
1

1

Compiler Construction
Lent Term 2016

Part III : Lectures 13 – 16

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

•  13 : Compilers in their OS context
•  14 : Assorted Topics
•  15 : Runtime memory management
•  16 : Bootstrapping a compiler

2

Lecture 13

•  Code generation for multiple platforms.
•  Assembly code
•  Linking and loading
•  The Application Binary Interface (ABI)
•  Object file format (only ELF covered)
•  A crash course in x86 architecture and instruction set
•  Naïve generation of x86 code from Jargon VM instructions

2

3

We could implement a Jargon byte code interpreter …

...

...
void vsm_execute_instruction(vsm_state *state, bytecode instruction)
{
 opcode code = instruction.code;
 argument arg1 = instruction.arg1;
 switch (code) {
 case PUSH: { state->stack[state->sp++] = arg1; state->pc++; break; }
 case POP : { state->sp--; state->pc++; break; }
 case GOTO: { state->pc = arg1; break; }
 case STACK_LOOKUP: {

 state->stack[state->sp++] =
 state->stack[state->fp + arg1];

 state->pc++; break; }

 ...
 ...
 }
}
...
...

•  Generate compact byte code for
each Jargon instruction.

•  Compiler writes byte codes to a file.
•  Implement an interpreter in C or C++

for these byte codes.
•  Execution is much faster than our

jargon.ml implementation.
•  Or, we could generate assembly

code from Jargon instructions ….

4

Backend could target multiple platforms

Intermediate
code

 x86/Linux code gen

ARM/Android code gen

…

…

…

Target?

Back end

x86/windows

x86/linux

ARM/android

Assembly code

 x86/Windows code gen

One of the great benefits of Virtual Machines is their
portability. However, for more efficient code we may want to
compile to assembler. Lost portability can be regained
through the extra effort of implementing code generation for
every desired target platform.

3

5

Assembly, Linking, Loading

assembly
code file

assembler

assembly
code file

assembler

assembly
code file

assembler

…

…
…

 linker

 object
code file

 object
code file

 object
code file

single executable object code file

Operating System

RUN!

 loader

Object code
libraries

From symbolic
names and
addresses to
numeric codes
and numeric
addresses

Name
resolution,
creation of
single address
space

Address
relocation,
memory
allocation,
dynamic
linking

(main tasks)

Link errors

6

The gcc manual (810 pages)
 https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf

4

7

Applications Binary Interface (ABI)

•  C calling conventions used for systems calls
or calls to compiled C code.

•  Register usage and stack frame layout
•  How parameters are passed, results

returned
•  Caller/callee responsibilities for placement

and cleanup
•  Byte-level layout and semantics of object files.

•  Executable and Linkable Format (ELF).
Formerly known as Extensible Linking
Format.

•  Linking, loading, and name mangling

We will use x86/Unix as our running example.
Specifies many things, including the following.

Note: the conventions
are required for
portable interaction
with compiled C.
Your compiled
language does not
have to follow the
same conventions!

Object files

Must contain at least

•  Program instructions
•  Symbols being exported
•  Symbols being imported
•  Constants used in the program (such as strings)

Executable and Linkable Format (ELF) is a common
format for both linker input and output.

5

ELF details (1)

ELF details (2)

6

The Linker

What does a linker do?
• takes some object files as input, notes all undefined symbols.
• recursively searches libraries adding ELF files which
 define such symbols until all names defined (“library search”).
• whinges if any symbol is undefined or multiply defined.

Then what?
• concatenates all code segments (forming the output
 code segment).
• concatenates all data segments.
• performs relocations (updates code/data segments
 at specified offsets.

Recently there had been renewed interest in optimization at this stage.

Dynamic vs. Static Loading

There are two approaches to linking:
Static linking (described on previous slide).
 Problem: a simple “hello world” program may give a 10MB
 executable if it refers to a big graphics or other library.
Dynamic linking
 Don’t incorporate big libraries as part of the executable,
 but load them into memory on demand. Such libraries are
 held as “.DLL” (Windows) or ”.so” (Linux) files.

Pros and Cons of dynamic linking:
(+) Executables are smaller
(+) Bug fixes to a library don’t require re-linking as the new version
 is automatically demand-loaded every time the program is run.
(-) Non-compatible changes to a library wreck previously working
 programs “DLL hell”.

7

13

A “runtime system”

A library implementing functionality needed to run compiled
code on a given operating system. Normally tailored to the
language being compiled.

•  Implements interface between OS and language.
•  May implement memory management.
•  May implement “foreign function” interface (say we want

to call compiled C code from Slang code, or vice versa).
•  May include efficient implementations of primitive

operations defined in the compiled language.
•  For some languages, the runtime system may perform

runtime type checking, method lookup, security checks,
and so on.

•  …

14

Runtime system

Virtual Machine

Implementation
Includes runtime

system

Generated
 code Generated

 code
Run-time system

Linker

Executable

Targeting a VM Targeting a platform

In either case, implementers of the compiler and
the runtime system must agree on many low-level details of
memory layout and data representation.

8

15

Typical (Low-Level) Memory Layout (UNIX)

Rough schematic of traditional
layout in (virtual) memory.

high
memory

low
memory

program instructions

Global vars and constants

Stack

Heap

The heap is used for
dynamically allocating
memory. Typically either
for very large objects or
for those objects that are
returned by functions/procedures
and must outlive
the associated activation record.

In languages like Java and ML,
the heap is managed
automatically (“garbage collection”)

Dealing with Virtual Machines
allows us to ignore some of
the low-level details….

16

A Crash Course in x86 assembler
•  A CISC architecture
•  There are 16, 32 and 64 bit versions
•  32 bit version :

•  General purpose registers : EAX EBX ECX EDX
•  Special purpose registers : ESI EDI EBP EIP ESP

•  EBP : normally used as the frame pointer
•  ESP : normally used as the stack pointer
•  EDI : often used to pass (first) argument
•  EIP : the code pointer

•  Segment and flag registers that we will ignore …
•  64 bit version:

•  Rename 32-bit registers with “R” (RAX, RBX, RCX, …)
•  More general registers: R8 R9 R10 R11 R12 R13 R14 R15

Register
names can
indicate “width”
of a value.

rax : 64 bit version
eax : 32 bit version (or lower 32 bits of rax)
 ax : 16 bit version (or lower 16 bits of eax)
 al : lower 8 bits of ax
 ah : upper 8 bits of ax

9

See https://en.wikibooks.org/wiki/X86_Assembly

movl $4, %eax // GAS (aka AT&T) notation
mov eax, 4 // Intel notation

The syntax of x86 assembler comes in several flavours.
Here are two examples of “put integer 4 into register eax”:

I will (mostly) use the GAS syntax, where a suffix is used
to indicate width of arguments:

•  b (byte) = 8 bits
•  w (word) = 16 bits
•  l (long) = 32 bits
•  q (quad) = 64 bits

For example, we have movb, movw movl, and movq.

18

Examples (in GAS notation)

movl $4, %eax # put 32 bit integer 4 in register eax
movw $4, %eax # put 16 bit integer 4 in lower 16 bits of eax
movb $4, %eax # put 4 bit integer 4 in lowest 4 bits of eax
movl %esp, %ebp # put the contents of esp into ebp
movl (%esp), %ebp # interpret contents of esp as a memory
 # address. Copy the value at that address
 # into register ebp
movl %esp, (%ebp) # interpret contents of ebp as a memory
 # address. Copy the value in esp to
 # that address.
movl %esp, 4(%ebp) # interpret contents of ebp as a memory
 # address. Add 4 to that address. Copy
 # the value in esp to this new address.

10

19

A few more examples

call label # push return address on stack and jump to label
ret # pop return address off stack and jump there
 # NOTE: managing other bits of the stack frame
 # such as stack and frame pointer must be done
 # explicitly
subl $4, %esp # subtract 4 from esp. That is, adjust the
 # stack pointer to make room for one 32-bit
 # (4 byte) value. (stack grows downward!)

Assume that we have implemented a procedure in C called
allocate that will manage heap memory. We will compile and
link this in with code generated by the slang compiler. At the x86
level, allocate will expect a header in edi and return a heap
pointer in eax.

Some Jargon VM instructions are “easy” to translate

GOTO loc jmp loc

POP addl $4, %esp // move stack pointer 1 word = 4 bytes

PUSH v subl $4, %esp // make room on top of stack
 movl $i, (%esp) // where i is an integer representing v

FST movl 4(%esp), %edx // 4 bytes, 1 word, after header
 movl %edx, (%esp) // replace “a” with “v1” at top of stack

SND movl 8(%esp), %edx // 8 bytes, 2 words, after header
 movl %edx, (%esp) // replace “a” with “v2” at top of stack

c

 v1
: :
: :

FSTc

 a
: :
: :

a : header
 v1 a+1 :

a+2 : v2

sp sp

Remember: X86 is CISC, so RISC architectures may require more instructions …

11

21

… while others require more work

c
 v1

: :
: :

 v2
 MK_PAIR

c

 a
: :
: :

a : Header 3, PAIR
 v1 a+1 :

a+2 : v2

movl $3, %edi // construct header in edi
shr $16, %edi, // … put size in upper 16 bits (shift right)
movw $PAIR, %di // … put type in lower 16 bits of edi
call allocate // input: header in ebi, output: “a” in eax
movl (%esp), %edx // move “v2” to the heap,
movl %edx, 8(%eax) // … using temporary register edx
addl $4, %esp // adjust stack pointer (pop “v2”)
movl (%esp), %edx // move “v1” to the heap
movl %edx, 4(%eax) // … using temporary register edx
movl %eax, (%esp) // copy value “a” to top of stack

One possible x86 (32 bit) implementation of MK_PAIR:

22

 LOOKUP APPLY RETURN CASE TEST ASSIGN REF

Left as exercises for you :

Here’s a hint. For things you don’t understand, just experiment!
OK, you need to pull an address out of a closure and call it. Hmm,
how does something similar get compiled from C?

 _func:
pushq %rbp # save frame pointer
movq %rsp, %rbp # set frame pointer to stack pointer
subq $16, %rsp # make some room on stack
movl $17, %eax # put 17 in argument register eax
movq %rdi, -8(%rbp) # rdi contains the argument f
movl %eax, %edi # put 17 in register edi, so f will get it
callq *-8(%rbp) # WOW, a computed address for function call!
addq $16, %rsp # restore stack pointer
popq %rbp # restore old frame pointer
ret # restore stack

int func (int (*f)(int)) { return (*f)(17); } /* pass a function pointer and apply it /*

X86,
64 bit

without
–O2

12

What about arithmetic?

Houston, we have a problem….

•  It may not be obvious now, but if we want to have
automated memory management we need to be
able to distinguish between values (say integers)
and pointers at runtime.

•  Have you ever noticed that integers in SML or
Ocaml are either 31 (or 63) bits rather than the
native 32 (or 64) bits?

•  That is because these compilers use a the
least significant bit to distinguish integers (bit =
1) from pointers (bit = 0).

•  OK, this works. But it may complicate every
arithmetic operation!

•  This is another exercise left for you to ponder
…

24

Lecture 14
Assorted Topics

1.  Stacks are slow, registers are fast

1.  Stack frames still needed …
2.  … but try to shift work into registers
3.  Caller/callee save/restore policies
4.  Register spilling

2.  Simple optimisations
1.  Peep hole (sliding window)
2.  Constant propagation
3.  Inlining

3.  Representing objects (as in OOP)
1.  At first glance objects look like a closure containing

multiple function (methods) …
2.  … but complications arise with method dispatch

4.  Implementing exception handling on the stack

13

25

Stack vs regsisters

V1
add

V2
V1 + V2

r7 : …
add r8 r3 r7

r3 : V2

r8 : V1

…
r7 : V1 + V2

r3 : V2

r8 : V1

…

Stack-oriented:
(+) argument locations is
 implicit, so instructions
 are smaller.
(---) Execution is slower

Register-oriented:
(+++) Execution MUCH faster
(-) argument location is
 explicit, so instructions
 are larger

26

Main dilemma : registers are fast, but are fixed in
number. And that number is rather small.

•  Manipulating the stack involves RAM access, which can be
orders of magnitude slower than register access (the “von
Neumann Bottleneck”)

•  Fast registers are (today) a scarce resource, shared by many
code fragments

•  How can registers be used most effectively?
•  Requires a careful examination of a program’s structure
•  Analysis phase: building data structures (typically directed

graphs) that capture definition/use relationships
•  Transformation phase : using this information to rewrite

code, attempting to most efficiently utilise registers
•  Problem is NP-complete
•  One of the central topics of Part II Optimising Compilers.

•  Here we focus only on general issues : calling conventions and
register spilling

14

27

Caller/callee conventions
•  Caller and callee code may use overlapping sets of registers
•  An agreement is needed concerning use of registers

•  Are some arguments passed in specific registers?
•  Is the result returned in a specific register?
•  If the caller and callee are both using a set of registers for

“scratch space” then caller or callee must save and restore
these registers so that the caller’s registers are not
obliterated by the callee.

•  Standard calling conventions identify specific subsets of
registers as “caller saved” or “callee saved”

•  Caller saved: if caller cares about the value in a register,
then must save it before making any call

•  Callee saved: The caller can be assured that the callee
will leave the register intact (perhaps by saving and
restoring it)

28

Another C example.
X86, 64 bit, with gcc

int
callee(int, int,int,
 int,int,int,int);

int caller(void)
{
 int ret;
 ret = callee(1,2,3,4,5,6,7);
 ret += 5;
 return ret;
}

 _caller:
pushq %rbp # save frame pointer
movq %rsp, %rbp # set new frame pointer
subq $16, %rsp # make room on stack
movl $7, (%rsp) # put 7th arg on stack
movl $1, %edi # put 1st arg on in edi
movl $2, %esi # put 2nd arg on in esi
movl $3, %edx # put 3rd arg on in edx
movl $4, %ecx # put 4th arg on in ecx
movl $5, %r8d # put 5th arg on in r8d
movl $6, %r9d # put 6th arg on in r9d
callq _callee #will put resut in eax
addl $5, %eax # add 5
addq $16, %rsp # adjust stack
popq %rbp # restore frame pointer
ret # pop return address, go there

15

29

Regsiter spilling

•  What happens when all registers are in use?
•  Could use the stack for scratch space …
•  … or (1) move some register values to the stack, (2)

use the registers for computation, (3) restore the
registers to their original value

•  This is called register spilling

30

Simple optimisations.
Inline expansion

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = f(x) + g(x)

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = (x+1) + (x-1)

inline f and g

(+) Avoid building activation
 records at runtime
(+) May allow further
 optimisations

(-) May lead to “code bloat”
 (apply only to functions
 with “small” bodies?)

Question: if we inline all
occurrences of a function,
can we delete its definition from
the code?
What if it is needed at link time?

16

 Be careful with variable scope

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(x) = g(x) + 1 !
in !
 h(17) !
end !

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(x) = x + y + 1 !
in !
 h(17) !
end !

Inline g in h

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(z) = x + z + 1 !
in !
 h(17) !
end !

NO

YES

What kind of care might be needed will
depend on the representation level of the
Intermediate code involved.

32

 (b) Constant propagation, constant folding

David Gries :
“Never put off till
run-time what you can do
at compile-time.”

How about this?

Replace

 x * 0

with

 0

OOPS, not if x has type
float!

 NAN*0 = NAN,

But be careful

Note : opportunities
 are often exposed
by inline expansion!

let x = 2
let y = x – 1
let z = y * 17

let x = 2
let y = 2 – 1
let z = y * 17

let x = 2
let y = 1
let z = y * 17

let x = 2
let y = 1
let z = 1 * 17

let x = 2
let y = 1
let z = 17

Propagate
constants and
evaluate simple
expressions at
compile-time

17

33

(c) peephole optimisation

Communications of the ACM,
July 1965

Eliminate!

Results for syntax-directed code generation.

34

peephole optimisation

… code sequence …

Sweep a window over the code
sequence looking for instances of simple code
patterns that can be rewritten to better code …
(might be combined with constant folding, etc,
and employ multiple passes)

Examples
-- eliminate useless combinations (push 0; pop)
-- introduce machine-specific instructions
-- improve control flow. For example: rewrite
 “GOTO L1 … L1: GOTO L2”
 to
 “GOTO L2 … L1 : GOTO L2”)

18

gcc example.
-O<m> turns on optimisation to level m

int h(int n) { return (0 < n) ? n : 101 ; }

int g(int n) { return 12 * h(n + 17); }

g.c

gcc –O2 –S –c g.c
_g:

.cfi_startproc
pushq %rbp
movq %rsp, %rbp
addl $17, %edi
imull $12, %edi, %ecx
testl %edi, %edi
movl $1212, %eax
cmovgl%ecx, %eax
popq %rbp
ret
.cfi_endproc

g.s (fragment)

Wait. What happened to
the call to h???

 GNU AS (GAS) Syntax
 x86, 64 bit

gcc example (-O<m> turns on optimisation)

int h(int n) { return (0 < n) ? n : 101 ; }

int g(int n) { return 12 * h(n + 17); }

g.c

The compiler must have done something similar to this:

int g(int n) { return 12 * h(n + 17); }
è
 int g(int n) { int t := n+ 17; return 12 * h(t); }
è
int g(int n) { int t := n+ 17; return 12 *((0 < t) ? t : 101); }
è
int g(int n) { int t := n+ 17; return (0 < t) ? 12 * t : 1212 ; }
è …

19

37

New Topic:
OOP Objects (single inheritance)

let start := 10

 class Vehicle extends Object {
 var position := start
 method move(int x) = {position := position + x}
 }
 class Car extends Vehicle {
 var passengers := 0
 method await(v : Vehicle) =
 if (v.position < position)
 then v.move(position – v.position)
 else self.move(10)
 }
 class Truck extends Vehicle {
 method move(int x) =
 if x <= 55 then position := position +x
 }
 var t := new Truck
 var c := new Car
 var v : Vehicle := c
in
 c.passengers := 2;
 c.move(60);
 v.move(70);
 c.await(t)
end

method override

subtyping allows a
Truck or Car to be viewed and
used as a Vehicle

38

Object Implementation?

–  how do we access object fields?

•  both inherited fields and fields for the current
object?

–  how do we access method code?
•  if the current class does not define a particular

method, where do we go to get the inherited
method code?

•  how do we handle method override?
–  How do we implement subtyping (“object

polymorphism”)?
•  If B is derived from A, then need to be able to

treat a pointer to a B-object as if it were an A-
object.

20

39

Another OO Feature

•  Protection mechanisms
–  to encapsulate local state within an object,

Java has “private” “protected” and “public”
qualifiers

•  private methods/fields can’t be called/used outside
of the class in which they are defined

– This is really a scope/visibility issue! Front-
end during semantic analysis (type checking
and so on), the compiler maintains this
information in the symbol table for each class
and enforces visibility rules.

40

Object representation

class A {
public:
 int a1, a2;

 void m1(int i) {
 a1 = i;
 }
 void m2(int i) {
 a2 = a1 + i;
 }
}

C++

object data
a1

a2

m1_A

m2_A
method table

An A object

NB: a compiler typically generates methods with an extra argument
representing the object (self) and used to access object data.

21

41

Inheritance (“pointer polymorphism”)

object data

m1_A

m2_A

method table
(code entry

points =
memory locations)

a1

a2

b1

m3_B

class B : public A {
public:
 int b1;

 void m3(void) {
 b1 = a1 + a2;
 }
}

a B object

Note that a pointer to a B object can
be treated as if it were a pointer to an A object!

42

Method overriding

object data

m1_A_A

m2_A_C

method table

a1

a2

c1

m3_C_C

class C : public A {
public:
 int c1;

 void m3(void) {
 b1 = a1 + a2;
 }
 void m2(int i) {
 a2 = c1 + i;
 }
}

declared defined

a C object

22

43

Static vs. Dynamic

•  which method to invoke on overloaded
polymorphic types?

class C *c = ...;
class A *a = c;

a->m2(3);

???

m2_A_A(a, 3); static

m2_A_C(a, 3); dynamic

44

Dynamic dispatch

•  implementation: dispatch tables

ptr to C
Is also a ptr to A

a1

a2

b1

m1_A_A

m2_A_C

m3_C_C

*(a->dispatch_table[1])(a, 3);

class C *c = ...;
class A *a = c;

a->m2(3);

23

45

This implicitly uses some form of pointer
subtyping

void m2_A_C(class_A *this_A, int i) {
 class_C *this = convert_ptrA_to_ptrC(this_A);

 this->a2 = this->c1 + i;
}

void m2(int i) {
 a2 = c1 + i;
}

Topic 1 : Exceptions (informal description)

e handle f ! raise e !

If expression e evaluates
“normally” to value v,
then v is the result of the
entire expression.

Otherwise, an exceptional
value v’ is “raised” in the
evaluation of e, then
result is (f v’)

Evaluate expression e to
value v, and then raise v
as an exceptional value,
which can only be
“handled”.

Implementation of exceptions
may require a lot of language-specific
consideration and care. Exceptions
can interact in powerful and unexpected
ways with other language features.
Think of C++ and class destructors,
for example.

24

Viewed from the call stack

Call stack just
before evaluating
code for

e handle f !

handle
frame

Push a special
frame for the
handle

. . .

. . .

handle
frame

current
frame

. . .

. . .

“raise v” is
encountered
while evaluating
a function body
associated with
top-most frame

frame
for f
 v

“Unwind” call stack.
Depending on language,
this may involve some
“clean up” to free resources.

Possible pseudo-code implementation

e handle f !
let fun _h27 () = !
 build special “handle frame” !
 save address of f in frame; !
 … code for e … !
 return value of e !
in _h27 () end !

raise e ! … code for e … !
save v, the value of e; !
unwind stack until first !
fp found pointing at a handle frame; !
Replace handle frame with frame !
for call to (extracted) f using !
v as argument. !
!

25

49

Lecture 15
Automating run-time memory

management

•  Managing the heap
•  Garbage collection

–  Reference counting
–  Mark and sweep
–  Copy collection
–  Generational collection

 Read Chapter 12 of
Basics of Compiler Design
 (T. Mogensen)

50

Explicit (manual) memory management

•  User library manages memory; programmer
decides when and where to allocate and de-
allocate
–  void* malloc(long n)
–  void free(void *addr)
–  Library calls OS for more pages when necessary
–  Advantage: Gives programmer a lot of control.
–  Disadvantage: people too clever and make mistakes.

Getting it right can be costly. And don’t we want to
automate-away tedium?

–  Advantage: With these procedures we can implement
memory management for “higher level” languages ;-)

26

51

Memory Management

•  Many programming languages allow programmers to
(implicitly) allocate new storage dynamically, with no
need to worry about reclaiming space no longer used.
–  New records, arrays, tuples, objects, closures, etc.
–  Java, SML, OCaml, Python, JavaScript, Python,

Ruby, Go, Swift, SmallTalk, …
•  Memory could easily be exhausted without some method

of reclaiming and recycling the storage that will no longer
be used.
–  Often called “garbage collection”
–  Is really “automated memory management” since it

deals with allocation, de-allocation, compaction, and
memory-related interactions with the OS.

52

Automation is based on an approximation : if data can be
reached from a root set, then it is not “garbage”

r1

stack
and

registers

r2

ROOT SET
-------------------- HEAP --

Type information required (pointer or not),
some kind of “tagging” needed.

27

53

… Identify Cells Reachable From Root Set…

r1

stack

r2
registers

54

… reclaim unreachable cells

r1

stack

r2
registers

28

55

But How? Two basic techniques,
and many variations

•  Reference counting : Keep a reference count
with each object that represents the number of
pointers to it. Is garbage when count is 0.

•  Tracing : find all objects reachable from root set.
Basically transitive close of pointer graph.

For a very interesting (non-examinable) treatment of this subject see

 A Unified Theory of Garbage Collection.
 David F. Bacon, Perry Cheng, V.T. Rajan.
 OOPSLA 2004.

In that paper reference counting and tracing are presented as “dual”
approaches, and other techniques are hybrids of the two.

56

Reference Counting, basic idea:

•  Keep track of the number of pointers to each object (the
reference count).

•  When Object is created, set count to 1.
•  Every time a new pointer to the object is created,

increment the count.
•  Every time an existing pointer to an object is destroyed,

decrement the count
•  When the reference count goes to 0, the object is

unreachable garbage

29

57

Reference counting can’t detect cycles!

r1

stack
r2

•  Cons
•  Space/time overhead to maintain count.
•  Memory leakage when have cycles in data.

•  Pros
•  Incremental (no long pauses to collect…)

58

Mark and Sweep

•  A two-phase algorithm
– Mark phase: Depth first traversal of object

graph from the roots to mark live data
– Sweep phase: iterate over entire heap,

adding the unmarked data back onto the free
list

30

59

Copying Collection

•  Basic idea: use 2 heaps
–  One used by program
–  The other unused until GC time

•  GC:
–  Start at the roots & traverse the reachable data
–  Copy reachable data from the active heap (from-

space) to the other heap (to-space)
–  Dead objects are left behind in from space
–  Heaps switch roles

60

Copying Collection

to-space from-space

roots

31

61

Copying GC

•  Pros
–  Simple & collects cycles
–  Run-time proportional to # live objects
–  Automatic compaction eliminates fragmentation

•  Cons
–  Twice as much memory used as program requires

•  Usually, we anticipate live data will only be a small fragment
of store

•  Allocate until 70% full
•  From-space = 70% heap; to-space = 30%

–  Long GC pauses = bad for interactive, real-time apps

62

OBSERVATION: for a copying garbage
collector

•  80% to 98% new objects die very quickly.
•  An object that has survived several collections has a bigger

chance to become a long-lived one.
•  It’s a inefficient that long-lived objects be copied over and over.

Diagram from Andrew Appel’s Modern Compiler Implementation

32

63

IDEA: Generational garbage collection

Segregate objects into multiple areas by age, and collect areas
containing older objects less often than the younger ones.

Diagram from Andrew Appel’s Modern Compiler Implementation

64

Other issues…

–  When do we promote objects from young generation to old

generation
•  Usually after an object survives a collection, it will be

promoted
–  Need to keep track of older objects pointing to newer ones!
–  How big should the generations be?

•  When do we collect the old generation?
•  After several minor collections, we do a major collection

–  Sometimes different GC algorithms are used for the new and
older generations.

•  Why? Because the have different characteristics
•  Copying collection for the new

–  Less than 10% of the new data is usually live
– Copying collection cost is proportional to the live data

•  Mark-sweep for the old

33

65

 LECTURE 16
Bootstrapping a compiler

•  Compilers compiling themselves!
•  Read Chapter 13 Of

•  Basics of Compiler Design
•  by Torben Mogensen

http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/

http://mythologian.net/ouroboros-symbol-of-infinity/

Bootstrapping. We need some notation . . .

 app

 A

 A

mch

 A
 inter
 B

An application
called app written
in language A

An interpreter or
VM for language A
Written in language B

A machine called
mch running
language
A natively.

hello

 x86
 x86

 M1

 JBC
 jvm
 x86

hello

 JBC

 x86

 M1

Simple Examples

34

Tombstones

 C

 trans
A B

This is an application called trans
that translates programs in language
A into programs in language B, and it is
written in language C.

Ahead-of-time compilation

 JBC
 jvm
 x86

Java JBC

JBC

 javac
Hello

Java

 x86

 M1

Hello

 JBC JBC x86

JBC

 aot

 JBC
 jvm
 x86
 x86

 M1

Hello

x86
 x86

 M1

 jvm

 C++ C++ x86

 x86

 gcc

 x86

 M1

Thanks to David Greaves
for the example.

35

Of course translators can be translated

 C

 trans
A B B

 foo_2
D E

 A

 foo_1
D E

Translator foo_2 is produced
as output from trans when
given foo_1 as input.

Our seemingly impossible task

 L

 comp.L
L B

We have just invented a really great
new language L (in fact we claim that
“L is far superior to C++”). To prove how
great L is we write a compiler
for L in L (of course!). This
compiler produces machine code B
for a widely used instruction set
(say B = x86).

There are many many ways we could go about this task.
The following slides simply sketch out one plausible route
to fame and fortune.

 B

 comp.B
L B

Furthermore, we want to compile our
compiler so that it can run
on a machine running B.
Our compiler is written in L!
How can we compiler our compiler?

?

36

Step 1
Write a small interpreter (VM) for
a small language of byte codes

 MBC
 zoom
 B
 B

 M1

C++ B

 B

 gcc

 B

 M1

 MBC
 zoom
 C++

MBC = My Byte Codes

The zoom machine!

Step 2
Pick a small subset S of L and

write a translator from S to MBC

 B

 gcc
C++ B C++

comp_1.cpp
S MBC

Write comp_1.cpp by hand. (It sure would be nice if we
could hide the fact that this is written is C++.)

Compiler comp_1.B is produced
as output from gcc when comp_1.cpp is given as input.

 B

 comp_1.B
S MBC

37

Step 3
Write a compiler for L in S

 S

comp_2.S
L B

Write a compiler comp_2.S for the full language L, but written only
in the sub-language S.

Compile comp_2.S using comp_1.B to produce comp_2.mbc

 B

comp_1.B
S MBC MBC

 comp_2.mbc
L B

Step 4
Write a compiler for L in L, and then compile it!

 L

comp.L
L B

Rewrite/extend compiler
comp_2.S to produce
comp.L using the full
power of language L.

 MBC

comp_2.mbc
L B B

comp.B
L B

 MBC
 zoom
 B
 B

 M1

We have achieved
 our goal!

38

 C++

S MBC comp_1.cpp

 B

C++ B gcc

 S

L B comp_2.S

 B

S MBC comp_2.mbc MBC

L B yippee B

L B yippeeee

 L

L B comp.L

Putting it all together

We wrote these compilers
and the MBC VM.

 MBC
 zoom
 B

 B

 M1

 B

 M1

 B

 M1

1

2

3

4

5

6

Step 5 : Cover our tracks and leave the world
mystified and amazed!

 L

 comp.L
L B

 MBC

 comp_2.mbc
L B

1. Use gcc to compile the zoom interpreter
2. Use zoom to run voodoo with input comp.L to output the

compiler comp.B. MAGIC!

 MBC
 zoom
 C++

Our L compiler download site contains only three components:

Our instructions:

Shhhh! Don’t tell
anyone that
we wrote the first
compiler in C++

comp_2.mbc is a just file of bytes.
We give it the mysterious and
intimidating name : voodoo

39

Another example (Mogensen, Page 285)

 Solving a different problem.
You have:
 (1) An ML compiler on ARM. Who knows where it came from.
 (2) An ML compiler written in ML, generating x86 code.
You want:
 An ML compiler generating x86 and running on an x86 platform.

