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Sean B. Holden, 2013-16

1 Introduction

1. Evaluate the integral
∫

∞

−∞

exp(−x2) dx.

2. Evaluate the integral

∫

∞

−∞

· · ·

∫

∞

−∞

exp

(

−
1

2

(

xTΣx+ xT
α+ β

)

)

dx1 · · · dxn

where Σ ∈ R
n×n is a real, symmetric n× n matrix, α ∈ R

n is a real vector, β ∈ R and

xT =
[

x1 x2 · · · xn
]

∈ R
n.

2 Planning

1. An undergraduate, eager to meet some new friends, has turned up at the term’s Big Party, only to

find that it is in the home of her arch-rival, who has turned her away. She notices in the driveway

a large box and a ladder, and hatches a plan to gatecrash by getting in through a second-floor

window. Party on!

Here is the planning problem. She needs to move the box to the house, the ladder onto the box,

then climb onto the box herself and at that point she can climb the ladder to the window.

Using the abbreviations

• B - Box

• L - Ladder

• H - House

• C - Ms Compsci

• W - Window

the start state is ¬At(B,H), ¬At(L,B), ¬At(C,W ) and ¬At(C,B). The goal is At(C,W ).
The available actions are:
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Move(L,B)

At(L,B)

¬At(L,B)

Move(B,H)

At(B,H)

¬At(B,H),¬At(L,B)

Move(C,W )

At(C,W )

At(B,H),At(L,B),At(C,B)

Move(C,B)

At(C,B)

¬At(C,B)

Move(L,D)

¬At(L,B)

At(L,B)

Construct the planning graph for this problem (you should probably start by finding a nice big

piece of paper) and use the Graphplan algorithm to obtain a plan.

If you are feeling keen, implement the algorithm for constructing the planning graph and use it

to check your answer.

2. Beginning with the domains

D1 = {climber}

D2 = {home, jokeShop, hardwareStore, spire}

D3 = {rope, gorilla, firstAidKit}

and adding whatever actions, relations and so on you feel are appropriate, explain how the

problem of purchasing and attaching a gorilla to a famous spire can encoded as a constraint

satisfaction problem (CSP).

If you are feeling keen, find a CSP solver and use it to find a plan. The course text book has a

code archive including various CSP solvers at:

http://aima.cs.berkeley.edu/code.html

The following is an example of how to set up and solve a very simple CSP.

import java.io.*;

import java.util.*;

import aima.core.search.csp.*;

public class simpleCSP {

public static void main(String[] args) {

Variable v1 = new Variable("v1");

Variable v2 = new Variable("v2");

Variable v3 = new Variable("v3");

List<String> domain1 = new LinkedList<String>();

domain1.add("red");

domain1.add("green");
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domain1.add("blue");

Domain d1 = new Domain(domain1);

List<Variable> vars = new ArrayList<Variable>();

vars.add(v1);

vars.add(v2);

vars.add(v3);

CSP csp = new CSP(vars);

csp.setDomain(v1,d1);

csp.setDomain(v2, d1);

csp.setDomain(v3, d1);

Constraint c1 = new NotEqualConstraint(v1,v2);

Constraint c2 = new NotEqualConstraint(v1,v3);

Constraint c3 = new NotEqualConstraint(v2,v3);

csp.addConstraint(c1);

csp.addConstraint(c2);

csp.addConstraint(c3);

ImprovedBacktrackingStrategy solver =

new ImprovedBacktrackingStrategy();

Assignment solution = new Assignment();

solution = solver.solve(csp);

System.out.println(solution);

}

}

3. Exam question: 2008, paper 7, question 6.

4. Exam question: 2009, paper 7, question 4.

5. Exam question: 2011, paper 7, question 2.

6. Exam question: 2012, paper 8, question 2.

3 Uncertainty

1. Prove that conditional independence, defined in the lectures notes as

Pr(A,B|C) = Pr(A|C) Pr(B|C)

can equivalently be defined as

Pr(A|B,C) = Pr(A|C).

2. Derive, from first principles, the general form of Bayes rule

Pr(A|B,C) =
Pr(B|A,C) Pr(A|C)

Pr(B|C)
.
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3. This question revisits the Wumpus World, but now our hero, having learned some probability by

attending Artificial Intelligence II, will use probabilistic reasoning instead of situation calculus.

Our hero, through careful consideration of the available knowledge on Wumpus caves, has

established that each square contains a pit with prior probability 0.3, and pits are independent

of one-another. Let Piti,j be a Boolean random variable (RV) denoting the presence of a pit at

row i, column j. So for all i, j

Pr(Piti,j = ⊤) = 0.3 (1)

Pr(Piti,j = ⊥) = 0.7 (2)

In addition, after some careful exploration of the current cave, our hero has discovered the

following.

1

2

3

4

1 2 3 4

B

OKOK OK

OK

B
?

Pit1,1 = ⊥

Pit1,2 = ⊥

Pit1,3 = ⊥

Pit2,3 = ⊥

B denotes squares where a breeze is perceived. Let Breezei,j be a Boolean RV denoting the

presence of a breeze at i, j

Breeze1,2 = Breeze2,3 = ⊤ (3)

Breeze1,1 = Breeze1,3 = ⊥ (4)

He is considering whether to explore the square at 2, 4. He will do so if the probability that it

contains a pit is less than 0.4. Should he?

Hint: The RVs involved are Breeze1,2,Breeze2,3,Breeze1,1,Breeze1,3 and Piti,j for

all the i, j. You need to calculate

Pr(Pit2,4|all the evidence you have so far)

4. Continuing with the running example of the roof-climber alarm...

The porter in lodge 1 has left and been replaced by a somewhat more relaxed sort of chap, who

doesn’t really care about roof-climbers and therefore acts according to the probabilities

Pr(l1|a) = 0.3 Pr(¬l1|a) = 0.7
Pr(l1|¬a) = 0.001 Pr(¬l1|¬a) = 0.999

Your intrepid roof-climbing buddy is on the roof. What is the probability that lodge 1 will report

him? Use the variable elimination algorithm to obtain the relevant probability. Do you learn

anything interesting about the variable L2 in the process?

4



5. In the lecture notes, an example was given for which we would expect Pr(A → B) to be

(relatively) much larger than Pr(B|A). Suggest a situation where the converse would be true.

6. Later in the course it is shown that in constructing a two-class classifier (such as a multilayer

perceptron) the optimal approach involves computing Pr(class|features). Suggest an ap-

proach to performing this calculation in practice. (Hint: apply Bayes’ theorem and estimate

some probabilities.) What problems might this present in practice, and what assumption(s)

might you introduce to overcome them?

7. In designing a Bayesian network you wish to include a node representing the value reported

by a sensor. The quantity being sensed is real-valued, and if the sensor is working correctly it

provides a value close to the correct value, but with some noise present. The correct value is

provided by its first parent. A second parent is a boolean random variable that indicates whether

the sensor is faulty. When faulty, the sensor flips between providing the correct value, although

with increased noise, and a known, fixed incorrect value, again with some added noise. Suggest

a conditional distribution that could be used for this node.

8. Exam question: 2005, paper 8, question 2.

9. Exam question: 2006, paper 8, question 9.

10. Exam question: 2009, paper 8, question 1.

4 Making decisions

1. Prove the result mentioned on slide 161:

VPIE(E
′, E′′) = VPIE(E

′) + VPIE,E′(E′′).

2. Evil Robot is teaching himself surgery. He believes that there are two treatments, t1 and t2 suit-

able for his first patient, each having three possible outcomes: cure, death and amputation.

These have utilities of 100, −1000 and −250 respectively. Evil robot thinks that t1 has prob-

abilities 0.8, 0.1 and 0.1 respectively for the three outcomes and treatment t2 has probabilities

0.75, 0.05 and 0.2. Compute the expected utility of each treatment.

Evil Robot has been studying hard, and has learned that an unpleasant test T is available that

might help him choose the better treatment. The test has a cost to the patient of −50, while the

cost of not performing it is −2. (Evil robot will nonetheless conduct some slightly unpleasant

tests.) He estimates that the probability of the test being positive is 0.7. He also thinks that,

armed with a positive test he can give t1 outcome probabilities of 0.9, 0.01 and 0.09 respectively,

and t2 outcome probabilities of 0.85, 0.02 and 0.13. If test T is negative then the outcome

probabilities are unchanged. (He does the other tests just for fun.)

In the interest of the patient, should Evil Robot use test T ?

3. Exam question: 2007, paper 8, question 9.

4. Exam question: 2011, paper 8, question 8.

5. Exam question: 2013, paper 8, question 2.
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5 HMMs

1. Derive the equation

bt+1:T = SEt+1bt+2:T

for the backward message in a hidden Markov model (lecture slide 208).

2. Explain why the backward message update should be initialized with the vector (1, . . . , 1).

3. Establish how the prior Pr(S0) should be included in the derivation of the Viterbi algorithm.

(This is mentioned on slide 192, but no detail is given.)

4. A hidden Markov model has transition matrix Sij = Pr(St+1 = sj|St = si) where

S =





0.2 0.4 0.4
0.1 0.6 0.3
0.8 0.1 0.1



 .

In any state we observe one of the symbols △, ▽, ©, � with the following probabilities:

△ ▽ © �

s1 0.7 0.1 0.1 0.1
s2 0.3 0.2 0.4 0.1
s3 0.4 0.2 0.2 0.2

.

Prior probabilites for the states are Pr(s1) = 0.3, Pr(s2) = 0.3 and Pr(s3) = 0.4. We observe

the sequence of symbols

©©�△△�▽�.

Use the Viterbi algorithm to infer the most probable sequence of states generating this sequence.

5. Exam question: 2005, paper 9, question 8.

6. Exam question: 2008, paper 9, question 5.

7. Exam question: 2010, paper 7, question 4.

8. Exam question: 2013, paper 7, question 2.

6 Bayesian learning

1. Derive the weight decay training algorithm

wMAP = argmin
w

α

2
||w||2 +

β

2

m
∑

i=1

(yi − f(w;xi))
2

given on slide 268.

2. Use the standard Gaussian integral to derive the final equation for Bayesian regression

p(Y |y,x) =
1

√

2πσ2
y

exp

(

−
(y − f(wMAP;x))

2

2σ2
y

)
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where

σ2
y =

1

β
+ gTA−1g

given on slide 284.

3. This question asks you to produce a version of the graph on slide 286, but using the Metropolis

algorithm instead of the solution obtained by approximating the integral. Any programming

language is fine, although Matlab is probably the most straightforward.

The data is simple artificial data for a one-input regression problem. Use the target function

f(x) =
1

2
+ 0.4 sin 2πx

and generate 30 examples clustered around x = 0.25 and x = 0.75. Then label these examples

y(x) = f(x) + n

where n is Gaussian noise of standard deviation 0.05. Plot the data as follows:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2
Training examples

Let w ∈ R
W be the vector of all the weights in a network. Your supervised learner should be

based on a prior density

p(w) =

(

2π

α

)

−W/2

exp
(

−
α

2
||w||2

)

on the weights. A value of α = 1 is reasonable. The likelihood used should be

p(y|w) =

(

2π

β

)

−m/2

exp

(

−
β

2

m
∑

i=1

(y(xi)− h(w;xi))
2

)

where m is the number of examples and h(w;x) is the function computed by the neural network

with weights w. A value of β = 1/(0.05)2 is appropriate. Note that we are assuming that

hyperparameters α and β are known, and the prior and likelihood used are the same as those

used in the lectures.

Complete the following steps:
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(a) Write a function simpleNetwork function implementing a multilayer perceptron with

a single hidden layer, a basic feedforward structure as illustrated in the AI I lectures, and

a single output node. The network should use sigmoid activation functions for the hidden

units and a linear activation function for its output. You should use a network having 4
hidden units.

(b) Starting with a weight vector chosen at random, use the Metropolis algorithm to sample

the posterior distribution p(w|y). You should generate a sequence of 100 weight vectors

w1,w2, . . . ,w100.

(c) Plot the function h(wi;x) computed by the neural network for a few of the weight vectors

obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2
Individual functions

(d) Discard the first 50 weight vectors generated. Using the remainder, calculate the mean

and variance of the corresponding functions using

mean(x) =
1

50

100
∑

i=51

h(wi;x)

and a similar expression for the variance. Plot the mean function along with error bars

provided by the variance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2
Mean and variance of individual functions

4. Can you incorporate hyperparameter estimation into your solution to the previous problem? If

so, do the results make sense?
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5. Explain how the Gibbs algorithm might be applied to the Bayesian network developed earlier

for the roof-climber alarm problem.

6. Slide 314 uses the following estimate for the variance of a random variable:

σ2 ≃ σ̂2 =
1

n− 1

[

n
∑

i=1

(Xi − X̂n)
2

]

.

Show that this estimate is unbiased; that is,

E
[

σ̂2
]

= σ2.

7. Show that if a random variable has zero mean then dividing it by its standard deviation σ results

in a new random variable having variance 1.

8. Verify the expression in point 4 on slide 317.

9. Exam question: 2010, paper 8, question 2.

7 Reinforcement learning

1. Evil Robot’s Dungeon of Darkness was constructed in such a way that the Pit of Endless Dis-

gruntlement is very close to the Cubicle of Inventive Punishment. Evil Robot likes going to

the Cubicle of Inventive Punishment as he gets to be nasty to a human. He does not however

like falling into the Pit of Endless Disgruntlement, because that makes him very disgruntled.

Between these locations and the entrance is a table with robo-cookies.

Cubicle

Entrance

Robo-cookies

−100

50

Pit

5

Unfortunately the part of his memory related to navigating the Dungeon has accidentally been

wiped, so he can’t find his way to punish the human responsible. He is running a simulation
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of the Q-learning algorithm to re-learn it. His actions are to move left, right, up or down

one square. Assuming all Q values are initialised to 0, explain how the Q-learning algorithm

operates if the dotted route is followed once, then the dashed route is followed, then the dotted

route is followed again. Where no reward is indicated assume the reward is 0.

2. Exam question: 2007, paper 9, question 9.

3. Exam question: 2012, paper 7, question 2.
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