6.4: Single-Source Shortest Paths

Frank Stajano Thomas Sauerwald

Lent 2016

% UNIVERSITY OF
4% CAMBRIDGE

Outline

Introduction

6.4: Single-Source Shortest Paths

TS.

Shortest Path Problem

Shortest Path Problem
= Given: directed graph
G = (V, E) with edge weights,
pair of vertices s,t € V

6.4: Single-Source Shortest Paths TS. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s,t € V

= Goal: Find a path of minimum
weight from sto tin G

6.4: Single-Source Shortest Paths

TS.

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s,t € V

= Goal: Find a path of minimum
weight from sto tin G
N\

p) = K, w(vk_1, vi) is minimized.

p = (v = s,Ww,...,v = t)such that
w(

6.4: Single-Source Shortest Paths TS. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s,t € V

= Goal: Find a path of minimum
weight from sto tin G
N\

p) = K, w(vk_1, vi) is minimized.

p = (v = s,Ww,...,v = t)such that
w(

6.4: Single-Source Shortest Paths TS. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s,t € V

= Goal: Find a path of minimum
weight from sto tin G

What if G is unweighted?

6.4: Single-Source Shortest Paths TS. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s,t € V

= Goal: Find a path of minimum
weight from sto tin G

What if G is unweighted?

7 I

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

6.4: Single-Source Shortest Paths TS. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s,t € V

= Goal: Find a path of minimum
weight from sto tin G

Applications
| = Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange]

6.4: Single-Source Shortest Paths TS. 3

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm

6.4: Single-Source Shortest Paths

TS.

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)
= Shortest Paths via Matrix Multiplication
= Johnson’s Algorithm

Q;

6.4: Single-Source Shortest Paths

TS.

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

(& 6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

6.4: Single-Source Shortest Paths TS. 5

Distances and Negative-Weight Cycles (Figure 24.1)

Negative-Weight Cycle
(not reachable from s)

(reachable from s)

[Negative-Weight Cycle }

o 5. 6.4: Single-Source Shortest Paths TS. 5

Outline

Bellman-Ford Algorithm

6.4: Single-Source Shortest Paths

TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from sto v
= v.d is the length of the shortest path discovered so far

6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.6 =0, v.d =co for v # s J

S
6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.6 =0, v.d =co for v # s J

» Attheend: v.d=v.dforallve V

6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

= v.J is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.6 =0, v.d =co for v # s J

Atthe end: v.d=v.dforallve V

~—— Relaxing an edge (U, V) ————
Given estimates u.d and v.d, can we find a
better path from v using the edge (u, v)?

Sff
E:';,' 6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

= v.J is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.6 =0, v.d =co for v # s J

Atthe end: v.d=v.dforallve V

~—— Relaxing an edge (U, V) ————
Given estimates u.d and v.d, can we find a
better path from v using the edge (u, v)?

v.d ; u.d+ w(u,v)

Sff
E:';,' 6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

S

v.¢ is the length of the shortest path (distance) from sto v
v.d is the length of the shortest path discovered so far

Atthe end: v.d=v.dforallve V

= At the beginning: s.d =s.6 =0, v.d =co for v # s J

~—— Relaxing an edge (U, V) ————
Given estimates u.d and v.d, can we find a
better path from v using the edge (u, v)?

v.d ; u.d+w(u,v)

.a‘
o B 55 6.4: Single-Source Shortest Paths

TS.

Relaxing Edges

Definition

Fix the source vertex s € V

S

v.¢ is the length of the shortest path (distance) from sto v
v.d is the length of the shortest path discovered so far

Atthe end: v.d=v.dforallve V

= At the beginning: s.d =s.6 =0, v.d =co for v # s J

~—— Relaxing an edge (U, V) ————
Given estimates u.d and v.d, can we find a
better path from v using the edge (u, v)?

v.d ; u.d+w(u,v)

.a‘
o B 55 6.4: Single-Source Shortest Paths

TS.

Relaxing Edges

Definition

Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v
v.d is the length of the shortest path discovered so far

S

Atthe end: v.d=v.dforallve V

At the beginning: s.d =50 =0,v.d=ocoforv#s J

~—— Relaxing an edge (U, V) ————
Given estimates u.d and v.d, can we find a
better path from v using the edge (u, v)?

v.d ; u.d+w(u,v)

u 4

6.4: Single-Source Shortest Paths

TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.6 =0, v.d =co for v # s J

= Attheend: v.d=v.dforallve V

~—— Relaxing an edge (u, v)

2
Given estimates u.d and v.d, can we find a Py @ \

better path from v using the edge (u, v)? ! N
? ‘s
v.d > u.d+ w(u,v) ‘@
AN

After relaxing (u, v), regardless of whether we found a shortcut:
v.d < u.d+w(u,v)

£ 6.4: Single-Source Shortest Paths TS. 7

Properties of Shortest Paths and Relaxations

- Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u,v) € E, we have v.d < u.d + w(u,v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.é for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.J prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

-;.E»» 6.4: Single-Source Shortest Paths

TS.

Properties of Shortest Paths and Relaxations

- Toolkit

Triangle inequality (Lemma 24.10)

Upper-bound Property (Lemma 24.11)

value v.4, it never changes.
Convergence Property (Lemma 24.14)

= For any edge (u,v) € E, we have v.d < u.d + w(u,v)

= We always have v.d > v.é for all v € V, and once v.d achieves the

» If s ~ u — v is a shortest path from s to v, and if u.d = u.J prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

D

v.d <u.d+ w(u,v)

-;.E»» 6.4: Single-Source Shortest Paths

TS.

Properties of Shortest Paths and Relaxations

- Toolkit

Triangle inequality (Lemma 24.10)

Upper-bound Property (Lemma 24.11)

value v.4, it never changes.
Convergence Property (Lemma 24.14)

= For any edge (u,v) € E, we have v.d < u.d + w(u,v)

= We always have v.d > v.é for all v € V, and once v.d achieves the

» If s ~ u — v is a shortest path from s to v, and if u.d = u.J prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

D

v.d <u.d+w(u,v)
=u.d+ w(u,v)

-;.E»» 6.4: Single-Source Shortest Paths

TS.

Properties of Shortest Paths and Relaxations

- Toolkit

Triangle inequality (Lemma 24.10)

Upper-bound Property (Lemma 24.11)

value v.4, it never changes.
Convergence Property (Lemma 24.14)

= For any edge (u,v) € E, we have v.d < u.d + w(u,v)

= We always have v.d > v.é for all v € V, and once v.d achieves the

» If s ~ u — v is a shortest path from s to v, and if u.d = u.J prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

D

v.d <u.d+w(u,v)
=u.d+ w(u,v)
=V

-;.E»,- 6.4: Single-Source Shortest Paths

TS.

Properties of Shortest Paths and Relaxations

- Toolkit

Triangle inequality (Lemma 24.10)

value v.4, it never changes.

» If s ~ u — v is a shortest path

= For any edge (u,v) € E, we have v.d < u.d + w(u,v)
Upper-bound Property (Lemma 24.11)
= We always have v.d > v.é for all v € V, and once v.d achieves the

Convergence Property (Lemma 24.14)

from sto v, and if u.d = u.é prior to

relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d <u.d+ w(u,v)

S 4 Y = u.d + w(u,v)
O N W B
V.6 Since v.d > v.5, we have v.d = v.4.

-',.E»;- 6.4: Single-Source Shortest Paths

TS. 8

O

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,w1,...,w) is a shortest path from s = v to v, and we relax
the edges of p in the order (vo, v1), (v1, V2), ..., (Vk—1, k), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

i
6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,w1,...,w) is a shortest path from s = v to v, and we relax
the edges of p in the order (vo, v1), (v1, V2), ..., (Vk—1, k), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:

= By inductionon i, 0 < i < k:
After the ith edge of p is relaxed, we have v;.d = v;.4.

.'a"n
o 55 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,w1,...,w) is a shortest path from s = v to v, and we relax
the edges of p in the order (vo, v1), (v1, V2), ..., (Vk—1, k), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 < i < k:
After the ith edge of p is relaxed, we have v;.d = v;.4.
= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

.'a"n
o 55 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,w1,...,w) is a shortest path from s = v to v, and we relax
the edges of p in the order (vo, v1), (v1, V2), ..., (Vk—1, k), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:

= By inductionon i, 0 < i < k:
After the ith edge of p is relaxed, we have v;.d = v;.4.

= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume V;_y.d = v;_1.6 and relax (v,_1, v;).

Vo Vi Vo Vi—1 Vi

()

V0.9 vi. W | —----- >
() O

.'a"n
o 55 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)
If p=(vo,w1,...,w) is a shortest path from s = v to v, and we relax
the edges of p in the order (vo, v1), (v1, V2), ..., (Vk—1, k), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:

= By inductionon i, 0 < i < k:
After the ith edge of p is relaxed, we have v;.d = v;.4.

= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume V;_y.d = v;_1.6 and relax (v,_1, v;).
Convergence Property = v;.d = v;.§ (now and at all later steps) O

Vo Vi Vo Vi—1 Vi

(o)

) —) =)

.'a"n
o 55 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

[“Propagation”: By relaxing proper edges, set of vertices with v.6 = v.d gets Iarger]

Path-Relaxation PropeW(Lemma 24.15)
If p=(vo,w1,...,w) is a shortest path from s = v to v, and we relax
the edges of p in the order (vo, v1), (v1, V2), ..., (Vk—1, k), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:

= By inductionon i, 0 < i < k:
After the ith edge of p is relaxed, we have v;.d = v;.4.

= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume V;_y.d = v;_1.6 and relax (v,_1, v;).
Convergence Property = v;.d = v;.§ (now and at all later steps) O

Vo

Vi Vo ,
- ’ @ @ ______

i
EEE 6.4: Single-Source Shortest Paths TS. 9

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)

: assert (s in G.vertices())

: for v in G.vertices()
v.predecessor = None

v.d = Infinity

: repeat |V|-1 times

0
1
2
3:
4: s.d=0
5.
6
7 for e in G.edges()
8
9

if e.start.d + e.weight.d < e.end.d:

10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

S5 6.4: Single-Source Shortest Paths TS.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)

: assert (s in G.vertices())

: for v in G.vertices()
v.predecessor = None

v.d = Infinity

: repeat |V|-1 times

0
1
2
3:
4: s.d=0
5.
6
7 for e in G.edges()
8
9

if e.start.d + e.weight.d < e.end.d:

10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity

S5 6.4: Single-Source Shortest Paths TS.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

VodoubdWNRFO

10:
11:
12:
13:
14:
15:
16:

: assert (s in G.vertices())
: for v in G.vertices()

v.predecessor = None
v.d = Infinity

:s.d=20

: repeat |V|-1 times

for e in G.edges()

if e.start.d + e.weight.d < e.end.d:

e.end.d = e.start.d + e.weight
e.end.predecessor = e.start

for e in G.edges()
if e.start.d + e.weight.d < e.end.d:
return FALSE
return TRUE

Time Complexity

= A single call of line 9-11 costs O(1)

6.4: Single-Source Shortest Paths TS.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

778 for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity

= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass

S5 6.4: Single-Source Shortest Paths TS.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

7: for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity

= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass
= Overall (V—1)+1 = V passes = O(V - E) time

S5 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1Y), (4,2),(x,1),(v,X),(y,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1Y), (4,2),(x,1),(v,X),(y,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x), ,(1,2),(x,1),(y,%),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x), ,(1,2),(x,1),(y,%),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y), L(6,1),(y:%),(v,2),(z,%),(z,8

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y), L(6,1),(y:%),(v,2),(z,%),(z,8

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z), J(v:X),(¥,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z), J(v:X),(¥,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), A(z,x),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), A(z,x),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(X.t),(y,X),(y,2),

(z,s

):(8:1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(X.t),(y,X),(y,2),

(z,s

):(8:1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,x),

+(8:1),(sy)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,x),

+(8:1),(sy)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),

(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),

(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1Y), (4,2),(x,1),(v,X),(y,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1Y), (4,2),(x,1),(v,X),(y,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x), ,(1,2),(x,1),(y,%),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x), ,(1,2),(x,1),(y,%),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y), L(6,1),(y:%),(v,2),(z,%),(z,8

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y), L(6,1),(y:%),(v,2),(z,%),(z,8

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z), J(v:X),(¥,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z), J(v:X),(¥,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), A(z,x),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), A(z,x),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(X.t),(y,X),(y,2),

(z,s

):(8:1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(X.t),(y,X),(y,2),

(z,s

):(8:1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,x),

+(8:1),(sy)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,x),

+(8:1),(sy)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),

(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),

(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (tY),(1,2),(x,1),(y:X),(y,2),(z,X),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (tY),(1,2),(x,1),(y:X),(y,2),(z,X),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x), ,(1,2),(%,1),(v,X),(,2),(Z,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x), ,(1,2),(%,1),(v,X),(,2),(Z,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y), ,(X,1),(v,X),(%,2),(2,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y), ,(X,1),(v,X),(%,2),(2,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z), J(V:X),(¥,2),(2,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z), J(V:X),(¥,2),(2,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(x,1), (¥:2),(2,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(x,1), (¥:2),(2,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), J(Z,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), J(Z,%),(z

8),(8,1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),

(2

8),(8,1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),

(2

8),(8,1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),

(8:1):(s:y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),

(8:1):(s:y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(Z,S),

(S:Y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(Z,S),

(S:Y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(Y,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(Y,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1Y), (4,2),(x,1),(v,X),(y,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1Y), (4,2),(x,1),(v,X),(y,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x), ,(1,2),(x,1),(y,%),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x), ,(1,2),(x,1),(y,%),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y), L(6,1),(y:%),(v,2),(z,%),(z,8

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y), L(6,1),(y:%),(v,2),(z,%),(z,8

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z), J(v:X),(¥,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z), J(v:X),(¥,2),(z,X),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), A(z,x),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X), A(z,x),(z,s

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(X.t),(y,X),(y,2),

(z,s

):(8:1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(X.t),(y,X),(y,2),

(z,s

):(8:1),(s,y)

€5 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,x),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,x),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),

(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),

(s,y)

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(¥,X),(¥,2),(Z,X),(z,S),(S,1),

55 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S

):(8:1),(s,y)

55 6.4: Single-Source Shortest Paths TS.

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

i
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.é
= Let v be a vertex reachable from s

i
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v

i
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1

i
E:';,! 6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

i
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE

i
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges

i
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

i
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

v.d=v.5

S
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

v.d=v.d <ud+ w(u,v)

S
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

vd=v.é<ud+w(u,v)=ud+wu,v)

S
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

vd=v.é<ud+w(u,v)=ud+wu,v) O

S
6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.6
= Let v be a vertex reachable from s
* Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

vd=v.é<ud+w(u,v)=ud+wu,v) O
~N

[Triangle inequality (holds even if w(u, v) < 0!)]

S
E:';,! 6.4: Single-Source Shortest Paths TS. 12

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

i
6.4: Single-Source Shortest Paths TS. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
» Letc = (wo, w1,...,Vk = V) be a negative-weight cycle reachable from s

S
6.4: Single-Source Shortest Paths TS. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
» Letc = (wo, w1,...,Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < vi1.d + w(vit, vi)

i
6.4: Single-Source Shortest Paths TS. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
» Letc = (wo, w1,...,Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vid <vi_i.d+ W(Vi—17 Vi)

= Zvrd<zvr1d+z VI17VI

i
6.4: Single-Source Shortest Paths TS. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
» Letc = (wo, w1,...,Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vid <vi_i.d+ W(Vi—17 Vi)

= Zvrd<zvr1d+z VI17VI
= 0<Z (Vie1, Vi)

i
6.4: Single-Source Shortest Paths TS. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
» Letc = (wo, w1,...,Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vid <vi_i.d+ W(Vi—17 Vi)

= Zvrd<zv/1d+z VI17VI
= 0<Z (Vie1, Vi)

[This cancellation is only valld if all .d-values are finite!J

i
E:';,! 6.4: Single-Source Shortest Paths TS. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
» Letc = (wo, w1,...,Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vid <vi_i.d+ W(Vi—17 Vi)

= Zvrd<zv/1d+z VI17VI
= 0<Z (Vie1, Vi)

4
[This cancellation is only valid if all .d-values are finite!J

= This contradicts the assumption that ¢ is a negative-weight cycle! O

i
E:';,! 6.4: Single-Source Shortest Paths TS. 13

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)

: assert (s in G.vertices())

: for v in G.vertices()
v.predecessor = None

v.d = Infinity

: repeat |V|-1 times

0
1
2
3:
4: s.d =0
5.
6
7 for e in G.edges()
8
9

if e.start.d + e.weight.d < e.end.d:

10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

S5 6.4: Single-Source Shortest Paths TS.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)

0: assert(s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

5:

6: repeat |V|-1 times

7: for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
153 return FALSE

16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

i
E:';,! 6.4: Single-Source Shortest Paths TS. 14

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

5:

6: repeat |V|-1 times

7: for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
153 return FALSE

16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

X
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.]

o 6.4: Single-Source Shortest Paths TS. 14

The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, s)

0: assert(s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

5:

6: repeat |V| times

7: flag = 0

8: for e in G.edges()

9:

10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

X
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.]

6.4: Single-Source Shortest Paths TS. 14

The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, S)

0: assert(s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

5:

6: repeat |V| times

7: flag = 0

8: for e in G.edges()

9:

10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start

1SS H flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

X
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.]

Ty 6.4: Single-Source Shortest Paths TS. 14

	Introduction
	Bellman-Ford Algorithm

