “If-modified-since”
— Ifunchanged, “HTTP/1.1 304 Not Modified”
— No body in the server’s response, only a header

42

HTTP is Stateless

* Each request-response treated independently
— Servers not required to retain state

Good: Improves scalability on the server-side
— Failure handling is easier

— Can handle higher rate of requests

— Order of requests doesn‘t matter

Bad: Some applications need persistent state
— Need to uniquely identify user or store temporary info
— e.g., Shopping cart, user profiles, usage tracking, ...

43

State in a Stateless Protocol:

Cookies

* Client-side state maintenance

— Client stores small» state on behalf of server

— Client sends state in future requests to the server
¢ Can provide authentication

Request

Response

g\v /" Set-Cookie: XYZ
\ —L ﬁ Request
Cookie: XYZ

44

HTTP Performance

* Most Web pages have multiple objects
—e.g., HTML file and a bunch of embedded images

* How do you retrieve those objects (naively)?
— One item at a time

e Put stuff in the optimal place?

— Where is that precisely?
* Enter the Web cache and the CDN

45

Fetch HTTP ltems: Stop & Wait

Client Server
Start fetching

Re: i
page quest item 1

Transfer item 1
Request item 2

Transfer item 2

— awy

Request item 3

’ymem
Finish; display
—

page

46

Improving HTTP Performance:

Concurrent Requests & Responses

* Use multiple connections in ! =
parallel e

* Does not necessarily maintain

order of responses R R2 R3

T2 13

e Client = © 2

e Server = ©

¢ Network = ® Why?

47

Improving HTTP Performance:

Pipelined Requests & Responses

e Batch requests and responses
— Reduce connection overhead Client Server

— Multiple requests sent in a single Request ;
batch %
— Maintains order of responses \Requms\‘

— Item 1 always arrives before item 2
* How is this different from 'W
concurrent requests/responses? ‘W
)) 3
— Single TCP connection ‘W

48

Improving HTTP Performance:
Persistent Connections

* Enables multiple transfers per connection
— Maintain TCP connection across multiple requests
— Including transfers subsequent to current page
— Client or server can tear down connection

* Performance advantages:
— Avoid overhead of connection set-up and tear-down
— Allow TCP to learn more accurate RTT estimate
— Allow TCP congestion window to increase
— i.e., leverage previously discovered bandwidth

* Defaultin HTTP/1.1

49

HTTP evolution

1.0 — one object per TCP: simple but slow

Parallel connections - multiple TCP, one object
each: wastes b/w, may be svr limited, out of order
1.1 pipelining — aggregate retrieval time: ordered,
multiple objects sharing single TCP

1.1 persistent — aggregate TCP overhead: lower
overhead in time, increase overhead at ends (e.g.,
when should/do you close the connection?)

Scorecard: Getting n Small Objects

Time dominated by latency

* One-at-a-time: ~2n RTT

* Persistent: ~ (n+1)RTT

* M concurrent: ~2[n/m] RTT

* Pipelined:~2 RTT

Pipelined/Persistent: ~2 RTT first time, RTT
later

Scorecard: Getting n Large Objects

Time dominated by bandwidth

e One-at-a-time: ~nF/B
* M concurrent: ~ [n/m] F/B

— assuming shared with large population of users
* Pipelined and/or persistent: ~ nF/B

— The only thing that helpsis getting more
bandwidth..

Improving HTTP Performance:

Caching

* Many clients transfer same information

— Generates redundant server and network
load
— Clients experience unnecessary latency

Server

Backbone ISP

Clients ==

A n]

53

Improving HTTP Performance:

Caching: How

* Modifier to GET requests:
— If-modified-since — returns “not modified” if
resource not modified since specified time
* Response header:
- Expires —how longit’s safe to cache the resource

—No-cache —ignore all caches; always get resource
directly from server

Improving HTTP Performance:

Caching: Why

* Motive for placing content closer to client:
— User gets better response time
— Content providers get happier users
* Time is money, really!
— Network gets reduced load

* Why does caching work?
— Exploits locality of reference

* How well does caching work?
— Very well, up to a limit
— Large overlapin content
— But many uniquerequests

Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request
* Return resource only if it has changed at the server

requeRPY SRIYES Lspurces!

GET /~awm22/win HTTP/1.1

Host: www.cl.cam.ac.uk

User-Agent: Mozilla/4.03

If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT

* HOwY
— Client specifies “if-modified-since” time in request
— Server compares this against “last modified” time of desired resource
— Server returns “304 Not Modified” if resource has not changed
— ...ora “200 OK” with the latest version otherwise

Improving HTTP Performance:
Caching with Reverse Proxies

Cache documents close to server

-> decrease server load
* Typically done by content providers

* Only works for static(*) content

" j Server

(*) static can also be snapshots
of dynamic content

Reverse proxies

Backbone ISP

Clients =
57

Improving HTTP Performance:

Caching with Forward Proxies

Cache documents close to clients
- reduce network traffic and decrease latency

« Typically done by ISPs or corporate LANs

Server

Reverse proxies

Forward proxies

Clients
58

Improving HTTP Performance:

Caching w/ Content Distribution Networks

* Integrate forward and reverse caching functionality
— One overlay network (usually) administered by one entity
— e.g., Akamai
* Provide document caching
— Pull: Direct result of clients’ requests
— Push: Expectation of high access rate
* Also do some processing
— Handle dynamic web pages
— Transcoding
— Maybe do some security function — watermark IP

Improving HTTP Performance:

Caching with CDNs (cont.)

Server

Forward proxies

Clients

60

Improving HTTP Performance:

CDN Example — Akamai

* Akamai creates new domain names for each client
content provider.
— €.8., a128.g.akamai.net

* The CDN’s DNS servers are authoritative for the new
domains

* The client content provider modifies its content so
that embedded URLs reference the new domains.
— “Akamaize” content

— e.8.: http://www.bbc.co.uk/popular-image.jpg becomes
http://a128.g.akamai.net/popular-image.jpg

. Requests now sent to CDN’s infrastructure...

Hosting: Multiple Sites Per
Machine

* Multiple Web sites on a single machine
— Hosting company runs the Web server on behalf of
multiple sites (e.g., www.foo.com and www.bar.com)
* Problem:GET /index.html
— www.foo.com/index.html Of www.bar.com/index.html?
* Solutions:
— Multiple server processes on the same machine
* Have a separate IP address (or port) for each server
— Include site name in HTTP request
« Single Web server process with a single IP address

« Client includes “Host” header (e.g., Host: www.foo.com)
* Required header with HTTP/1.1

62

Hosting: Multiple Machines Per Site

Replicate popular Web site across many machines
— Helps to handle the load
— Places content closer to clients

Helps when contentisn’t cacheable

Problem: Want to direct client to particular
replica

— Balance load across server replicas

— Pair clients with nearby servers

Multi-Hosting at Single Location

* Single IP address, multiple machines
— Run multiple machines behind a single IP address

I | Load Balancer I—

/ 64.236.16.20

— Ensure all packets from a single
TCP connection go to the same replica

64

Multi-Hosting at Several Locations

* Multiple addresses, multiple machines
— Same name but different addresses for all of the replicas

— Configure DNS server to return closest address

64.236.16.20

mY
o

6373.72.54.131

CDN examples round-up

* CDN using DNS
DNS has information on loading/distribution/location

* CDN using anycast

same address from DNS name but local routes

* CDN based on rewriting HTML URLs
(akami example just covered— akami uses DNS too)

SIP — Session Initiation Protocol

Session?

Anyone smell an OSI/ 1SO standards document burning?

SIP - VolP

cisco.com | princeton.edu
proxy proxy

bsd-pc.cisco.com lip-ph.cs.princeton.edu

bruce@cisco.com larry@princeton.edu

Establishing communication
through SIP proxies.

SIP?

* SIP — bringing the fun/complexity of
telephony to the Internet
—User location
— User availability
—User capabilities
—Session setup
—Session management
* (e.g. “call forwarding”)

69

H.323-1TU

* Why have one standard when there are at least two....

* The full H.323 is hundreds of pages
— The protocol is known for its complexity —an ITU hallmark

* SIP is not much better

— |ETF grew up and became the ITU....

70

Multimedia Applications

cisco.com princeton.edu

bsd-pe.cisco.com proxy proxy Ilp-ph.cs.princeton.edu
—_invite
100trying __———__invite
™ 100tying -~ invite
e 180ringing "1
L
180ringing
Dmen — 2000k
180 ringing [—
98— 2000k
— F——
2000k
P AcK
< Wedia >

BYE

200 0K

Message flow for a basic SIP session

The (still?) missing piece:
Resource Allocation for Multimedia Applications

Public
Internet

Customer
IP phone router

| can ‘differentiate’ VolIP from data but...
| can only control data going into the Internet

72

Multimedia ApJpIications

* Resource Allocation for Multimedia Applications

Proxy or gatekeeper

Wide area

= %_h_{nk} = Head office

IP phones at
branch office

Admission control using session control protocol.

73

Resource Allocation for Multimedia Applications

Coming soon...

who are we kidding??

Co-ordination of SIP signaling and
resource reservation.

So where does it happen? g i
Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data?
Phone company controls the multiplexing on the line
and throughout their own network too......

74

P2P — efficient network use that
annoys the ISP

Pure P2P architecture

* no always-on server

e arbitrary end systems
directly communicate peer-peer
* peers are intermittently
connected and change IP
addresses

* Three topics:
— File distribution

— Searching for information b Q
— Case Study: Skype

76

File Distribution: Server-Client vs P2P

Question : How much time to distribute file from
one serverto N peers?

u: server upload

bandwidth
Server
u;: peer i upload
bandwidth
d;: peer i download
File, size F bandwidth
Network (with []
abundant bandwidth)

UN
[}

File distribution time: server-client

Server
ug\ \ds //

* server sequentially
sends N copies:

. Network (with
- NF/ustlme @—N’ abundant bandwidth) ¢
* clienti takes F/d, “ y
time to download ‘e, .

Time to distribute F

~ toNclients using = de, = max { NF/uy, F/min(d;) }
client/server approach i

increases linearly in N

(for large N) .

File distribution time: P2P

Server

* server must send one copy: ;
F/u,time A\ fds

* clienti takes F/d;time to

d Network(wn:h
download @—'.N_ abundant bandwidth) ~ *
* NF bits must be et .
downloaded (aggregate) ., .

O fastest possible upload rate: u, + Zui

dpap = max { F/uy, F/min(d;), NF/(u, + Zu;) }

79

Server-client vs. P2P: example

Client upload rate = u, F/u =1 hour, ug=10u, d;,2

3.5

-=-p2pP
3) o~
-#- Client-Server _/r'/./"
25 f
2

Minimum Distribution Time
P

05 fW
T

0 T T T T T T
0 5 10 15 20 25 30 35

80

File distribution: BitTorrent*

*rather old BitTorrent
3 P2P file distribution

tracker: tracks peers
participating in torrent

N -
., @\

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

BitTorrent (1)
f

file divided into 256KB chunks.

peer joining torrent:

— has no chunks, but will accumulate them over time

— registers with tracker to get list of peers, connects to
subset of peers (“neighbors”)

while downloading, peer uploads chunks to other peers.
peers may come and go

once peer has entire file, it may (selfishly) leave or
(altruistically) remain

82

BitTorrent (2)

Pulling Chunks Sending Chunks: tit-for-tat
O Alice sends chunks to four neighbors

* atany given time, different currently sending her chunks at the
peers have different highest rate
subsets of file chunks < re-evaluate top 4 every 10 secs
) every 30 secs: randomly select another
peer, starts sending chunks
< newly chosen peer may join top 4
= “optimistically unchoke”

* periodically, a peer (Alice)
asks each neighbor for list
of chunks that they have.

* Alice sends requests for her
missing chunks

— rarest first

BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Distributed Hash Table (DHT)

* DHT = distributed P2P database
* Database has (key, value) pairs;
— key: ss number; value: human name
— key: content type; value: IP address
* Peers query DB with key
— DB returns values that match the key
* Peers can also insert (key, value) peers

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name

— key: content type; value: IP address
Peers query DB with key

— DB returns values that match the key
Peers can also insert (key, value) peers

DHT Identifiers

* Assign integer identifier to each peer in range
[0,27-1].
— Each identifier can be represented by n bits.
* Require each key to be an integer in same range.
* To get integer keys, hash original key.
— eg, key = h(“Game of Thrones season 4”)
— Thisis why they call it a distributed “hash” table

How to assign keys to peers?

Central issue:

— Assigning (key, value) pairs to peers.

Rule: assign key to the peer that has the

closest ID.

* Convention in lecture: closest is the
immediate successor of the key.

* Ex: n=4; peers: 1,3,4,5,8,10,12,14;

— key = 13, then successor peer= 14

— key = 15, then successorpeer=1

Circular DHT (1)

1

15

12

8

* Each peer only aware of immediate successor
and predecessor.

» “Overlay network”

Circle DHT (2)

O(N) messages

on avg to resolve
query, when there
are N peers

Define closest
as closest
successor

Circular DHT with Shortcuts

L Who' s resp
3 forkey 1110?

15

12

10
8

Each peer keeps track of IP addresses of predecessor, successor,
short cuts.
Reduced from 6 to 2 messages.

Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

Peer Churn

To handle peer churn, require
3 each peer to know the IP address
of its two successors.
* Each peer periodically pings its
4 two successors to see if they
are still alive.

15

12

10
8

e Peer 5 abruptly leaves
* Peer 4 detects; makes 8 its immediate successor; asks 8

who its immediate successor is; makes 8" s immediate
successor its second successor.

¢ What if peer 13 wants to join?

P2P Case study: Skype (pre-Microsoft)
Skype clients (SC)

¢ inherently P2P: pairs of " i} B
users communicate. Cey W ey
> B

* proprietary application- Skype
layer protocol (inferred login server
via reverse engineering)

* hierarchical overlay with JPSkyD “W@
SNs Skype

* Index maps usernames to
IP addresses; distributed
over SNs

Peers as relays

* Problem when both Alice
and Bob are behind
“NATs”.

— NAT prevents an outside peer
from initiating a call to
insider peer

* Solution:

— Using Alice’ s and Bob’ s SNs,
Relay is chosen

— Each peer initiates session
with relay.

— Peers can now communicate
through NATs via relay

Summary.

* Apps need protocols too

* We covered examples from
— Traditional Applications (web)
— Scaling and Speeding the web (CDN/Cache tricks)

* Infrastructure Services (DNS)
— Cache and Hierarchy

* Multimedia Applications (SIP)
— Extremely hard to do better than worst-effort

* P2P Network examples

Topic 7: Datacenters

What we will cover

Characteristics of a datacenter environment

— goals, constraints, workloads, etc.

How and why DC networks are different (vs. WAN)
—e.g., latency, geo, autonomy, ...

How traditional solutions fare in this environment
—e.g., IP, Ethernet, TCP, ARP, DHCP

Not details of how datacenter networks operate

Disclaimer

* Material is emerging (not established) wisdom

* Material is incomplete

— many details on how and why datacenter networks
operate aren’t public

Why Datacenters?

Your <public-life, private-life, banks, government>
live in my datacenter.

Security, Privacy, Control, Cost, Energy, (breaking)
received wisdom; all this and more come together
into sharp focus in datacenters.

Do I need to labor the point?

What goes into a datacenter (network)?

* Servers organized in racks

What goes into a datacenter (network)?

* Servers organized in racks
* Each rack has a "Top of Rack’ (ToR) switch

What goes into a datacenter (network)?

* Servers organized in racks
* Each rack has a "Top of Rack’ (ToR) switch
* An “aggregation fabric’ interconnects ToR switches

Top of
Rack
Switch

‘Aggregation

—
11

1]

T

What goes into a datacenter (network)?

* Servers organized in racks
* Each rack has a "Top of Rack’ (ToR) switch
* An “aggregation fabric’ interconnects ToR switches

* Connected to the outside via “core’ switches
— note: blurry line between aggregation and core

* With network redundancy of ~2x for robustness

- e - B -~ ey
Example 1

Data Center N

Aggregation/Core |11}

10 GbE
Servers

10GbE
— 40 GbE ¥ “Apces

Brocade reference design

Example 2

Internet \V W

~ 40-80 servers/rack

Cisco reference design

Observations on DC architecture

* Regular, well-defined arrangement

Hierarchical structure with rack/aggr/core layers

Mostly homogenous within a layer

* Supports communication between servers and
between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANs

What’s new?

How big exactly?

* 1M servers [Microsoft]
— less than google, more than amazon

* > $1B to build one site [Facebook]
* >520M/month/site operational costs [Microsoft '09]

But only O(10-100) sites

SCALE!

What’s new?

* Scale

* Service model
— user-facing, revenue generating services
— multi-tenancy
— jargon: Saas$, Paas, Daas, laas, ...

Implications

* Scale
— need scalable solutions (duh)
— improving efficiency, lowering cost is critical
- 'scale out’ solutions w/ commodity technologies

* Service model
— performance means $$
— virtualization for isolation and portability

Multi-Tier Applications

* Applications decomposed into tasks
—Many separate components
—Running in parallel on different machines

18

Componentization leads to different
types of network traffic

» “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations

North-South Traffic

user requests from the Internet

Front-End Front-End
Proxy Proxy

Data Data
Cache Cache

Database Database

Componentization leads to different
types of network traffic

* “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations

* “East-West traffic”
— Traffic between machines in the datacenter
— Comm within “big data” computations (e.g. Map Reduce)
— Traffic may shift on small timescales (e.g., minutes)

East-West Traffic

Distributed Map Reduce Distributed
Storage Tasks Tasks Storage

East-West Traffic

What’s different about DC networks?

Characteristics
* Huge scale:

—~20,000 switches/routers
— contrast: AT&T ~500 routers

-

Distributed
Storage

Distributed
Storage

24

What’s different about DC networks?

Characteristics
* Huge scale:
* Limited geographic scope:
— High bandwidth: 10/40/100G
— Contrast: Cable/aDSL/WiFi
— Very low RTT: 10s of microseconds
— Contrast: 100s of milliseconds in the WAN

What’s different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

— Can deviate from standards, invent your own, etc.
— “Green field” deploymentiis still feasible

What’s different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain
 Control over one/both endpoints

— can change (say) addressing, congestion control, etc.

— can add mechanismsfor security/policy/etc. at the
endpoints (typically in the hypervisor)

What’s different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
— e.g., map-reduce scheduler chooses where tasks run
— alters traffic pattern (what traffic crosses which links)

What’s different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
* Regular/planned topologies (e.g., trees/fat-trees)

— Contrast: ad-hoc WAN topologies (dictated by
real-world geography and facilities)

What’s different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
* Regular/planned topologies (e.g., trees/fat-trees)

* Limited heterogeneity
— link speeds, technologies, latencies, ...

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
—recall: all that east-west traffic
— target: any server can communicate at its full link speed
— problem: server’s access link is 10Gbps!

Full Bisection Bandwidth

inte 0(40x10x100) W/ \/

(0(40x10)Gbps

— M

* full bisection bandwidth is expensive

Traditional tree topologies “scale up”
* typically, tree topologies “oversubscribed”

A “Scale Out” Design

* Build multi-stage "Fat Trees’ out of k-port switches
—k/2 ports up, k/2 down
— Supports k3/4 hosts:
* 48 ports, 27,648 hosts

_— T
/ All links are the

same speed \
\\ (e.g. 10Gps) /

Full Bisection Bandwidth Not Sufficient

Core

Aggregation

3 < Y; ‘ e Edge
. AN 7\ /\ /\
g Y EE e
G H 1

N\

To realize full bisectional throughput, routing must spread
traffic across paths
* Enterload-balanced routing
— How? (1) Let the network split traffic/flows at random
(e.g., ECMP protocol -- RFC 2991/2992)
— How? (2) Centralized flow scheduling?

— Many more research proposals

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
* Extreme latency requirements

—real money on the line

— current target: 1us RTTs

— how? cut-through switches making a comeback
— how? avoid congestion

* reduces queuing delay

An example problem at scale - INCAST

Worker 1 | * Synchronized mice collide.

» Caused by Partition/Aggregate.

Worker 2

Aggregator

Worker 3

Worker 4

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
* Extreme latency requirements

— real money on the line

— current target: 1us RTTs

— how? cut-through switches makinga comeback
* reduces switching time

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
* Extreme latency requirements

—real money on the line

— current target: 1us RTTs

— how? cut-through switches makinga comeback (lec. 2!)
— how? avoid congestion

— how? fix TCP timers (e.g., default timeoutis 500ms!)

— how? fix/replace TCP to more rapidly fill the pipe

The Incast Workload

Data Block

L Request Unit
(SRU)

—
Synchronized Read
R
_
Client Switch _
Server

Client now sends
next batch of requests

Storage Servers

40 40

Incast Workload Overfills Buffers

—
Synchronized Read
i R —
R —
’ \J.- 2
i <
Client Switch
1 2 3 4 Server
_(._Request Unit
SRU
Requests Responses 1-3 ()
Received completed .
Link Idle!
11] | |
[I [T
Requests Response 4 Response 4
Sent dropped " Resent 4

Queue Buildup

Sender1

* Big flows buildup queues.
» Increased latency for short flows.

Receiver

~ e
=

* Measurements in Bing cluster
» For 90% packets: RTT < 1ms
» For 10% packets: 1ms < RTT < 15ms

Sender 2

Link-Layer Flow Control

Common between switches but this is flow-control to the end host too...

* Anotheridea to reduce incast is to employ
Link-Layer Flow Control.....

Recall: the Data-Link can use specially coded
symbols in the coding to say “Stop” and “Start”

Link Layer Flow Control — The Dark side
Head of Line Blocking....

Such HOL blocking does not even
differentiate processes so this can occur

between competing processes on a pair of
machines — no datacenter required.

Waiting for no good l

reason....

Link Layer Flow Control
But its worse that you imagine....

Double down on trouble....

Did | mention this is Link-
Layer!

That means no (IP) control
traffic, no routing
messages....

r\ a whole system waiting for
" one machine

Reducing the impact of HOL in Link Layer Flow Control can be done through priority
queues and overtaking....

What’s different about DC networks?

Goals
* Extreme bisection bandwidth requirements
* Extreme latency requirements
* Predictable, deterministic performance
— “your packet will reach in Xms, or not at all”
— “your VM will always see at least YGbps throughput”

— Resurrecting "best effort’ vs. "Quality of Service’ debates
— How is still an open question

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements

* Extreme latency requirements

* Predictable, deterministic performance

* Differentiating between tenants is key
—e.g., “No traffic between VMs of tenant A and tenant B”
— “Tenant X cannot consume more than XGbps”
— “Tenant Y’s traffic is low priority”

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
* Extreme latency requirements

* Predictable, deterministic performance

* Differentiating between tenants is key

Scalability (of course)
— Q: How’s that Ethernet spanning tree looking?

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
* Extreme latency requirements

* Predictable, deterministic performance

* Differentiating between tenants is key

Scalability (of course)

Cost/efficiency
— focus on commodity solutions, ease of management
— some debate over the importancein the network case

Summary

* new characteristics and goals

* some liberating, some constraining

* scalability is the baseline requirement
* more emphasis on performance

* less emphasis on heterogeneity

* less emphasis on interoperability

Computer Networking UROP

» Assessed Practicals for Computer Networking.
— so supervisors can set/use work
— so we can have a Computer Networking tick
running over summer 2016
Talk to me.

Part 2 projects for 16-17

* Fancy doing something at scale or speed?

Talk to me.

