6.3: Minimum Spanning Tree

Frank Stajano

Thomas Sauerwald

Lent 2016
Minimum Spanning Tree Problem

- **Given:** undirected, connected graph $G = (V, E, w)$ with non-negative edge weights.

Minimum Spanning Tree Problem

Street Networks, Wiring Electronic Components, Laying Pipes

Weights may represent distances, costs, travel times, capacities, resistance etc.

Applications

6.3: Minimum Spanning Tree T.S. 2
Minimum Spanning Tree Problem

- **Given:** undirected, connected graph $G = (V, E, w)$ with non-negative edge weights
- **Goal:** Find a subgraph $\subseteq E$ of minimum total weight that links all vertices

Applications

- Street Networks
- Wiring Electronic Components
- Laying Pipes

Weights may represent distances, costs, travel times, capacities, resistances, etc.
Minimum Spanning Tree Problem

- **Given:** undirected, connected graph $G = (V, E, w)$ with non-negative edge weights
- **Goal:** Find a subgraph $\subseteq E$ of minimum total weight that links all vertices

Must be necessarily a tree!
Minimum Spanning Tree Problem

- Given: undirected, connected graph $G = (V, E, w)$ with non-negative edge weights
- Goal: Find a subgraph $\subseteq E$ of minimum total weight that links all vertices

Applications

- Street Networks, Wiring Electronic Components, Laying Pipes
- Weights may represent distances, costs, travel times, capacities, resistance etc.
Generic Algorithm

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
Generic Algorithm

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

Definition

An edge of G is safe if by adding the edge to A, the resulting subgraph is still a subset of a minimum spanning tree.
0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

Definition
An edge of G is safe if by adding the edge to A, the resulting subgraph is still a subset of a minimum spanning tree.

How to find a safe edge?
Finding safe edges

Definitions

- a cut is a partition of V into at least two disjoint sets
Finding safe edges

Definitions

- a cut is a partition of \(V \) into at least two disjoint sets
- a cut respects \(A \subseteq E \) if no edge of \(A \) goes across the cut
Finding safe edges

Definitions

- a cut is a partition of V into at least two disjoint sets
- a cut respects $A \subseteq E$ if no edge of A goes across the cut

Definitions

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.
Finding safe edges

Definitions
- a **cut** is a partition of V into at least two disjoint sets
- a cut respects $A \subseteq E$ if no edge of A goes across the cut
Finding safe edges

Definitions

- a cut is a partition of V into at least two disjoint sets
- a cut respects $A \subseteq E$ if no edge of A goes across the cut

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.
Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:
Proof of Theorem

Theorem
Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:
- Let T be a MST containing A
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
Proof of Theorem

Theorem

Let \(A \subseteq E \) be a subset of a MST of \(G \). Then for any cut that respects \(A \), the lightest edge of \(G \) that goes across the cut is safe.

Proof:

- Let \(T \) be a MST containing \(A \)
- Let \(e_\ell \) be the lightest edge across the cut
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_ℓ be the lightest edge across the cut
- If $e_\ell \in T$, then we are done
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is **safe**.

Proof:

- Let T be a MST containing A
- Let e_ℓ be the lightest edge across the cut
- If $e_\ell \in T$, then we are done
- If $e_\ell \notin T$, then adding e_ℓ to T introduces a cycle crossing the cut through e_ℓ and another edge e_x.

Consider the tree $T \cup e_\ell \setminus e_x$:
- This tree must be a spanning tree.
- If $w(e_\ell) < w(e_x)$, then this spanning tree has a smaller cost than T (can't happen!)
- If $w(e_\ell) = w(e_x)$, then $T \cup e_\ell \setminus e_x$ is a MST.
Proof of Theorem

Theorem
Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:
- Let T be a MST containing A
- Let e_ℓ be the lightest edge across the cut
- If $e_\ell \in T$, then we are done
- If $e_\ell \notin T$, then adding e_ℓ to T introduces cycle
Proof of Theorem

Theorem
Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:
- Let T be a MST containing A
- Let e_ℓ be the lightest edge across the cut
- If $e_\ell \in T$, then we are done
- If $e_\ell \notin T$, then adding e_ℓ to T introduces cycle
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the \textit{lightest edge} of G that goes across the cut is \textit{safe}.

Proof:

- Let T be a MST containing A.
- Let e_ℓ be the \textit{lightest} edge across the cut.
- If $e_\ell \in T$, then we are done.
- If $e_\ell \notin T$, then adding e_ℓ to T introduces a cycle.
- This cycle crosses the cut through e_ℓ and another edge e_x.
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A.
- Let e_ℓ be the lightest edge across the cut.
- If $e_\ell \in T$, then we are done.
- If $e_\ell \notin T$, then adding e_ℓ to T introduces cycle.
- This cycle crosses the cut through e_ℓ and another edge e_x.
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_ℓ be the lightest edge across the cut
- If $e_\ell \in T$, then we are done
- If $e_\ell \notin T$, then adding e_ℓ to T introduces cycle
- This cycle crosses the cut through e_ℓ and another edge e_x
- Consider now the tree $T \cup e_\ell \setminus e_x$:

![Diagram of a minimum spanning tree with edges e_ℓ and e_x]
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is **safe**.

Proof:

- Let T be a MST containing A.
- Let e_ℓ be the **lightest** edge across the cut.
- If $e_\ell \in T$, then we are done.
- If $e_\ell \not\in T$, then adding e_ℓ to T introduces cycle.
- This cycle crosses the cut through e_ℓ and another edge e_x.
- Consider now the tree $T \cup e_\ell \setminus e_x$:

![Diagram](image.png)
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_ℓ be the lightest edge across the cut
- If $e_\ell \in T$, then we are done
- If $e_\ell \notin T$, then adding e_ℓ to T introduces cycle
- This cycle crosses the cut through e_ℓ and another edge e_x
- Consider now the tree $T \cup e_\ell \setminus e_x$:
 - This tree must be a spanning tree
Proof of Theorem

Let \(A \subseteq E \) be a subset of a MST of \(G \). Then for any cut that respects \(A \), the lightest edge of \(G \) that goes across the cut is safe.

Proof:

- Let \(T \) be a MST containing \(A \)
- Let \(e_\ell \) be the lightest edge across the cut
- If \(e_\ell \in T \), then we are done
- If \(e_\ell \not\in T \), then adding \(e_\ell \) to \(T \) introduces cycle
- This cycle crosses the cut through \(e_\ell \) and another edge \(e_x \)
- Consider now the tree \(T \cup e_\ell \setminus e_x \):
 - This tree must be a spanning tree
 - If \(w(e_\ell) < w(e_x) \), then this spanning tree has smaller cost than \(T \) (can’t happen!)
Proof of Theorem

Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_ℓ be the lightest edge across the cut
- If $e_\ell \in T$, then we are done
- If $e_\ell \notin T$, then adding e_ℓ to T introduces cycle
- This cycle crosses the cut through e_ℓ and another edge e_x
- Consider now the tree $T \cup e_\ell \setminus e_x$:
 - This tree must be a spanning tree
 - If $w(e_\ell) < w(e_x)$, then this spanning tree has smaller cost than T (can't happen!)
 - If $w(e_\ell) = w(e_x)$, then $T \cup e_\ell \setminus e_x$ is a MST.
Glimpse at Kruskal’s Algorithm

Basic Strategy

Let $A \subseteq E$ be a forest, initially empty.

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle.

Use Disjoint Sets to keep track of connected components!
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
- At every step,

![Graph](image)

Use Disjoint Sets to keep track of connected components!
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
- At every step, given A, perform:

![Graph diagram with edge weights]
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
- At every step, given A, perform:

![Diagram of a graph with labeled edges and vertices]
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
- At every step, given A, perform:

 Add lightest edge to A that does not introduce a cycle

![Graph](image-url)
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
- At every step, given A, perform:

 Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track of connected components!
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
- At every step, given A, perform:

 Add lightest edge to A that does not introduce a cycle
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, initially empty
- At every step, given A, perform:

 Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track of connected components!
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let \(A \subseteq E \) be a forest, initially empty
- At every step, given \(A \), perform:

 Add lightest edge to \(A \) that does not introduce a cycle

Use Disjoint Sets to keep track of connected components!
Glimpse at Kruskal’s Algorithm

Basic Strategy

- Let \(A \subseteq E \) be a forest, initially empty
- At every step, given \(A \), perform:

 Add lightest edge to \(A \) that does not introduce a cycle

Use Disjoint Sets to keep track of connected components!
Execution of Kruskal's Algorithm

6.3: Minimum Spanning Tree
Execution of Kruskal’s Algorithm

6.3: Minimum Spanning Tree
Execution of Kruskal's Algorithm

T.S. 7
Execution of Kruskal’s Algorithm

6.3: Minimum Spanning Tree
Execution of Kruskal’s Algorithm
Execution of Kruskal’s Algorithm

6.3: Minimum Spanning Tree
Execution of Kruskal’s Algorithm
Execution of Kruskal’s Algorithm

6.3: Minimum Spanning Tree
Execution of Kruskal’s Algorithm
Execution of Kruskal’s Algorithm
Execution of Kruskal’s Algorithm

6.3: Minimum Spanning Tree

T.S.
Execution of Kruskal’s Algorithm
Execution of Kruskal’s Algorithm
Execution of Kruskal’s Algorithm

6.3: Minimum Spanning Tree
Details of Kruskal’s Algorithm

```python
0: def kruskal(G)
1:   Apply Kruskal’s algorithm to graph G
2:   Return set of edges that form a MST
3:
4:   A = Set()  # Set of edges of MST; initially empty.
5:   D = DisjointSet()
6:   for v in G.vertices():
7:       D.makeSet(v)
8:   E = G.edges()
9:   E.sort(key=weight, direction=ascending)
10:
11:  for edge in E:
12:      startSet = D.findSet(edge.start)
13:      endSet = D.findSet(edge.end)
14:      if startSet != endSet:
15:         A.append(edge)
16:         D.union(startSet, endSet)
17:   return A
```

Consider the cut of all connected components (disjoint sets). Line 14 ensures that we extend A by an edge that goes across the cut. This edge is also the lightest edge crossing the cut (otherwise, we would have included a lighter edge before).
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet, endSet)
17: return A

Time Complexity

Consider the cut of all connected components (disjoint sets)
L. 14 ensures that we extend A by an edge that goes across the cut
This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet, endSet)
17: return A

Time Complexity

Consider the cut of all connected components (disjoint sets)
L. 14 ensures that we extend A by an edge that goes across the cut
This edge is also the lightest edge crossing the cut (otherwise, we would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet, endSet)
17: return A

Time Complexity

- **Initialisation** (l. 4-9): $O(V + E \log E)$
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: $A = \text{Set()}$ # Set of edges of MST; initially empty.
5: $D = \text{DisjointSet()}$
6: for v in G.vertices():
7: D.makeSet(v)
8: $E = G$.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: $\text{startSet} = D$.findSet(edge.start)
13: $\text{endSet} = D$.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet, endSet)
17: return A

Time Complexity

- **Initialisation** (l. 4-9): $\mathcal{O}(V + E \log E)$
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Time Complexity

- Initialisation (l. 4-9): $\mathcal{O}(V + E \log E)$
- Main Loop (l. 11-16): $\mathcal{O}(E \cdot \alpha(n))$
Details of Kruskal’s Algorithm

```python
0: def kruskal(G)
1:    Apply Kruskal’s algorithm to graph G
2:    Return set of edges that form a MST
3:
4:    A = Set()  # Set of edges of MST; initially empty.
5:    D = DisjointSet()
6:    for v in G.vertices():
7:        D.makeSet(v)
8:    E = G.edges()
9:    E.sort(key=weight, direction=ascending)
10:
11:   for edge in E:
12:       startSet = D.findSet(edge.start)
13:       endSet = D.findSet(edge.end)
14:       if startSet != endSet:
15:           A.append(edge)
16:           D.union(startSet,endSet)
17:   return A
```

Time Complexity

- **Initialisation** (l. 4-9): $O(V + E \log E)$
- **Main Loop** (l. 11-16): $O(E \cdot \alpha(n))$

\Rightarrow **Overall:** $O(E \log E) = O(E \log V)$
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet, endSet)
17: return A

Time Complexity

- Initialisation (l. 4-9): $O(V + E \log E)$
- Main Loop (l. 11-16): $O(E \cdot \alpha(n))$

⇒ Overall: $O(E \log E) = O(E \log V)$

If edges are already sorted, runtime becomes $O(E \cdot \alpha(n))!$
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Correctness

6.3: Minimum Spanning Tree
Details of Kruskal’s Algorithm

0: def kruskal(G):
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Correctness

- Consider the cut of all connected components (disjoint sets)
Details of Kruskal’s Algorithm

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Correctness

- Consider the cut of all connected components (disjoint sets)
- L. 14 ensures that we extend A by an edge that goes across the cut
Details of Kruskal’s Algorithm

```python
0: def kruskal(G):
1:     # Apply Kruskal’s algorithm to graph G
2:     # Return set of edges that form a MST
3:     A = Set() # Set of edges of MST; initially empty.
4:     D = DisjointSet()
5:     for v in G.vertices():
6:         D.makeSet(v)
7:     E = G.edges()
8:     E.sort(key=weight, direction=ascending)
9:     for edge in E:
10:        startSet = D.findSet(edge.start)
11:        endSet = D.findSet(edge.end)
12:        if startSet != endSet:
13:            A.append(edge)
14:            D.union(startSet, endSet)
15:     return A
```

Correctness

- Consider the cut of all connected components (disjoint sets)
- L. 14 ensures that we extend A by an edge that goes across the cut
- This edge is also the lightest edge crossing the cut (otherwise, we would have included a lighter edge before)
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex

![Graph diagram with labeled edges and vertices]

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start **growing a tree** from a designated root vertex
- At each step, **add lightest edge** linked to A that does not yield cycle

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start **growing a tree** from a designated root vertex
- At each step, **add lightest edge** linked to A that does not yield cycle

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy
- Start **growing a tree** from a designated root vertex
- At each step, **add lightest edge** linked to A that does not yield cycle

We computed the same MST as Kruskal, but in a completely different order! Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy
- Start **growing a tree** from a designated root vertex
- At each step, **add lightest edge** linked to A that does not yield cycle

![Diagram of a graph with labeled edges and vertices](image)

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Basic Strategy

- **Start growing a tree** from a designated root vertex
- **At each step**, add **lightest edge** linked to A that does not yield cycle

![Graph](image)

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A \) that does not yield cycle

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- **Start** growing a tree from a designated root vertex
- At each step, **add lightest edge** linked to \(A \) that does not yield cycle

Diagram

We computed the same MST as Kruskal, but in a completely different order! The final MST is given implicitly by the pointers!
Prim’s Algorithm

Basic Strategy
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

We computed the same MST as Kruskal, but in a completely different order! The final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start **growing a tree** from a designated root vertex
- At each step, **add lightest edge** linked to A that does not yield cycle

![Graph Diagram](attachment:graph.png)

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Basic Strategy

- Start **growing a tree** from a designated root vertex
- At each step, **add lightest edge** linked to A that does not yield cycle
Prim’s Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Implementation will be based on vertices!

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Basic Strategy

- Start **growing a tree** from a designated root vertex
- At each step, **add lightest edge** linked to A that does not yield cycle

Assign every vertex not in A a **key** which is **at all stages** equal to the smallest weight of an edge connecting to A.
Prim’s Algorithm

Basic Strategy
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Assign every vertex not in A a key which is at all stages equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has **key** and **pointer** of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

![Graph Diagram]

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

![Graph of Prim's Algorithm](image-url)
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

![Graph showing Prim's Algorithm](image)

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in \(Q \) has **key** and **pointer** of least-weight edge to \(V \setminus Q \)
- At each step:
 1. extract vertex from \(Q \) with smallest key \(\iff \) **safe edge of cut** \((V \setminus Q, Q) \)
 2. update keys and pointers of its neighbors in \(Q \)

[Diagram of a graph with labeled edges and vertices showing the process of Prim's Algorithm.]

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key ⇔ safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

![Graph Example](image)
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has **key** and **pointer** of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!
Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$.
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q.

We computed the same MST as Kruskal, but in a completely different order! Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!
Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!
Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in \(Q \) has key and pointer of least-weight edge to \(V \setminus Q \)
- At each step:
 1. extract vertex from \(Q \) with smallest key ⇔ safe edge of cut \((V \setminus Q, Q) \)
 2. update keys and pointers of its neighbors in \(Q \)

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in \(Q \) has key and pointer of least-weight edge to \(V \setminus Q \)
- At each step:
 1. extract vertex from \(Q \) with smallest key ⇔ safe edge of cut \((V \setminus Q, Q)\)
 2. update keys and pointers of its neighbors in \(Q \)

![Diagram of Prim's Algorithm](image-url)
Prim’s Algorithm

Implementation

- Every vertex in \(Q \) has key and pointer of least-weight edge to \(V \setminus Q \)
- At each step:
 1. extract vertex from \(Q \) with smallest key \(\Leftrightarrow\) safe edge of cut \((V \setminus Q, Q)\)
 2. update keys and pointers of its neighbors in \(Q \)

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

![Graph diagram]

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

[Diagram of a weighted graph with vertices and edges labeled with weights. The explanation matches the diagram.]

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given implicitly by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in \(Q \) has **key** and **pointer** of least-weight edge to \(V \setminus Q \)
- At each step:
 1. extract vertex from \(Q \) with smallest key ⇔ **safe edge** of cut \((V \setminus Q, Q) \)
 2. update keys and pointers of its neighbors in \(Q \)

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

![Diagram of a graph with Prim's algorithm applied](image-url)
Prim’s Algorithm

Implementation

- Every vertex in Q has **key** and **pointer** of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

![Graph representation of Prim's Algorithm](image)
Prim’s Algorithm

Implementation

- Every vertex in \(Q \) has key and pointer of least-weight edge to \(V \setminus Q \)
- At each step:
 1. extract vertex from \(Q \) with smallest key ⇔ safe edge of cut \((V \setminus Q, Q)\)
 2. update keys and pointers of its neighbors in \(Q \)

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

Diagram of graph with weights and connections.
Prim’s Algorithm

Implementation

- Every vertex in \(Q \) has key and pointer of least-weight edge to \(V \setminus Q \)
- At each step:
 1. extract vertex from \(Q \) with smallest key ⇔ safe edge of cut (\(V \setminus Q, Q \))
 2. update keys and pointers of its neighbors in \(Q \)

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q
Prim’s Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff safe edge of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed the same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!
Prim’s Algorithm

Implementation

- Every vertex in Q has **key** and **pointer** of least-weight edge to $V \setminus Q$
- At each step:
 1. extract vertex from Q with smallest key \iff **safe edge** of cut $(V \setminus Q, Q)$
 2. update keys and pointers of its neighbors in Q

We computed same MST as Kruskal, but in a completely different order!

Final MST is given (implicitly) by the pointers!

6.3: Minimum Spanning Tree
Details of Prim’s Algorithm

```python
0: def prim(G,r)
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:         MST induced by the .predecessor fields
4:     
5:     Q = MinPriorityQueue()
6:     for v in G.vertices():
7:         v.predecessor = None
8:         if v == r:
9:             v.key = 0
10:        else:
11:            v.key = Infinity
12:     Q.insert(v)
13:     
14:     while not Q.isEmpty():
15:         u = Q.extractMin()
16:         for v in u.adjacent():
17:             w = G.weightOfEdge(u,v)
18:             if Q.hasItem(v) and w < v.key:
19:                 v.predecessor = u
20:                 Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

<table>
<thead>
<tr>
<th>Method</th>
<th>Amortized Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prim’s Algorithm</td>
<td>(O(V \log V + E))</td>
</tr>
<tr>
<td>Fibonacci Heaps</td>
<td>(O(V))</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>(O(V \cdot \log V))</td>
</tr>
<tr>
<td>DecreaseKey</td>
<td>(O(E \cdot 1))</td>
</tr>
</tbody>
</table>

Fibonacci Heaps:
- Init (l. 6-13): \(O(V)\),
- ExtractMin (15): \(O(V \cdot \log V)\),
- DecreaseKey (16-20): \(O(E \cdot 1)\),
- Overall: \(O(V \log V + E)\)

Binary/Binomial Heaps:
- Init (l. 6-13): \(O(V)\),
- ExtractMin (15): \(O(V \cdot \log V)\),
- DecreaseKey (16-20): \(O(E \cdot \log V)\),
- Overall: \(O(V \log V + E \log V)\)
Details of Prim’s Algorithm

```python
0: def prim(G, r):
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:         MST induced by the .predecessor fields
4:         
5:         Q = MinPriorityQueue()
6:         for v in G.vertices():
7:             v.predecessor = None
8:             if v == r:
9:                 v.key = 0
10:            else:
11:                v.key = Infinity
12:         Q.insert(v)
13:     
14:         while not Q.isEmpty():
15:             u = Q.extractMin()
16:             for v in u.adjacent():
17:                 w = G.weightOfEdge(u, v)
18:                 if Q.hasItem(v) and w < v.key:
19:                     v.predecessor = u
20:                     Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps**:
 - **Init**: $O(V)$,
 - **ExtractMin**: $O(V \cdot \log V)$,
 - **DecreaseKey**: $O(E \cdot 1)$,
 - **Overall**: $O(V \log V + E)$

- **Binary/Binomial Heaps**:
 - **Init**: $O(V)$,
 - **ExtractMin**: $O(V \cdot \log V)$,
 - **DecreaseKey**: $O(E \cdot \log V)$,
 - **Overall**: $O(V \log V + E \log V)$
Details of Prim’s Algorithm

```
0:   def prim(G, r)
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:       MST induced by the .predecessor fields
4:
5:     Q = MinPriorityQueue()
6:     for v in G.vertices():
7:       v.predecessor = None
8:       if v == r:
9:         v.key = 0
10:      else:
11:         v.key = Infinity
12:     Q.insert(v)
13:
14:   while not Q.isEmpty():
15:     u = Q.extractMin()
16:     for v in u.adjacent():
17:       w = G.weightOfEdge(u, v)
18:       if Q.hasItem(v) and w < v.key:
19:         v.predecessor = u
20:     Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps:**

 - Init (l. 6-13): $O(V)$
 - ExtractMin (15): $O(V \cdot \log V)$
 - DecreaseKey (16-20): $O(E)$
 - Overall: $O(V \log V + E)$

- **Binary/Binomial Heaps:**

 - Init (l. 6-13): $O(V)$
 - ExtractMin (15): $O(V \cdot \log V)$
 - DecreaseKey (16-20): $O(E \cdot \log V)$
 - Overall: $O(V \log V + E \log V)$
Details of Prim’s Algorithm

```python
0: def prim(G, r)
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:         MST induced by the .predecessor fields
4:     
5:     Q = MinPriorityQueue()
6:     for v in G.vertices():
7:         v.predecessor = None
8:         if v == r:
9:             v.key = 0
10:        else:
11:            v.key = Infinity
12:     Q.insert(v)
13:     
14:     while not Q.isEmpty():
15:         u = Q.extractMin()
16:         for v in u.adjacent():
17:             w = G.weightOfEdge(u, v)
18:             if Q.hasItem(v) and w < v.key:
19:                 v.predecessor = u
20:                 Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps:**
 - Init (l. 6-13): $O(V)$,
Details of Prim’s Algorithm

```python
0: def prim(G, r)
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:     MST induced by the .predecessor fields
4:     
5:     Q = MinPriorityQueue()
6:     for v in G.vertices():
7:         v.predecessor = None
8:         if v == r:
9:             v.key = 0
10:        else:
11:            v.key = Infinity
12:        Q.insert(v)
13:     
14:     while not Q.isEmpty():
15:         u = Q.extractMin()
16:         for v in u.adjacent():
17:             w = G.weightOfEdge(u, v)
18:             if Q.hasItem(v) and w < v.key:
19:                 v.predecessor = u
20:                 Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps:**
 - **Init** (l. 6-13): $\mathcal{O}(V)$,
Details of Prim’s Algorithm

```python
def prim(G, r):
    Apply Prim’s Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields

Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
Q.insert(v)

while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
        w = G.weightOfEdge(u, v)
        if Q.hasItem(v) and w < v.key:
            v.predecessor = u
    Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps:**
 - **Init** (l. 6-13): $O(V)$,
 - **ExtractMin** (15): $O(V \cdot \log V)$,
Details of Prim’s Algorithm

```python
0: def prim(G, r):
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:         MST induced by the .predecessor fields
4:
5:     Q = MinPriorityQueue()
6:     for v in G.vertices():
7:         v.predecessor = None
8:         if v == r:
9:             v.key = 0
10:        else:
11:            v.key = Infinity
12:     Q.insert(v)
13:
14:     while not Q.isEmpty():
15:         u = Q.extractMin()
16:         for v in u.adjacent():
17:             w = G.weightOfEdge(u, v)
18:             if Q.hasItem(v) and w < v.key:
19:                 v.predecessor = u
20:             Q.decreaseKey(item=v, newKey=w)
```

Fibonacci Heaps:
- **Init (l. 6-13):** $\mathcal{O}(V)$,
- **ExtractMin (15):** $\mathcal{O}(V \cdot \log V)$,
- **DecreaseKey (16-20):** $\mathcal{O}(E \cdot 1)$,
 \[\Rightarrow \] Overall: $\mathcal{O}(V \log V + E)$

Binary/Binomial Heaps:
- **Init (l. 6-13):** $\mathcal{O}(V)$,
- **ExtractMin (15):** $\mathcal{O}(V \cdot \log V)$,
- **DecreaseKey (16-20):** $\mathcal{O}(E \cdot \log V)$,
 \[\Rightarrow \] Overall: $\mathcal{O}(V \log V + E \log V)$
Details of Prim’s Algorithm

```python
0: def prim(G, r)
1:   Apply Prim’s Algorithm to graph G and root r
2:   Return result implicitly by modifying G:
3:   MST induced by the .predecessor fields
4:
5:   Q = MinPriorityQueue()
6: for v in G.vertices():
7:     v.predecessor = None
8:   if v == r:
9:     v.key = 0
10:   else:
11:     v.key = Infinity
12:   Q.insert(v)
13:
14: while not Q.isEmpty():
15:   u = Q.extractMin()
16:   for v in u.adjacent():
17:     w = G.weightOfEdge(u,v)
18:     if Q.hasItem(v) and w < v.key:
19:       v.predecessor = u
20:       Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps:**
 - Init (l. 6-13): $\mathcal{O}(V)$
 - ExtractMin (15): $\mathcal{O}(V \cdot \log V)$
 - DecreaseKey (16-20): $\mathcal{O}(E \cdot 1)$
Details of Prim’s Algorithm

```
0: def prim(G, r)
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:         MST induced by the .predecessor fields
4:     
5:     Q = MinPriorityQueue()
6:     for v in G.vertices():
7:         v.predecessor = None
8:         if v == r:
9:             v.key = 0
10:        else:
11:            v.key = Infinity
12:     Q.insert(v)
13:     
14:     while not Q.isEmpty():
15:         u = Q.extractMin()
16:         for v in u.adjacent():
17:             w = G.weightOfEdge(u, v)
18:             if Q.hasItem(v) and w < v.key:
19:                 v.predecessor = u
20:             Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps:**
 - Init (l. 6-13): $\mathcal{O}(V)$,
 - ExtractMin (15): $\mathcal{O}(V \cdot \log V)$,
 - DecreaseKey (16-20): $\mathcal{O}(E \cdot 1)$

Amortized Cost
Details of Prim’s Algorithm

```
0: def prim(G, r)
1:     Apply Prim’s Algorithm to graph G and root r
2:     Return result implicitly by modifying G:
3:         MST induced by the .predecessor fields
4:     Q = MinPriorityQueue()
5:     for v in G.vertices():
6:         v.predecessor = None
7:         if v == r:
8:             v.key = 0
9:         else:
10:            v.key = Infinity
11:     Q.insert(v)
12:     while not Q.isEmpty():
13:         u = Q.extractMin()
14:         for v in u.adjacent():
15:             w = G.weightOfEdge(u, v)
16:             if Q.hasItem(v) and w < v.key:
17:                 v.predecessor = u
18:                 Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- **Fibonacci Heaps:**
 - **Init** (l. 6-13): $O(V)$, **ExtractMin** (15): $O(V \cdot \log V)$, **DecreaseKey** (16-20): $O(E \cdot 1)$
 - \Rightarrow **Overall:** $O(V \log V + E)$
Details of Prim’s Algorithm

0: def prim(G, r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u, v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Time Complexity

- **Fibonacci Heaps:**
 - Init (l. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$, DecreaseKey (16-20): $\mathcal{O}(E \cdot 1)$
 - \Rightarrow Overall: $\mathcal{O}(V \log V + E)$

- **Binary/Binomial Heaps:**
 - Init (l. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$, DecreaseKey (16-20): $\mathcal{O}(E \cdot \log V)$
 - \Rightarrow Overall: $\mathcal{O}(V \log V + E \log V)$
Summary (Kruskal and Prim)

Generic Idea
- Add **safe edge** to the current MST as long as possible
- **Theorem:** An edge is **safe** if it is the lightest of a cut respecting A

6.3: Minimum Spanning Tree
Summary (Kruskal and Prim)

Generic Idea
- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting A

Kruskal’s Algorithm
- Gradually transforms a forest into a MST by merging trees
- invokes disjoint set data structure
- Runtime $O(E \log V)$
Summary (Kruskal and Prim)

Generic Idea
- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting \(A \)

Kruskal’s Algorithm
- Gradually transforms a forest into a MST by merging trees
- Invokes disjoint set data structure
- Runtime \(\mathcal{O}(E \log V) \)

Prim’s Algorithm
- Gradually extends a tree into a MST by adding incident edges
- Invokes Fibonacci heaps (priority queue)
- Runtime \(\mathcal{O}(V \log V + E) \)
Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A
Outlook: Reverse-Delete Algorithm

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Basic Idea

Can be implemented in time $O(E \log V \left(\log \log V\right)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]

6.3: Minimum Spanning Tree
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

![Graph with edges and weights](image)

Can be implemented in time $O(E \log V (\log \log V))$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V))$. [Thorup, 2000]

6.3: Minimum Spanning Tree
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]

6.3: Minimum Spanning Tree
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

![Graph with labeled edges showing a minimum spanning tree](image)

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V))$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]

6.3: Minimum Spanning Tree
Outlook: Reverse-Delete Algorithm

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

![Graph Diagram]

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Let A be initially the set of all edges
Consider all edges in decreasing order of their weight
Remove edge from A as long as all vertices are connected by A
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V))$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]

6.3: Minimum Spanning Tree
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V))^3$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(\text{E} \log \text{V} (\log \log \text{V}))$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V \left(\log \log V \right)^3)$. [Thorup, 2000]

6.3: Minimum Spanning Tree
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Outlook: Reverse-Delete Algorithm

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Can be implemented in time $O(E \log V (\log \log V)^3)$. [Thorup, 2000]
Current State-of-the-Art

Does a linear-time MST algorithm exist?

Randomised MST algorithm with expected runtime $O(E)$ based on Boruvka’s algorithm (from 1926).

Karger, Klein, Tarjan, JACM’1995

Deterministic MST algorithm with runtime $O(E \cdot \alpha(n))$.

Chazelle, JACM’2000

Deterministic MST algorithm with asymptotically optimal runtime however, the runtime itself is not known...

Pettie, Ramachandran, JACM’2002
Current State-of-the-Art

Does a linear-time MST algorithm exist?

- Karger, Klein, Tarjan, JACM’1995
 - randomised MST algorithm with expected runtime $O(E)$
 - based on Boruvka’s algorithm (from 1926)
Current State-of-the-Art

Does a linear-time MST algorithm exist?

- **Karger, Klein, Tarjan, JACM'1995**
 - randomised MST algorithm with expected runtime $O(E)$
 - based on Boruvka’s algorithm (from 1926)

- **Chazelle, JACM’2000**
 - deterministic MST algorithm with runtime $O(E \cdot \alpha(n))$
Current State-of-the-Art

Does a linear-time MST algorithm exist?

- Karger, Klein, Tarjan, JACM’1995
 - randomised MST algorithm with expected runtime $O(E)$
 - based on Boruvka’s algorithm (from 1926)

- Chazelle, JACM’2000
 - deterministic MST algorithm with runtime $O(E \cdot \alpha(n))$

- Pettie, Ramachandran, JACM’2002
 - deterministic MST algorithm with asymptotically optimal runtime
 - however, the runtime itself is not known...