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1 Introduction

1. Evaluate the integral
∫

∞

−∞

exp(−x2) dx.

See the handout How to evaluate Gaussian integrals available on the course web site.

2. Evaluate the integral

∫
∞

−∞

· · ·
∫

∞

−∞

exp

(

−1

2

(
xTΣx+ xT

α+ β
)
)

dx1 · · · dxn

where Σ ∈ R
n×n is a real, symmetric n× n matrix, α ∈ R

n is a real vector, β ∈ R and

xT =
[
x1 x2 · · · xn

]
∈ R

n.

See the handout How to evaluate Gaussian integrals available on the course web site.

2 Planning

1. An undergraduate, eager to meet some new friends, has turned up at the term’s Big Party, only to

find that it is in the home of her arch-rival, who has turned her away. She notices in the driveway

a large box and a ladder, and hatches a plan to gatecrash by getting in through a second-floor

window. Party on!

Here is the planning problem. She needs to move the box to the house, the ladder onto the box,

then climb onto the box herself and at that point she can climb the ladder to the window.

Using the abbreviations

• B - Box

• L - Ladder

• H - House

• C - Ms Compsci

• W - Window

the start state is ¬At(B,H), ¬At(L,B), ¬At(C,W ) and ¬At(C,B). The goal is At(C,W ).
The available actions are:
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Move(L,B)

At(L,B)

¬At(L,B)

Move(B,H)

At(B,H)

¬At(B,H),¬At(L,B)

Move(C,W )

At(C,W )

At(B,H),At(L,B),At(C,B)

Move(C,B)

At(C,B)

¬At(C,B)

Move(L,D)

¬At(L,B)

At(L,B)

Construct the planning graph for this problem (you should probably start by finding a nice big

piece of paper) and use the Graphplan algorithm to obtain a plan.

If you are feeling keen, implement the algorithm for constructing the planning graph and use it

to check your answer.

The first action and state levels are quite straightforward; after that, you will probably find it as hard to
construct the graph by hand as to write a basic implementation. Appendix A contains an implementation
in ML which can be used to verify that action level 1 is:

[persist (not (proposition "at(B,H)")),

persist (not (proposition "at(L,B)")),

persist (not (proposition "at(C,W)")),

persist (not (proposition "at(C,B)")),

action

(name "move(B,H)",

[not (proposition "at(B,H)"), not (proposition "at(L,B)")],

[proposition "at(B,H)"]),

action

(name "move(L,B)", [not (proposition "at(L,B)")],

[proposition "at(L,B)"]),

action

(name "move(C,B)", [not (proposition "at(C,B)")],

[proposition "at(C,B)"])]

with mutexes

[aMutex

(action

(name "move(B,H)",

[not (proposition "at(B,H)"), not (proposition "at(L,B)")],

[proposition "at(B,H)"]), persist (not (proposition "at(B,H)")),

actionsInt),

aMutex

(action

(name "move(L,B)", [not (proposition "at(L,B)")],

[proposition "at(L,B)"]), persist (not (proposition "at(L,B)")),

actionsInt),

aMutex

(action

(name "move(L,B)", [not (proposition "at(L,B)")],

[proposition "at(L,B)"]),

action

(name "move(B,H)",

[not (proposition "at(B,H)"), not (proposition "at(L,B)")],

[proposition "at(B,H)"]), actionsInt),

aMutex

(action

(name "move(C,B)", [not (proposition "at(C,B)")],

[proposition "at(C,B)"]), persist (not (proposition "at(C,B)")),

actionsInt)]

and state level 1 is:

[not (proposition "at(C,B)"), not (proposition "at(C,W)"),

not (proposition "at(L,B)"), not (proposition "at(B,H)"),

proposition "at(B,H)", proposition "at(L,B)", proposition "at(C,B)"]
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with mutexes

[cMutex

(proposition "at(B,H)", not (proposition "at(B,H)"), mutexPreconditions),

cMutex

(proposition "at(L,B)", not (proposition "at(L,B)"), mutexPreconditions),

cMutex (proposition "at(L,B)", proposition "at(B,H)", mutexPreconditions),

cMutex

(proposition "at(C,B)", not (proposition "at(C,B)"), mutexPreconditions)]

If you wish to continue then action level 2 is

[persist (not (proposition "at(C,B)")),

persist (not (proposition "at(C,W)")),

persist (not (proposition "at(L,B)")),

persist (not (proposition "at(B,H)")), persist (proposition "at(B,H)"),

persist (proposition "at(L,B)"), persist (proposition "at(C,B)"),

action

(name "move(B,H)",

[not (proposition "at(B,H)"), not (proposition "at(L,B)")],

[proposition "at(B,H)"]),

action

(name "move(C,W)",

[proposition "at(B,H)", proposition "at(L,B)", proposition "at(C,B)"],

[proposition "at(C,W)"]),

action

(name "move(L,B)", [not (proposition "at(L,B)")],

[proposition "at(L,B)"]),

action

(name "move(C,B)", [not (proposition "at(C,B)")],

[proposition "at(C,B)"]),

action

(name "move(L,D)", [proposition "at(L,B)"],

[not (proposition "at(L,B)")])]

and the corresponding list of mutexes is BIG!!! After a little more work you should find it is possible to

extract a plan.

2. Beginning with the domains

D1 = {climber}
D2 = {home, jokeShop, hardwareStore, spire}
D3 = {rope, gorilla, firstAidKit}

and adding whatever actions, relations and so on you feel are appropriate, explain how the

problem of purchasing and attaching a gorilla to a famous spire can encoded as a constraint

satisfaction problem (CSP).

If you are feeling keen, find a CSP solver and use it to find a plan. The course text book has a

code archive including various CSP solvers at:

http://aima.cs.berkeley.edu/code.html

The following is an example of how to set up and solve a very simple CSP.

import java.io.*;

import java.util.*;

import aima.core.search.csp.*;

public class simpleCSP {

public static void main(String[] args) {

Variable v1 = new Variable("v1");

Variable v2 = new Variable("v2");
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Variable v3 = new Variable("v3");

List<String> domain1 = new LinkedList<String>();

domain1.add("red");

domain1.add("green");

domain1.add("blue");

Domain d1 = new Domain(domain1);

List<Variable> vars = new ArrayList<Variable>();

vars.add(v1);

vars.add(v2);

vars.add(v3);

CSP csp = new CSP(vars);

csp.setDomain(v1,d1);

csp.setDomain(v2, d1);

csp.setDomain(v3, d1);

Constraint c1 = new NotEqualConstraint(v1,v2);

Constraint c2 = new NotEqualConstraint(v1,v3);

Constraint c3 = new NotEqualConstraint(v2,v3);

csp.addConstraint(c1);

csp.addConstraint(c2);

csp.addConstraint(c3);

ImprovedBacktrackingStrategy solver =

new ImprovedBacktrackingStrategy();

Assignment solution = new Assignment();

solution = solver.solve(csp);

System.out.println(solution);

}

}

This is asking for a completion of the example started in the lectures, and there are many correct ways

of achieving a successful plan. The question is included mostly as a basis for discussion.

3. Exam question: 2008, paper 7, question 6.

4. Exam question: 2009, paper 7, question 4.

5. Exam question: 2011, paper 7, question 2.

6. Exam question: 2012, paper 8, question 2.

3 Uncertainty

1. Prove that conditional independence, defined in the lectures notes as

Pr(A,B|C) = Pr(A|C) Pr(B|C)
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can equivalently be defined as

Pr(A|B,C) = Pr(A|C).

By definition

Pr(A,B|C) =
Pr(A,B,C)

Pr(C)
.

I want to get Pr(A|B,C) on the left so

Pr(A,B|C) =
Pr(A,B,C)

Pr(C)

Pr(B,C)

Pr(B,C)
= Pr(A|B,C)

Pr(B,C)

Pr(C)
= Pr(A|B,C) Pr(B|C).

Equating this with the first line in the question we have

Pr(A|B,C) = Pr(A|C).

2. Derive, from first principles, the general form of Bayes rule

Pr(A|B,C) =
Pr(B|A,C) Pr(A|C)

Pr(B|C)
.

By definition

Pr(A|B,C) =
Pr(A,B,C)

Pr(B,C)

Pr(A,C)

Pr(A,C)
= Pr(B|A,C)

Pr(A,C)

Pr(B,C)

and
Pr(A,C)

Pr(B,C)
=

Pr(A|C) Pr(C)

Pr(B|C) Pr(C)
.

Cancelling the Pr(C) terms gives the result.

3. This question revisits the Wumpus World, but now our hero, having learned some probability by

attending Artificial Intelligence II, will use probabilistic reasoning instead of situation calculus.

Our hero, through careful consideration of the available knowledge on Wumpus caves, has

established that each square contains a pit with prior probability 0.3, and pits are independent

of one-another. Let Piti,j be a Boolean random variable (RV) denoting the presence of a pit at

row i, column j. So for all i, j

Pr(Piti,j = ⊤) = 0.3 (1)

Pr(Piti,j = ⊥) = 0.7 (2)

In addition, after some careful exploration of the current cave, our hero has discovered the

following.
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1

2

3

4

1 2 3 4

B

OKOK OK

OK

B
?

Pit1,1 = ⊥

Pit1,2 = ⊥

Pit1,3 = ⊥

Pit2,3 = ⊥

B denotes squares where a breeze is perceived. Let Breezei,j be a Boolean RV denoting the

presence of a breeze at i, j

Breeze1,2 = Breeze2,3 = ⊤ (3)

Breeze1,1 = Breeze1,3 = ⊥ (4)

He is considering whether to explore the square at 2, 4. He will do so if the probability that it

contains a pit is less than 0.4. Should he?

Hint: The RVs involved are Breeze1,2,Breeze2,3,Breeze1,1,Breeze1,3 and Piti,j for

all the i, j. You need to calculate

Pr(Pit2,4|all the evidence you have so far)

Here is the known situation

1

2

3

4

1 2 3 4

B

OKOK OK

OK

B
?

Pit1,1 = ⊥

Pit1,2 = ⊥

Pit1,3 = ⊥

Pit2,3 = ⊥

In addition we know that

Pr(Piti,j = ⊤) = 0.3 (5)

Pr(Piti,j = ⊥) = 0.7 (6)

and pits are independent. Introduce the abbreviations

safe = (Pit1,1 = ⊥) ∧ (Pit1,2 = ⊥) ∧ (Pit1,3 = ⊥) ∧ (Pit2,3 = ⊥)
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and

breeze = (Breeze1,1 = ⊥) ∧ (Breeze1,2 = ⊤) ∧ (Breeze1,3 = ⊥) ∧ (Breeze2,3 = ⊤)

Let Others be a random variable (RV) collecting together all the Piti,j RVs with the exception of

Pit2,4 and all those included in safe. So we have by the definition of conditional probability and the

usual rule for marginalization

Pr(Pit2,4|safe,breeze) = cPr(Pit2,4,safe,breeze)

= c
∑

others

Pr(Pit2,4,safe,breeze,others)
(7)

which is a somewhat tricky sum containing 211 terms.

We are rescued by the fact that the known rules for Wumpus caves present a conditional independence

assumption. Namely, because the breezes depend only on adjacent squares we concentrate attention

only on those. Split Others into Adjacent and Rest where in the following diagram Adjacent

consists of the Piti,j RVs for the dark grey squares and Rest consists of the Piti,j RVs for the light

grey squares.

1

2

3

4

1 2 3 4

B

OKOK OK

OK

B
?

Now we can write

Pr(breeze|safe,Pit2,4,Adjacent,Rest) = Pr(breeze|safe,Pit2,4,Adjacent) (8)

Combining equations (7) and (8) we have

Pr(Pit2,4|safe,breeze)
= c

∑

adjacent

∑

rest

Pr(breeze|safe,Pit2,4,adjacent)Pr(safe,Pit2,4,adjacent,rest)

= c
∑

adjacent

Pr(breeze|safe,Pit2,4,adjacent)
∑

rest

Pr(safe,Pit2,4,adjacent,rest)

= cPr(safe)Pr(Pit2,4)
∑

adjacent

Pr(breeze|safe,Pit2,4,adjacent)Pr(adjacent)

Now

Pr(breeze|safe,Pit2,4,adjacent) =

{
1 if the configuration would produce the observed breezes

0 otherwise

and only two values for adjacent would give a value of 1.
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1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

B

OK OK

OK

B
?

OK

Pit

B

OK OK

OK

B
?

OK

Pit

Pit

Pr(adjacent) = 0.73 × 0.3 Pr(adjacent) = 0.72 × 0.32

At this point all that is left is to plug in some numbers.

Pr(Pit2,4 = ⊤|safe,breeze) = c× 0.74 × 0.3× ((0.73 × 0.3) + (0.72 × 0.32))

and

Pr(Pit2,4 = ⊥|safe,breeze) = c× 0.74 × 0.7× ((0.73 × 0.3) + (0.72 × 0.32))

Obtaining the value of c as usual gives

Pr(Pit2,4 = ⊤|safe,breeze) = 0.3

and

Pr(Pit2,4 = ⊥|safe,breeze) = 0.7

4. Continuing with the running example of the roof-climber alarm...

The porter in lodge 1 has left and been replaced by a somewhat more relaxed sort of chap, who

doesn’t really care about roof-climbers and therefore acts according to the probabilities

Pr(l1|a) = 0.3 Pr(¬l1|a) = 0.7
Pr(l1|¬a) = 0.001 Pr(¬l1|¬a) = 0.999

Your intrepid roof-climbing buddy is on the roof. What is the probability that lodge 1 will report

him? Use the variable elimination algorithm to obtain the relevant probability. Do you learn

anything interesting about the variable L2 in the process?

For this query the natural way to factorize the joint distribution is

Pr(L1|c) = 1

Z
Pr(c)

∑

A

∑

G

Pr(G)Pr(A|c,G)Pr(L1|A)
∑

L2

Pr(L2|c)

and as the sum over L2 always equals 1 we have discovered that the term for L2 is irrelevant. We can

further factorize in two ways

Pr(L1|c) = 1

Z
Pr(c)

∑

G

Pr(G)
∑

A

Pr(A|c,G)Pr(L1|A)

=
1

Z
Pr(c)

∑

A

Pr(L1|A)
∑

G

Pr(G)Pr(A|c,G)

8



and you should get the same answer whichever factorization you use. (You did, of course, try it both

ways didn’t you?)

Using the first alternative, and working from right to left, we combine the factorsFA(A,G) andFL1(L1, A)
to get

FA,L1(A,L1, G) =

A L1 G
T T T .98× .3
T T F .96× .3
T F T .98× .7
T F F .96× .7
F T T .02× .001
F T F .04× .001
F F T .02× .999
F F F .04× .999

then sum out A to get

FA,L1
(L1, G) =

L1 G
T T .98× .3 + .02× .001 = .29402
T F .96× .3 + .04× .001 = .28804
F T .98× .7 + .02× .999 = .70598
F F .96× .7 + .04× .999 = .71196

Next, we incorporate the factor FG(G) to get

FG,A,L1
(L1, G) =

L1 G
T T .29402× .2
T F .28804× .8
F T .70598× .2
F F .71196× .8

and sum out the G to get

FG,A,L1
(L1) =

L1
T .289236
F .710764

At this point, we note that as we know that C = T the remaining term Pr(c)/Z serves only to normalize

the distribution Pr(L1|c), and performing the normalization yields the probability .289.

5. In the lecture notes, an example was given for which we would expect Pr(A → B) to be

(relatively) much larger than Pr(B|A). Suggest a situation where the converse would be true.

After a little experimentation you might believe that this is a little tricky. So, let’s consider the general

problem. We’re asking for a situation where

Pr(¬A ∨B) = Pr(¬A) + Pr(B)− Pr(¬A ∧B) < Pr(B|A) = Pr(A ∧B)

Pr(A)
.

Noting that

Pr(¬A ∧B) = Pr(B) − Pr(A ∧B)

(draw a Venn diagram if you need convincing) and re-arranging we have

1− Pr(A) + Pr(A ∧B) <
Pr(A ∧B)

Pr(A)
.

Re-arranging this we have
1− Pr(A)

Pr(B|A) + Pr(A) < 1.
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Now attempt to make the first term small by adjusting B to make Pr(B|A) large. The maximum value it

can take is 1, which leaves us with

1 < 1.

So: there is no situation where the converse is true.

6. Later in the course it is shown that in constructing a two-class classifier (such as a multilayer

perceptron) the optimal approach involves computing Pr(class|features). Suggest an ap-

proach to performing this calculation in practice. (Hint: apply Bayes’ theorem and estimate

some probabilities.) What problems might this present in practice, and what assumption(s)

might you introduce to overcome them?

The aim of this question is to prompt you to derive the Naive Bayes Classifier.

Taking the approach suggested I have using Bayes’ theorem

Pr(class|features) = 1

Z
Pr(features|class)Pr(class)

where as usual Z just normalizes to insure we have a probability distribution. Call the two classes C1

and C2, so Pr(class = C1) = 1−Pr(class = C2). It’s going to be pretty straightforward to estimate

Pr(class = C1) as it’s exactly analogous to the ubiquitous example of estimating the probability that

tossing a biased coin results in a head. Specifically, say you have a training sequence s with m examples,

and m1 of these are labelled as C1. Then

Pr(class = C1) ≃
m1

m
.

Unfortunately estimating Pr(features|class) is going to be more tricky. Say each example in the

training set has n features. Even if these features are all binary we need to estimate about 2n different

numbers. To get a good estimate of just one of those numbers, say Pr(features = x|class) for

some x, means counting how many times x appears in the training set and so we should expect to need

m to be at least a multiple of 2n. Ouch. (And if features have more than two values, or are continuous,

then the situation is even worse.)

The solution lies in the lecture notes under the title of idiot’s Bayes. We make the extremely brave

conditional independence assumption that, if x = (x1, x2, . . . , xn) then

Pr(features = x|class) =
n∏

i=1

Pr(xi|class).

For binary features we now have to estimate n numbers instead of 2n, and each is essentially equivalent,

again, to the coin flipping case.

Surprisingly, this can be a very effective method; see Machine Learning by Tom Mitchell, McGraw Hill,

1997 for an example involving classification of news stories.

7. In designing a Bayesian network you wish to include a node representing the value reported

by a sensor. The quantity being sensed is real-valued, and if the sensor is working correctly it

provides a value close to the correct value, but with some noise present. The correct value is

provided by its first parent. A second parent is a boolean random variable that indicates whether

the sensor is faulty. When faulty, the sensor flips between providing the correct value, although

with increased noise, and a known, fixed incorrect value, again with some added noise. Suggest

a conditional distribution that could be used for this node.

Denote the parents using the real-valued RV V and the boolean RV F . Denote the value reported by

the sensor using the real RV V ′. When the sensor is working we might reasonably use a normal density
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N(V, σ) where σ is a parameter denoting the noise variance. When the sensor is faulty, let p be a

parameter denoting the probability that the sensor reports an incorrect value, denoted by w and having

variance σ′, and let ǫ denote the increase in variance when the faulty sensor reports a (noisy) correct

value. Combining these, a possible conditional distribution is

p(V ′|V, F ) =

{
N(V, σ) if F = false

(1− p)N(V, σ + ǫ) + pN(w, σ′) if F = true
.

8. Exam question: 2005, paper 8, question 2.

9. Exam question: 2006, paper 8, question 9.

10. Exam question: 2009, paper 8, question 1.

4 Making decisions

1. Prove the result mentioned on slide 161:

VPIE(E
′, E′′) = VPIE(E

′) + VPIE,E′(E′′).

Let’s start by being a little more careful with the notation. The evidence E denotes what we already

know, implying it’s been measured and thus that we know E = e for some value e. So we should write

VPIe(E
′, E′′) = VPIe(E

′) + VPIe,e′(E
′′).

This should set alarm bells ringing. The term VPIe,e′(E
′′), and hence the right hand side of the equation,

now depends on the value of e′ whereas the left hand side does not! We have just established that the

expression in the textbook is incorrect.

This leaves us with the task of correcting it. Writing the left hand side in full

VPIe(E
′, E′′) =







∑

e′,e′′

Pr(e′, e′′|e)EU(action|e, e′, e′′)






− EU(action|e)

=







∑

e′,e′′

Pr(e′′|e, e′) Pr(e′|e)EU(action|e, e′, e′′)






− EU(action|e)

=

{
∑

e′

Pr(e′|e)
∑

e′′

Pr(e′′|e, e′)EU(action|e, e′, e′′)
}

− EU(action|e).

Now,

VPIe,e′(E
′′) =

{
∑

e′′

Pr(e′′|e, e′)EU(action|e, e′, e′′)
}

− EU(action|e, e′).

Combining these expressions gives

VPIe(E
′, E′′) =

{
∑

e′

Pr(e′|e) [VPIe,e′ (E′′) + EU(action|e, e′)]
}

− EU(action|e)

= E [VPIe,E′(E′′)|e] +
∑

e′

Pr(e′|e)EU(action|e, e′)− EU(action|e).
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Finally,

VPIe(E
′) =

{
∑

e′

Pr(e′|e)EU(action|e, e′)
}

− EU(action|e)

and thus

VPIe(E
′, E′′) = VPIe(E

′) + E [VPIe,E′(E′′)|e] .

2. Evil Robot is teaching himself surgery. He believes that there are two treatments, t1 and t2 suit-

able for his first patient, each having three possible outcomes: cure, death and amputation.

These have utilities of 100, −1000 and −250 respectively. Evil robot thinks that t1 has prob-

abilities 0.8, 0.1 and 0.1 respectively for the three outcomes and treatment t2 has probabilities

0.75, 0.05 and 0.2. Compute the expected utility of each treatment.

Evil Robot has been studying hard, and has learned that an unpleasant test T is available that

might help him choose the better treatment. The test has a cost to the patient of −50, while the

cost of not performing it is −2. (Evil robot will nonetheless conduct some slightly unpleasant

tests.) He estimates that the probability of the test being positive is 0.7. He also thinks that,

armed with a positive test he can give t1 outcome probabilities of 0.9, 0.01 and 0.09 respectively,

and t2 outcome probabilities of 0.85, 0.02 and 0.13. If test T is negative then the outcome

probabilities are unchanged. (He does the other tests just for fun.)

In the interest of the patient, should Evil Robot use test T ?

The expected utility of action t1 is

(.8 × 100) + (.1×−1000) + (.1×−250) = −45

and for t2
(.75× 100) + (.05×−1000) + (.2 ×−250) = −25

so

EU(action|E) = −25.

If test T is positive the utility of t1 is

(.9× 100) + (.01×−1000) + (.09×−250) = 57.5

and for t2
(.85× 100) + (.02×−1000) + (.13×−250) = 32.5

giving

EU(action|E, T = true) = 57.5

and if T is false we still have

EU(action|E, T = false) = −25

so

VPIE(T ) = ((.7 × 57.5) + (.3 ×−25))− (−25) = 57.75.

Taking the cost into accout we have a remaining positive utility of 7.75, so Evil Robot should indeed

conduct the test.

3. Exam question: 2007, paper 8, question 9.

4. Exam question: 2011, paper 8, question 8.

5. Exam question: 2013, paper 8, question 2.
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5 HMMs

1. Derive the equation

bt+1:T = SEt+1bt+2:T

for the backward message in a hidden Markov model (lecture slide 208).

From slide 186 the general equation for the backward message is

bt+1:T =
∑

st+1

Pr(et+1|st+1)
︸ ︷︷ ︸

Sensor model

Pr(et+2:T |st+1)
︸ ︷︷ ︸

bt+2:T

Pr(st+1|St)
︸ ︷︷ ︸

Transition model

(9)

and using the definitions of Et+1 and bt+2:T we have

Et+1bt+2:T

=








Pr(et + 1|St+1 = s1) · · · 0
0 · · · 0
...

. . .
...

0 · · · Pr(et + 1|St+1 = sn)















Pr(et+2:T |St+1 = s1)
Pr(et+2:T |St+1 = s2)

...

Pr(et+2:T |St+1 = sn)








=








Pr(et + 1|St+1 = s1)Pr(et+2:T |St+1 = s1)
Pr(et + 1|St+1 = s2)Pr(et+2:T |St+1 = s2)

...

Pr(et + 1|St+1 = sn)Pr(et+2:T |St+1 = sn)








.

Finally using the definition of S

SEt+1bt+2:T

=








Pr(St+1 = s1|St = s1) · · · Pr(St+1 = sn|St = s1)
Pr(St+1 = s1|St = s2) · · · Pr(St+1 = sn|St = s2)

...
. . .

...

Pr(St+1 = s1|St = sn) · · · Pr(St+1 = sn|St = sn)















Pr(et+1|St+1 = s1)Pr(et+2:T |St+1 = s1)
Pr(et+1|St+1 = s2)Pr(et+2:T |St+1 = s2)

...

Pr(et+1|St+1 = sn)Pr(et+2:T |St+1 = sn)








=








∑

st+1
Pr(st+1|St = s1)Pr(et+1|st+1)Pr(et+2:T |st+1)

∑

st+1
Pr(st+1|St = s2)Pr(et+1|st+1)Pr(et+2:T |st+1)

...
∑

st+1
Pr(st+1|St = sn)Pr(et+1|st+1)Pr(et+2:T |st+1)








which is identical to (9).

2. Explain why the backward message update should be initialized with the vector (1, . . . , 1).

At the first iteration of the backward update we have t = T − 1 and so we are aiming to compute the

quantity

bT :T = Pr(eT |ST−1).

Using the usual trick to expand this

bT :T = Pr(eT |ST−1) =
∑

sT

Pr(eT , sT |ST−1)

=
∑

sT

Pr(eT |sT , ST−1)Pr(sT |ST−1)

=
∑

sT

Pr(eT |sT )Pr(sT |ST−1)

(10)
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where we’ve used the conditional independence assumption in the last line. Comparing (10) and (9) we

see that to make them match a vector of 1s should be used at the first step.

3. Establish how the prior Pr(S0) should be included in the derivation of the Viterbi algorithm.

(This is mentioned on slide 192, but no detail is given.)

There are a couple of ways to answer this, depending on exactly how you interpret the prior. If we follow

strictly the presentation given in the notes, then the prior is used to choose an initiel state S0 which

produces no observation. The state transition probabilities are then used to generate the first state S1 for

which an observation E1 is produced. You might reasonably argue that it makes more sense to choose S1

directly using a prior; a little thought however shows that the two possibilities are essentially equivalent.

To see this note that in the first version

Pr(S1) =
∑

s0

Pr(s0, S1) =
∑

s0

Pr(S1|s0)Pr(s0)

which allows us to compute a new prior for use in the second version.

Once that has been done, the Viterbi algorithm proceeds simply by using the prior Pr(S1) to label the

first column of the lattice instead of the transition probabilities. This is illustrated in the answer to the

next problem.

4. A hidden Markov model has transition matrix Sij = Pr(St+1 = sj|St = si) where

S =





0.2 0.4 0.4
0.1 0.6 0.3
0.8 0.1 0.1



 .

In any state we observe one of the symbols △, ▽, ©, � with the following probabilities:

△ ▽ © �

s1 0.7 0.1 0.1 0.1
s2 0.3 0.2 0.4 0.1
s3 0.4 0.2 0.2 0.2

.

Prior probabilites for the states are Pr(s1) = 0.3, Pr(s2) = 0.3 and Pr(s3) = 0.4. We observe

the sequence of symbols

©©�△△�▽�.

Use the Viterbi algorithm to infer the most probable sequence of states generating this sequence.

Here is the lattice for the first four observations. I have used the prior directly to label the column for S1,

rather than starting with S0. See the answer to the previous problem for a discussion of this.
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.0006

.0012
.0064

.0048
.0288
.0032

.0024
.0072
.0016

.000128

.000288
.000576

.000256
.001728
.000072

.000512
.001728
.000144

.00008064

.00012096
.00096768

.00006912
.00031104
.00005184

.00009216
.00020736
.00006912

.3

.3

.4

.2

.4

.1

.1

.8
.1

.6

.3

© © � △

.1

.4

.2

.1

.4

.2

.1

.1

.2

.7

.3

.4

W1(1) = .03

W2(1) = .12

W3(1) = .08

.4

s1

s2

s3

Numbers in black denote prior or transition probabilities, numbers in red denote probabilities for the

observations, and numbers in blue denote values used in computing Wi(j). Where three blue values are

associated with a node, they are ordered according to which previous state they correspond to, and the

maximum is boxed, denoting the actual Wi(j) value for that node. Arrows in blue show the maximum

probability path.

At this point the pattern should be clear. It is of course sensible to use something like Matlab or Octave
to check your answer. Unfortunately both implementations assume that the HMM starts in state 1,
which doesn’t really help much. Luckily there is another free system called R with a more correct
implementation. The code looks like this:

# R code to check the solution to the Viterbi algorithm problem

# in the AI II problem sheet.

#

# Sean Holden 2014.

.libPaths("˜/R/")

library(HMM)

# Set up the HMM.

stateNames <- c("s1", "s2", "s3")

symbolNames <- c("ˆ", "v", "O", "|_|")

prior <- c(0.3, 0.3, 0.4)

S <- matrix(c(0.2, 0.2, 0.8, 0.4, 0.6, 0.1, 0.4, 0.3, 0.1), 3, 3)

E <- matrix(c(0.7, 0.3, 0.4, 0.1, 0.2, 0.2, 0.1, 0.4, 0.2, 0.1, 0.1, 0.2), 3, 4)

model <- initHMM(stateNames, symbolNames, prior, S, E)

# Run the Viterbi algorithm for the given observations.
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observed <- c("O", "O", "|_|", "ˆ", "ˆ", "|_|", "v", "|_|")

answer <- viterbi(model, observed)

and should be self-explanatory. It tells me that the most probable sequence of states is s2, s2, s3, s1, s3, s1, s3, s1.

5. Exam question: 2005, paper 9, question 8.

6. Exam question: 2008, paper 9, question 5.

7. Exam question: 2010, paper 7, question 4.

8. Exam question: 2013, paper 7, question 2.

6 Bayesian learning

1. Derive the weight decay training algorithm

wMAP = argmin
w

α

2
||w||2 + β

2

m∑

i=1

(yi − f(w;xi))
2

given on slide 268.

We have

hMAP = argmax
w

p(y|w)p(w)

p(y)

= argmax
w

(log p(w) + log p(y|w))

= argmax
w

(

log

[
1

ZW (α)
exp

(

−α

2
||w||2

)]

+ log

[
1

Zy(β)
exp (−βEy(w))

])

= argmin
w

(α

2
||w||2 + βEy(w)

)

= argmin
w

α

2
||w||2 + β

2

m∑

i=1

(yi − f(w;xi))
2

2. Use the standard Gaussian integral to derive the final equation for Bayesian regression

p(Y |y,x) = 1
√

2πσ2
y

exp

(

−(y − f(wMAP;x))
2

2σ2
y

)

where

σ2
y =

1

β
+ gTA−1g

given on slide 284.

Collecting the relevant expressions, the aim is to evaluate the (slightly re-arranged) integral

p(Y |y,x) = 1

Z

∫

RW

exp

(

−1

2

[

β
(
y − f(wMAP;x)− gT∆w

)2
+∆wTA∆w

])

dw (11)
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where

Z = (2π)W/2|A|−1/2
√
2πσ2

using the fact that

∫

RW

exp

(

−1

2

(
wTXw +wTy + z

)
)

dw = (2π)W/2|X|−1/2 exp

(

−1

2

(

z − yTX−1y

4

))

. (12)

The first thing to notice is that because

∆w = w −wMAP

we can treat the integral (11) as being written with a d∆w rather than a dw.1

If we abbreviate using f ′ = f(wMAP;x) we can multiply out the relevant part of the integrand and

re-arrange to get

β
[
((y − f ′)− gT∆w)2

]
+∆wTA∆w

= β
[
((y − f ′)2 − 2(y − f ′)gT∆w+ (gT∆w)2

]
+∆wTA∆w

= β(y − f ′)2 − 2β(y − f ′)gT∆w + β∆wTggT∆w +∆wTA∆w

= β(y − f ′)2
︸ ︷︷ ︸

z

−2β(y − f ′)gT

︸ ︷︷ ︸

y

∆w +∆wT (βggT +A
︸ ︷︷ ︸

X

)∆w

where the underbraces show how the terms relate to those in (12). Using (12) we can now evaluate the

integral in (11) as

p(Y |y,x) ∝ exp

(

−1

2

(

β(y − f ′)2 − 4β2(y − f ′)2gT (βggT +A)−1g

4

))

= exp

(

−1

2
(y − f ′)2(β − β2gT (βggT +A)−1g)

)

.

Here we have supressed the leading constant for reasons that will shortly become clear. Comparing this

expression with the usual expression for a Normal density in one dimension with mean µ and variance

σ2

p(x) =
1√
2πσ2

exp

(

− 1

2σ2
(x − µ)2

)

we see that p(Y |y,x) is a normal density with mean f ′ and variance

σ2
Y =

1

β − β2gT (βggT +A)−1g
. (13)

The leading constant must be 1/
√

2πσ2
Y , which is why we were able to suppress the more complex

constant above.

Getting from here to the final expression is a little tricky. We have as part of the expression in (13) a

tricky-looking matrix inversion. However, all good machine learners should recognize the form as one

that can be tackled using the matrix inversion lemma, also sometimes known as the Woodbury formula,

or to be specific a special case known as the Sherman-Morrison formula. This says that

(X+ yzT )−1 = X−1 − X−1yzTX−1

1 + zTX−1y
.

1To see this, think of it as an area. As the integral is over the entire space the fact that you shift the variable by a constant

wMAP makes no difference. If you still doubt it, try something similar in one dimension and actually change the variable.
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Applied to the inverse in (13) this gives

(A+ βggT )−1 = A−1 − A−1βggTA−1

1 + gTA−1βg

= A−1 − βA−1ggTA−1

1 + βgTA−1g
.

So

gT (A+ βggT )−1g = gTA−1g− β(gTA−1g)(gTA−1g)

1 + βgTA−1g

=
gTA−1g

1 + βgTA−1g
.

We thus have

σ2
t =

1

β − β2

(
gTA−1g

1+βgTA−1g

)

=
1 + βgTA−1g

β(1 + βgTA−1g)− β2gTA−1g

=
1

β
+ gTA−1g.

3. This question asks you to produce a version of the graph on slide 286, but using the Metropolis

algorithm instead of the solution obtained by approximating the integral. Any programming

language is fine, although Matlab is probably the most straightforward.

The data is simple artificial data for a one-input regression problem. Use the target function

f(x) =
1

2
+ 0.4 sin 2πx

and generate 30 examples clustered around x = 0.25 and x = 0.75. Then label these examples

y(x) = f(x) + n

where n is Gaussian noise of standard deviation 0.05. Plot the data as follows:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2
Training examples
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Let w ∈ R
W be the vector of all the weights in a network. Your supervised learner should be

based on a prior density

p(w) =

(
2π

α

)
−W/2

exp
(

−α

2
||w||2

)

on the weights. A value of α = 1 is reasonable. The likelihood used should be

p(y|w) =

(
2π

β

)
−m/2

exp

(

−β

2

m∑

i=1

(y(xi)− h(w;xi))
2

)

where m is the number of examples and h(w;x) is the function computed by the neural network

with weights w. A value of β = 1/(0.05)2 is appropriate. Note that we are assuming that

hyperparameters α and β are known, and the prior and likelihood used are the same as those

used in the lectures.

Complete the following steps:

(a) Write a function simpleNetwork function implementing a multilayer perceptron with

a single hidden layer, a basic feedforward structure as illustrated in the AI I lectures, and

a single output node. The network should use sigmoid activation functions for the hidden

units and a linear activation function for its output. You should use a network having 4
hidden units.

The following Matlab code implements a simple multilayer perceptron.

function output = mynetwork(input, w)

%

% Multilayer perceptron with a single input, four hidden units with

% tanh activation functions, and a single linear output unit.

%

% w(1:4) is weights from input to hidden units.

% w(5:8) is biases for hidden units.

% w(9:12) is weights from hidden units to output unit.

% w(13) is bias for output unit.

%

hidden_inputs = w(1:4) * input;

hidden_outputs = tanh(hidden_inputs + w(5:8));

output = (w(9:12)’ * hidden_outputs) + w(13);

(b) Starting with a weight vector chosen at random, use the Metropolis algorithm to sample

the posterior distribution p(w|y). You should generate a sequence of 100 weight vectors

w1,w2, . . . ,w100.

For this we need a prior:

function p = prior(w, alpha)

%

% Gaussian prior with specified alpha.

%

p = (((2 * pi) / alpha)ˆ(-length(w) / 2)) * exp ((-alpha/2) * (norm(w)ˆ2));

We also need to be able to compute the likelihood:

function l = likelihood(w, inputs, targets, beta)

%

% Likelihood calculated for Gaussian noise with beta specified.

%

N = length(targets);

error = 0;
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for n = 1:N

error = error + ((mynetwork(inputs(n), w) - targets(n))ˆ2);

end

l = (((2 * pi) / beta)ˆ(-N/2)) * exp((-beta/2) * error);

We can then implement the metropolis algorithm:

w = randn(13,1) * 0.01;

p_old = likelihood(w,inputs,targets,beta) * prior(w,alpha);

while counter < terms_in_sum

old_w = w;

w = w + (randn(13,1) * 0.04);

total_tries = total_tries + 1;

p_new = likelihood(w,inputs,targets,beta) * prior(w,alpha);

if p_new > p_old

weights(:,counter) = w;

counter = counter + 1

else

if p_old ˜= 0 % Needed to avoid division by 0.

if rand < (p_new/p_old)

weights(:,counter) = w;

counter = counter + 1

else

w = old_w;

end

end

end

end

(c) Plot the function h(wi;x) computed by the neural network for a few of the weight vectors

obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2
Individual functions

(d) Discard the first 50 weight vectors generated. Using the remainder, calculate the mean

and variance of the corresponding functions using

mean(x) =
1

50

100∑

i=51

h(wi;x)

and a similar expression for the variance. Plot the mean function along with error bars

provided by the variance.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0
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1

1.5

2
Mean and variance of individual functions

4. Can you incorporate hyperparameter estimation into your solution to the previous problem? If

so, do the results make sense?

This is straightforward using the equations derived in the lectures for estimating hyperparameters. This

question represents discussion material: do the estimated values match the correct ones?

5. Explain how the Gibbs algorithm might be applied to the Bayesian network developed earlier

for the roof-climber alarm problem.

This is essentially straightforward as we know the joint distribution, and all the conditional distributions

needed for sampling can therefore be computed directly. There is room here for discussion of how one

might generate the samples, although this is beyond the syllabus for the course.

6. Slide 314 uses the following estimate for the variance of a random variable:

σ2 ≃ σ̂2 =
1

n− 1

[
n∑

i=1

(Xi − X̂n)
2

]

.

Show that this estimate is unbiased; that is,

E
[
σ̂2
]
= σ2.

We have

E
[
σ̂2
]
=

1

n− 1
E

[
n∑

i=1

(Xi − X̂n)
2

]

=
1

n− 1

n∑

i=1

E

[

(Xi − X̂n)
2
]

=
1

n− 1

n∑

i=1

(

E
[
X2

i

]
− 2E

[

XiX̂n

]

+ E

[

X̂2
n

])

Using the definition of X̂n the term Ti inside the summation is

Ti = E
[
X2

i

]
− 2

n
E



Xi

n∑

j=1

Xj



+
1

n2

n∑

j=1

n∑

k=1

E [XjXk]

= E
[
X2

i

]
− 2

n

n∑

j=1

E [XiXj ] +
1

n2

n∑

j=1

n∑

k=1

E [XjXk]
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If i = j then E [XiXj] = E
[
X2

i

]
and if i 6= j then E [XiXj] = E [Xi]E [Xj] = µ2 where E [X ] = µ

as we are assuming the RVs are independent. Thus

Ti = E
[
X2

i

]
− 2

n

(
E
[
X2

i

]
+ (n− 1)µ2

)
+

1

n2





n∑

j=1

E
[
X2

j

]
+ n(n− 1)µ2





= E
[
X2

i

]
− 2

n

(
E
[
X2

i

]
+ (n− 1)µ2

)
+

1

n2

(
nE
[
X2

i

]
+ n(n− 1)µ2

)

where the last line follows because the RVs are identically distributed. Placing Ti back into the summa-

tion and re-arranging

E
[
σ̂2
]
=

1

n− 1

n∑

i=1

(
n− 1

n
E
[
X2

i

]
− n− 1

n
µ2

)

= n

(

E
[
X2
]

n
− µ2

n

)

= E
[
X2
]
− µ2

= σ2.

7. Show that if a random variable has zero mean then dividing it by its standard deviation σ results

in a new random variable having variance 1.

We have a random variable X with

E(X) = 0

and

var(X) = E(X2)− [E(X)]2 = E(X2) = σ2.

Let Y = X/σ. Then

E(Y ) =
1

σ
E(X) = 0

and

var(Y ) = E(Y 2)− [E(Y )]2 = E(X2/σ2) =
1

σ2
E(X2) = 1.

8. Verify the expression in point 4 on slide 317.

We’re considering an RV X having mean µ and variance σ2. We know that the mean of X̂n is

E

[

X̂n

]

= E

[

1

n

n∑

i=1

Xi

]

=
1

n

n∑

i=1

E [Xi] = µ.

and we want to know the variance of X̂n. So

var(X̂n) = E

[

(X̂2
n)
]

− µ2

=
1

n2
E





(
n∑

i=1

Xi

)2


− µ2

=
1

n2
E





n∑

i=1

X2
i +

∑

i6=j

XiXj



− µ2

=
1

n2

(
nE
[
X2
]
+ n(n− 1)(E [X ])2

)
− µ2
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where in the last line we’ve used the fact that the X are independent. Now using the fact that E
[
X2
]
−

µ2 = σ2

var(X̂n) =
1

n

(
σ2 + µ2 + (n− 1)µ2

)
− µ2

=
σ2

n
+

µ2(1 + (n− 1)− n)

n

=
σ2

n

=
var(X)

n
.

9. Exam question: 2010, paper 8, question 2.

7 Reinforcement learning

1. Evil Robot’s Dungeon of Darkness was constructed in such a way that the Pit of Endless Dis-

gruntlement is very close to the Cubicle of Inventive Punishment. Evil Robot likes going to

the Cubicle of Inventive Punishment as he gets to be nasty to a human. He does not however

like falling into the Pit of Endless Disgruntlement, because that makes him very disgruntled.

Between these locations and the entrance is a table with robo-cookies.

Cubicle

Entrance

Robo-cookies

−100

50

Pit

5

Unfortunately the part of his memory related to navigating the Dungeon has accidentally been

wiped, so he can’t find his way to punish the human responsible. He is running a simulation

of the Q-learning algorithm to re-learn it. His actions are to move left, right, up or down

one square. Assuming all Q values are initialised to 0, explain how the Q-learning algorithm

operates if the dotted route is followed once, then the dashed route is followed, then the dotted

route is followed again. Where no reward is indicated assume the reward is 0.
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2. Exam question: 2007, paper 9, question 9.

3. Exam question: 2012, paper 7, question 2.

24



Appendices

A ML code for constructing planning graphs

The following is a simple ML implementation of planning graph construction. For the specific example in these
problems the graph can be constructed using the following code:

\end{tiny}

PolyML.use "sets.sml";

PolyML.use "lists.sml";

PolyML.use "graphplan.sml";

(*---------------------------------------------------------------------------*)

(* Exercises for Artificial Intelligence II. *)

(* Part 2, Question 1. *)

(* Sean Holden 2013/14. *)

(*---------------------------------------------------------------------------*)

val f1 = not (proposition "at(B,H)");

val f2 = not (proposition "at(L,B)");

val f3 = not (proposition "at(C,W)");

val f4 = not (proposition "at(C,B)");

val st0 = [f1, f2, f3, f4];

val f1’ = proposition "at(B,H)";

val f2’ = proposition "at(L,B)";

val f3’ = proposition "at(C,W)";

val f4’ = proposition "at(C,B)";

val a1 = action ((name "move(B,H)"), [f1, f2], [f1’]);

val a2 = action ((name "move(C,W)"), [f1’, f2’, f4’], [f3’]);

val a3 = action ((name "move(L,B)"), [f2], [f2’]);

val a4 = action ((name "move(C,B)"), [f4], [f4’]);

val a5 = action ((name "move(L,D)"), [f2’], [f2]);

val act = [a1, a2, a3, a4, a5];

val problem1 = problem (st0, act, goal [proposition "at(C,W)"]);

(* Make first expansion. *)

val stm0 = findMutex1 st0;

val (ac1,acm1,st1,stm1) = expandOnce act st0 stm0;

val (ac2,acm2,st2,stm2) = expandOnce act st1 stm1;

The code needs some simple functions for manipulating sets

(*-------------------------------------------------------------------------*)

(* Basic set operations. Set operations - assume list has no duplicates. *)

(* Sean Holden 2013/14. *)

(*-------------------------------------------------------------------------*)

fun member x [] = false

| member x (y::ys) = (x=y) orelse member x ys;

fun subset [] _ = true

| subset (x::xs) ys = member x ys andalso subset xs ys;

fun setAdd x [] = [x]

| setAdd x ys = if (member x ys) then ys else x::ys;

fun union [] ys = ys

| union (x::xs) ys = if (member x ys)

then union xs ys

else union xs (x::ys);

fun unionConcat [] = []

| unionConcat (x::xs) = union x (unionConcat xs);

and lists

(*-------------------------------------------------------------------------*)

(* General simple stuff for manipulating lists. *)

(* Sean Holden 2013/14. *)

(*-------------------------------------------------------------------------*)

(* nth element of a list *)

exception noSuchElement;

fun nth [] _ = raise noSuchElement

| nth (x::xs) y = if (y=0) then x else nth xs (y-1);

25



(* Turn a list of lists into a list. *)

fun collapse x = rev (foldl (fn(y, ys) =>

foldl (fn(z, zs) => (z::zs)) ys y) [] x);

(* Standard filter function. *)

fun filter p [] = []

| filter p (x::xs) =

let val y = filter p xs;

in

if (p x) then x::y else y

end;

(* Remove duplicates from a list. *)

fun removeDuplicates [] acc = acc

| removeDuplicates (x::xs) acc =

if (member x xs) then removeDuplicates xs acc

else removeDuplicates xs (x::acc);

(* Remove duplicates from a list using a specified equality function. *)

fun removeDuplicatesEq eq l =

let fun find x [] = false

| find x (y::ys) = (eq x y) orelse find x ys;

fun rDE [] acc = acc

| rDE (x::xs) acc =

if (find x xs) then rDE xs acc

else rDE xs (x::acc);

in

rDE l []

end;

(* Pair an element with each element of a list. *)

fun pairUp x [] acc = acc

| pairUp x (y::ys) acc = if (x=y) then pairUp x ys acc

else pairUp x ys ((x,y)::acc);

(* Generation of all pairs, *not* including pairs of equal elements. *)

fun allDifferentPairs x y =

let fun allDifferentPairs’ [] _ acc = acc

| allDifferentPairs’ (x::xs) [] acc = acc

| allDifferentPairs’ (x::xs) y acc =

allDifferentPairs’ xs y (pairUp x y acc);

in

allDifferentPairs’ (removeDuplicates x []) (removeDuplicates y []) []

end;

(* Generation of all pairs from a single list, *not* including *)

(* pairs of equal elements. (a,b) and (b,a) can occur. *)

fun differentPairs x =

let val x’ = removeDuplicates x [];

in

allDifferentPairs x’ x’

end;

(* Generation of all pairs from a single list, *not* including *)

(* pairs of equal elements. (a,b) and (b,a) can *not* occur. *)

fun differentPairs’ x =

let val x’ = removeDuplicates x [];

fun dP [] acc = acc

| dP (x::xs) acc = dP xs (pairUp x xs acc)

in

dP x’ []

end;

(* Is a predicate true for at least one thing in a list? *)

fun trueSomewhere p [] = false

| trueSomewhere p (x::xs) = (p x) orelse trueSomewhere p xs;

(* Is a predicate true for all things in a list? *)

fun trueEverywhere p x =

let fun tE [] acc = acc

| tE (y::ys) acc = tE ys ((p y) andalso acc);

in

tE x true

end;
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The actual code is as follows:

(*-------------------------------------------------------------------------*)

(* Simple implementation of GraphPlan. *)

(* Sean Holden 2013/14. *)

(*-------------------------------------------------------------------------*)

(*-------------------------------------------------------------------------*)

(* Types *)

(*-------------------------------------------------------------------------*)

datatype formula = proposition of string

| not of formula;

fun fToString (proposition s) = s

| fToString (not(proposition(s))) = concat ["not-",s]

| fToString _ = "";

datatype actionName = name of string;

datatype action = persist of formula

| action of (actionName * formula list * formula list);

datatype goal = goal of formula list;

datatype problem = problem of formula list * action list * goal;

datatype mutexType = inconsistentEff

| actionsInt

| competeForPre

| conflictingPair

| mutexPreconditions

| unspecified;

datatype mutex = aMutex of action * action * mutexType

| cMutex of formula * formula * mutexType;

(*-------------------------------------------------------------------------*)

(* Basic functions *)

(*-------------------------------------------------------------------------*)

(*-------------------------------------------------------------------------*)

(* Does one formula negate another? *)

(*-------------------------------------------------------------------------*)

fun negates (f1, (not f2)) = (f1=f2)

| negates ((not f1), f2) = (f1=f2)

| negates (_, _) = false;

(*-------------------------------------------------------------------------*)

(* In getting rid of duplicated mutexes which might result from different *)

(* rules we use this as a definition of equality. *)

(*-------------------------------------------------------------------------*)

fun redundantMutexes (aMutex (a1,a2,t)) (aMutex (a1’,a2’,t’))

= (a1=a1’ andalso a2=a2’) orelse (a1=a2’ andalso a2=a1’)

| redundantMutexes (cMutex (f1, f2, t)) (cMutex (f1’, f2’, t’))

= (f1=f1’ andalso f2=f2’) orelse (f1=f2’ andalso f2=f1’)

| redundantMutexes _ _ = false;

(*-------------------------------------------------------------------------*)

fun getPres (persist(p)) = [p]

| getPres (action(_,p,_)) = p;

(*-------------------------------------------------------------------------*)

fun getEffs (persist(e)) = [e]

| getEffs (action(_,_,e)) = e;

(*-------------------------------------------------------------------------*)

(* Given a state level, generate the next action level and all the effects *)

(* for the next state level. *)

(*-------------------------------------------------------------------------*)

(* Make sure you don’t apply persistence actions to anything. *)

exception cantApplyPersistenceAction;

(* Does an action apply in a given state? *)

fun actionApplies stateLevel (persist _) = raise cantApplyPersistenceAction

| actionApplies [] (action _) = false

| actionApplies stateLevel (action (n, preList, effList))

= subset preList stateLevel;

(*-------------------------------------------------------------------------*)

(* Apply an action if possible, getting a list of effects. *)

(*-------------------------------------------------------------------------*)

fun applyAction stateLevel (persist _) = raise cantApplyPersistenceAction

| applyAction stateLevel (a as action (n, preList, effList)) =
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if actionApplies stateLevel a

then effList

else [];

(*-------------------------------------------------------------------------*)

(* Generate all the necessary persistence actions. *)

(*-------------------------------------------------------------------------*)

fun addPersistence stateLevel = map (fn x => persist x) stateLevel

(*-------------------------------------------------------------------------*)

(* Expand a state level into the next two levels. *)

fun expandState stateLevel actionList =

let

val persists = addPersistence stateLevel;

val others = filter (actionApplies stateLevel) actionList;

val allEffects =

union stateLevel

(unionConcat (map (applyAction stateLevel) actionList));

in

(collapse [persists, others], allEffects)

end;

(*-------------------------------------------------------------------------*)

(* Given a state and action level, detect mutexes. *)

(*-------------------------------------------------------------------------*)

(*-------------------------------------------------------------------------*)

(* Do a pair of lists of formulas contain conflicts? *)

(*-------------------------------------------------------------------------*)

fun conflictExists x y = trueSomewhere negates (allDifferentPairs x y);

(*-------------------------------------------------------------------------*)

(* Do a pair of actions have inconsistent effects? *)

(*-------------------------------------------------------------------------*)

fun inconsistentEffects (a1, a2) = conflictExists (getEffs a1) (getEffs a2);

(*-------------------------------------------------------------------------*)

(* Do a pair of actions have conflicting precondition and effect? *)

(*-------------------------------------------------------------------------*)

fun actionsInterfere (a1, a2) =

conflictExists (getPres a1) (getEffs a2) orelse

conflictExists (getEffs a1) (getPres a2);

(*-------------------------------------------------------------------------*)

(* Do a pair of preconditions need a mutex? *)

val preconditionsConflict = negates;

(*-------------------------------------------------------------------------*)

(* Take a list of (condition) mutexes for a state level and two actions. *)

(* See if any pair of formulas (action preconditions) appears in a mutex. *)

(* In other words, do the pair of actions compete for preconditions? *)

(*-------------------------------------------------------------------------*)

exception unexpectedActionMutex;

fun competeForPreconditions mList (x, y) =

let

val actionPairs = allDifferentPairs (getPres x) (getPres y);

fun matchMutex (aMutex(_)) (f1’, f2’) = raise unexpectedActionMutex

| matchMutex (cMutex (f1, f2, _)) (f1’, f2’)

= (f1=f1’ andalso f2=f2’) orelse (f1=f2’ andalso f2=f1’);

fun cM _ [] = false

| cM [] y = false

| cM (x::xs) y = (trueSomewhere (matchMutex x) y)

orelse cM xs y;

in

cM mList actionPairs

end;

(*-------------------------------------------------------------------------*)

(* Does an action achieve a precondition? *)

(*-------------------------------------------------------------------------*)

fun achieves (persist(f)) f’ = (f=f’)

| achieves (action(_,_,effs)) f’ = member f’ effs;

(*-------------------------------------------------------------------------*)

(* From a list of actions find all pairs that might satisfy a pair of *)

(* preconditions. *)

(*-------------------------------------------------------------------------*)

fun allGoodPairs actions (f1,f2) =

let val allPairs = differentPairs’ actions;

in

filter (fn (x,y) => (achieves x f1 andalso achieves y f2)
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orelse (achieves x f2 andalso achieves y f1))

allPairs

end;

(*-------------------------------------------------------------------------*)

(* Given a mutex and a pair of actions, are the actions mutex? *)

(*-------------------------------------------------------------------------*)

exception unexpectedConditionMutex;

fun areMutex _ (cMutex(_)) = raise unexpectedConditionMutex

| areMutex (a1,a2) (aMutex(a1’,a2’,_))

= (a1 <> a2) andalso ((a1=a1’ andalso a2=a2’) orelse

(a1=a2’ andalso a2=a1’));

(*-------------------------------------------------------------------------*)

(* Are all pairs of actions that can achieve the pair of preconditions *)

(* mutex? *)

(*-------------------------------------------------------------------------*)

fun actionsMutex mutexList actions (f1, f2) =

let

val allActionPairs = allGoodPairs actions (f1, f2);

fun testOnePair x = trueSomewhere (areMutex x) mutexList;

in

trueEverywhere testOnePair allActionPairs

end;

(*-------------------------------------------------------------------------*)

(* Having used expandState you have a start state, the possible actions *)

(* and the potential next state. Collect together all the required mutexes.*)

(*-------------------------------------------------------------------------*)

fun findMutex1 preconditions =

let val allPairs = differentPairs’ preconditions;

in

map (fn (x,y) => cMutex(x, y, conflictingPair))

(filter preconditionsConflict allPairs)

end;

(*-------------------------------------------------------------------------*)

fun findMutex2 actions =

let val allPairs = differentPairs’ actions;

in

map (fn (x,y) => aMutex(x, y, inconsistentEff))

(filter inconsistentEffects allPairs)

end;

(*-------------------------------------------------------------------------*)

fun findMutex3 actions =

let val allPairs = differentPairs’ actions;

in

map (fn (x,y) => aMutex(x, y, actionsInt))

(filter actionsInterfere allPairs)

end;

(*-------------------------------------------------------------------------*)

fun findMutex4 cMutexes actions =

let val allPairs = differentPairs’ actions;

in

map (fn (x,y) => aMutex(x, y, competeForPre))

(filter (competeForPreconditions cMutexes) allPairs)

end;

(*-------------------------------------------------------------------------*)

fun findMutex5 aMutexes actions preconditions =

let val allPairs = differentPairs’ preconditions;

in

map (fn (x,y) => cMutex(x, y, mutexPreconditions))

(filter (actionsMutex aMutexes actions) allPairs)

end;

(*-------------------------------------------------------------------------*)

(* Starting with a state level and its mutexes, generate the next action *)

(* and state levels and their mutexes. *)

(* *)

(* The removal of duplicates takes care of the fact that we generally find *)

(* a mutex multiple times using different rules. *)

(*-------------------------------------------------------------------------*)

fun expandOnce allActions stateLevel stateMutexes =

let

val (actionLevel’, stateLevel’) = expandState stateLevel allActions;

val actionMutexes’

= unionConcat [findMutex2 actionLevel’, findMutex3 actionLevel’,

findMutex4 stateMutexes actionLevel’];

val stateMutexes’
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= unionConcat [findMutex1 stateLevel’,

findMutex5 actionMutexes’ actionLevel’ stateLevel’];

in

(actionLevel’,

removeDuplicatesEq redundantMutexes actionMutexes’,

stateLevel’,

removeDuplicatesEq redundantMutexes stateMutexes’)

end;

(*-------------------------------------------------------------------------*)
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