
Programming in C and C++
1. Types — Variables — Expressions & Statements

Dr. Anil Madhavapeddy

University of Cambridge
(based on previous years –

thanks to Alan Mycroft, Alastair Beresford and Andrew Moore)

Michaelmas Term 2015–2016

1 / 23

Structure of this course

Programming in C:

I types, variables, expressions & statements

I functions, compilation, pre-processor

I pointers, structures

I extended examples, tick hints ‘n’ tips

Programming in C++:

I references, overloading, namespaces,C/C++ interaction

I operator overloading, streams, inheritance

I exceptions and templates

I standard template library

Java native interface (JNI)

2 / 23

Text books

There are literally hundreds of books written about C and C++; five you
might find useful include:

I Eckel, B. (2000). Thinking in C++, Volume 1: Introduction to
Standard C++ (2nd edition). Prentice-Hall.
(http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html)

I Kernighan, B.W. & Ritchie, D.M. (1988). The C programming
language (2nd edition). Prentice-Hall.

I Stroustrup, B. (2000). The C++ Programming Language Special
Edition (3rd edition). Addison Wesley Longman

I Stroustrup, B. (1994). The design and evolution of C++.
Addison-Wesley.

I Lippman, S.B. (1996). Inside the C++ object model.
Addison-Wesley.

3 / 23

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

Past Exam Questions
I 1993 Paper 5 Question 5 1993 Paper 6 Question 5
I 1994 Paper 5 Question 5 1994 Paper 6 Question 5
I 1995 Paper 5 Question 5 1995 Paper 6 Question 5
I 1996 Paper 5 Question 5 (except part (f) setjmp)
I 1996 Paper 6 Question 5
I 1997 Paper 5 Question 5 1997 Paper 6 Question 5
I 1998 Paper 6 Question 6 *
I 1999 Paper 5 Question 5 * (first two sections only)
I 2000 Paper 5 Question 5 *
I 2006 Paper 3 Question 4 *
I 2007 Paper 3 Question 4 2007 Paper 11 Question 3
I 2008 Paper 3 Question 3 2008 Paper 10 Question 4
I 2009 Paper 3 Question 1
I 2010 Paper 3 Question 6
I 2011 Paper 3 Question 3

* denotes CPL questions relevant to this course.
4 / 23

Context: from BCPL to Java

I 1966 Martin Richards developed BCPL

I 1969 Ken Thompson designed B

I 1972 Dennis Ritchie’s C

I 1979 Bjarne Stroustrup created C with Classes

I 1983 C with Classes becomes C++

I 1989 Original C90 ANSI C standard (ISO adoption 1990)

I 1990 James Gosling started Java (initially called Oak)

I 1998 ISO C++ standard

I 1999 C99 standard (ISO adoption 1999, ANSI, 2000)

I 2011 C++11 ISO standard (a.k.a. C++0x)

5 / 23

C is a “low-level” language

I C uses low-level features: characters, numbers & addresses

I Operators work on these fundamental types

I No C operators work on “composite types”
e.g. strings, arrays, sets

I Only static definition and stack-based local variables
heap-based storage is implemented as a library

I There are no read and write primitives
instead, these are implemented by library routines

I There is only a single control-flow
no threads, synchronisation or coroutines

I C seen as “a high-level assembly language” (take care!)

6 / 23

Classic first example

1 #include <stdio.h>

2

3 int main(void)

4 {

5 printf("Hello, world\n");

6 return 0;

7 }

Compile with:
$ cc example1.c

Execute program with:
$./a.out

Hello, world

$

Produce assembly code:
$ cc -S example1.c

7 / 23

Basic types

I C has a small and limited set of basic types:
type description (size)

char characters (≥ 8 bits)
int integer values (≥ 16 bits, commonly one word)
float single-precision floating point number
double double-precision floating point number

I Precise size of types is architecture dependent

I Various type operators for altering type meaning, including:
unsigned, long, short, const, volatile

I This means we can have types such as long int and unsigned char

I C99 added fixed width types int16_t, uint64_t etc. as typedefs

8 / 23

Constants

I Numeric constants can be written in a number of ways:
type style example

char none none
int number, character or es-

cape seq.
12 ’A’ ’\n’ ’\007’

long int number w/suffix l or L 1234L

float number with ‘.’, ‘e’ or ‘E’
and suffix f or F

1.234e3F or 1234.0f

double number with ‘.’, ‘e’ or ‘E’ 1.234e3 1234.0

long double number ‘.’, ‘e’ or ‘E’ and
suffix l or L

1.234E3l or 1234.0L

I Numbers can be expressed in octal by prefixing with a ‘0’ and
hexadecimal with ‘0x’; for example: 52=064=0x34

9 / 23

Defining constant values

I An enumeration can be used to specify a set of constants; e.g.:
enum boolean {FALSE, TRUE};

I By default enumerations allocate successive integer values from zero

I It is possible to assign values to constants; for example:
enum months {JAN=1,FEB,MAR}

enum boolean {F,T,FALSE=0,TRUE,N=0,Y}

I Names for constants in different enums must be distinct; values in the
same enum need not

I The preprocessor can also be used (more on this later)

10 / 23

Variables

I Variables must be declared before use

I Variables must be defined (i.e. storage set aside) exactly once. (A
definition counts as a declaration).

I A variable name can be composed of letters, digits and underscore
(_); a name must begin with a letter or underscore

I Variables are defined by prefixing a name with a type, and can
optionally be initialised; for example: long int i = 28L;

I Multiple variables of the same basic type can be declared or defined
together; for example: char c,d,e;

11 / 23

Operators

I All operators (including assignment) return a result

I Most operators are similar to those found in Java:

type operators

arithmetic + - * / ++ -- %

logic == != > >= < <= || && !

bitwise | & << >> ^ ~

assignment = += -= *= /= %= <<= >>= &= |= ^=

other sizeof

12 / 23

Type conversion

I Automatic type conversion may occur when two operands to a binary
operator are of a different type

I Generally, conversion “widens” a variable (e.g. short → int)

I However “narrowing” is possible and may not generate a compiler
warning; for example:

1 int i = 1234;

2 char c;

3 c = i+1; /* i overflows c */

I Type conversion can be forced by using a cast, which is written as:
(type) exp; for example: c = (char) 1234L;

13 / 23

Expressions and statements

I An expression is created when one or more operators are combined;
for example x *= y % z

I Every expression (even assignment) has a type and a result

I Operator precedence provides an unambiguous interpretation for every
expression

I An expression (e.g. x=0) becomes a statement when followed by a
semicolon (i.e. x=0;)

I Several expressions can be separated using a comma ‘,’; expressions
are then evaluated left to right; for example: x=0,y=1.0

I The type and value of a comma-separated expression is the type and
value of the result of the right-most expression

14 / 23

Blocks or compound statements

I A block or compound statement is formed when multiple statements
are surrounded with braces ({ })

I A block of statements is then equivalent to a single statement

I In ANSI/ISO C90, variables can only be declared or defined at the
start of a block (this restriction was lifted in ANSI/ISO C99)

I Blocks are typically associated with a function definition or a control
flow statement, but can be used anywhere

15 / 23

Variable scope

I Variables can be defined outside any function, in which case they:
I are often called global or static variables
I have global scope and can be used anywhere in the program
I consume storage for the entire run-time of the program
I are initialised to zero by default

I Variables defined within a block (e.g. function):
I are often called local or auto variables (register encourages the

compiler to use a register rather than stack)
I can only be accessed from definition until the end of the block
I are only allocated storage for the duration of block execution
I are only initialised if given a value; otherwise their value is undefined

16 / 23

Variable definition versus declaration

I A variable can be declared but not defined using the extern keyword;
for example extern int a;

I The declaration tells the compiler that storage has been allocated
elsewhere (usually in another source file)

I If a variable is declared and used in a program, but not defined, this
will result in a link error (more on this later – and in the Compiler
Construction course)

17 / 23

Scope and type example

1 #include <stdio.h>

2

3 int a; /*what value does a have? */

4 unsigned char b = ’A’;

5 extern int alpha; /* safe to use this? */

6

7 int main(void) {

8 extern unsigned char b; /* is this needed? */

9 double a = 3.4;

10 {

11 extern a; /*why is this sloppy? */

12 printf("%d %d\n",b,a+1); /*what will this print? */

13 }

14

15 return 0;

16 }

18 / 23

Arrays and strings

I One or more items of the same type can be grouped into an array; for
example: long int i[10];

I The compiler will allocate a contiguous block of memory for the
relevant number of values

I Array items are indexed from zero, and there is no bounds checking

I Strings in C are typically represented as an array of chars, terminated
with a special character ’\0’

I There is language support for this representation of string constants
using the ‘"’ character; for example:
char str[]="two strs mer" "ged and terminated"

(note the implicit compile-time concatenation)

I String support is available in the string.h library

19 / 23

Control flow

I Control flow is similar to Java:

I exp ? exp : exp
I if (exp) stmt1 else stmt2
I switch(exp) {

case exp1:
stmt1

. . .
default:

stmtn+1

}
I while (exp) stmt
I for (exp1; exp2; exp3) stmt
I do stmt while (exp);

I The jump statements break and continue also exist

20 / 23

Control flow and string example

1 #include <stdio.h>

2 #include <string.h>

3

4 char s[]="University of Cambridge Computer Laboratory";

5

6 int main(void) {

7

8 char c;

9 int i, j;

10 for (i=0,j=strlen(s)-1;i<j;i++,j--) /* strlen(s)-1 ? */

11 c=s[i], s[i]=s[j], s[j]=c;

12

13 printf("%s\n",s);

14 return 0;

15 }

21 / 23

Goto (considered harmful)

I The goto statement is never required

I It often results in code which is hard to understand and maintain

I Exception handling (where you wish to exit or break from two or
more loops) may be one case where a goto is justified:

1 for (...) {

2 for (...) {

3 ...

4 if (critical_problem)

5 goto error;

6 }

7 }

8 ...

9 error:

fix problem, or abort

22 / 23

Exercises

1. What is the difference between ’a’ and "a"?

2. Will char i,j; for(i=0; i<10,j!=5; i++,j++) ; terminate? If so,
under what circumstances?

3. Write an implementation of bubble sort for a fixed array of integers.
(An array of integers can be defined as int i[] = {1,2,3,4}; the
2nd integer in an array can be printed using printf("%d\n",i[1]);.)

4. Modify your answer to (3) to sort characters into lexicographical
order. (The 2nd character in a character array i can be printed using
printf("%c\n",i[1]);.)

23 / 23

