

6.1 & 6.2: Graph Searching

Frank Stajano

Thomas Sauerwald

Lent 2016

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

Source: Wikipedia

Seven Bridges at Königsberg 1737

Source: Wikipedia

Seven Bridges at Königsberg 1737

Source: Wikipedia

Leonhard Euler (1707-1783)

Source: Wikipedia

Seven Bridges at Königsberg 1737

Source: Wikipedia

Leonhard Euler (1707-1783)

Source: Wikipedia

Source: Wikipedia

Leonhard Euler (1707-1783)

Source: Wikipedia

Seven Bridges at Königsberg 1737

Source: Wikipedia

Leonhard Euler (1707-1783)

Source: Wikipedia

Source: Wikipedia

Seven Bridges at Königsberg 1737

Leonhard Euler (1707-1783)

Is there a tour which crosses each bridge **exactly once**?

Is there a tour which visits every island **exactly once**?

Source: Wikipedia

Source: Wikipedia

Seven Bridges at Königsberg 1737

Leonhard Euler (1707-1783)

Is there a tour which crosses each bridge **exactly once**?

Is there a tour which visits every island **exactly once?**

→ 1B course: Complexity Theory

Directed Graph

- V: the set of vertices
- E: the set of edges (arcs)

Directed Graph -

- V: the set of vertices
- E: the set of edges (arcs)

Directed Graph

- V: the set of vertices
- E: the set of edges (arcs)

$$V = \{1,2,3,4\} \\ E = \{(1,2),(1,3),(2,3),(3,1),(3,4)\}$$

Directed Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- *E*: the set of edges (arcs)

Undirected Graph -

- V: the set of vertices
- E: the set of (undirected) edges

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph -

- V: the set of vertices
- *E*: the set of (undirected) edges

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$$

$$\begin{aligned} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{aligned}$$

Directed Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity -

 A sequence of edges between two vertices forms a path

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$\begin{split} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{split}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity -

 A sequence of edges between two vertices forms a path

Path p = (1, 2, 3, 4)

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$\begin{aligned} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{aligned}$$

Directed Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity -

 A sequence of edges between two vertices forms a path

Path p = (1, 2, 3, 1), which is a cycle

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$\begin{split} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{split}$$

Directed Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity -

- A sequence of edges between two vertices forms a path
- If each pair of vertices has a path linking them, then G is connected

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$\begin{aligned} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{aligned}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

G is not connected

Undirected Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

$$V = \{1, 2, 3, 4\} \\ E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$$

Paths and Connectivity

G is connected

- A sequence of edges between two vertices forms a path
- If each pair of vertices has a path linking them, then G is connected

$$\begin{aligned} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{aligned}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

G is not connected

G is connected

Undirected Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$$

Paths and Connectivity

 A sequence of edges between two vertices forms a path

• If each pair of vertices has a path linking them, then G is connected

$$V = \{1, 2, 3, 4\}$$

 $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$

Later: edge-weighted graphs G = (V, E, w)

Representations of Directed and Undirected Graphs

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Representations of Directed and Undirected Graphs

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Most times we will use the adjacency-list representation!

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

Geometric Algorithms

Graph Searching

- Graph searching means traversing a graph via the edges in order to visit all vertices
- useful for identifying connected components, computing the diameter etc.

Graph Searching

- Graph searching means traversing a graph via the edges in order to visit all vertices
- useful for identifying connected components, computing the diameter etc.
- Two strategies: Breadth-First-Search and Depth-First-Search

Graph Searching

Overview

- Graph searching means traversing a graph via the edges in order to visit all vertices
- useful for identifying connected components, computing the diameter etc.
- Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E (often write just V instead of |V|, and E instead of |E|)

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

Breadth-First Search: Basic Ideas

Basic Idea

• Given an undirected/directed graph G = (V, E) and source vertex s

Breadth-First Search: Basic Ideas

- Basic Idea

- Given an undirected/directed graph G = (V, E) and source vertex s
- BFS sends out a wave from $s \leadsto$ compute distances/shortest paths

Breadth-First Search: Basic Ideas

- Basic Idea

- Given an undirected/directed graph G = (V, E) and source vertex s
- BFS sends out a wave from s \(\to \) compute distances/shortest paths
- Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

Black = Visited and all neighbors

Breadth-First-Search: Pseudocode

```
0: def bfs(G,s)
2:
3:
4:
5:
     assert(s in G.vertices())
6: # Initialize graph and queue
7: for v in G.vertices():
8:
       v.predecessor = None
       v.d = Infinity # .d = distance from s
9.
10: v colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20:
       u = Q.extract()
21:
       assert (u.colour == "grey")
22:
       for v in u.adiacent()
23.
         if v.colour = "white"
24:
            v.colour = "grey"
25:
            v.d = u.d+1
26:
            v.predecessor = u
27:
            Q.insert(v)
28:
       u.colour = "black"
```


Breadth-First-Search: Pseudocode

```
0: def bfs(G,s)
2:
3:
4:
5:
     assert(s in G.vertices())
6: # Initialize graph and queue
7: for v in G.vertices():
       v.predecessor = None
       v.d = Infinity # .d = distance from s
       v.colour = "white"
10.
11: Q = Queue()
12.
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20:
       u = Q.extract()
21:
       assert (u.colour == "grey")
22:
       for v in u.adiacent()
23.
         if v colour = "white"
24:
            v.colour = "grey"
25:
            vd = ud+1
26:
            v.predecessor = u
27:
            Q.insert(v)
28:
       u.colour = "black"
```

 From any vertex, visit all adjacent vertices before going any deeper


```
0: def bfs(G,s)
2:
3:
4:
5:
     assert(s in G.vertices())
6: # Initialize graph and queue
7: for v in G.vertices():
       v.predecessor = None
       v.d = Infinity # .d = distance from s
10.
       v colour = "white"
11: Q = Queue()
12.
13. # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20:
       u = Q.extract()
21:
       assert (u.colour == "grey")
22:
       for v in u.adiacent()
23.
         if v colour = "white"
24:
            v.colour = "grey"
25:
            vd = ud+1
26:
            v.predecessor = u
27:
            Q.insert(v)
28:
       u.colour = "black"
```

- From any vertex, visit all adjacent vertices before going any deeper
- Vertex Colours:

```
White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors
```



```
0: def bfs(G,s)
2:
3:
4:
5:
     assert(s in G.vertices())
6: # Initialize graph and queue
7: for v in G.vertices():
       v.predecessor = None
       v.d = Infinity # .d = distance from s
10.
       v colour = "white"
11: Q = Queue()
12.
13. # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
       u = Q.extract()
20:
21:
       assert (u.colour == "grey")
22:
       for v in u.adiacent()
23.
         if v colour = "white"
24:
            v.colour = "grey"
25:
            vd = ud+1
26:
            v.predecessor = u
27:
            Q.insert(v)
28:
       u.colour = "black"
```

- From any vertex, visit all adjacent vertices before going any deeper
- Vertex Colours:

```
White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors
```

Runtime ???


```
0: def bfs(G,s)
2:
3:
4:
5:
     assert(s in G.vertices())
6: # Initialize graph and queue
7: for v in G.vertices():
       v.predecessor = None
       v.d = Infinity # .d = distance from s
10.
       v colour = "white"
11: Q = Queue()
12.
13. # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20:
       u = Q.extract()
21:
       assert (u.colour == "grey")
       for v in u.adiacent()
23.
         if v colour = "white"
24:
            v.colour = "grey"
25:
            vd = ud+1
26:
            v.predecessor = u
27:
            Q.insert(v)
28:
       u.colour = "black"
```

- From any vertex, visit all adjacent vertices before going any deeper
- Vertex Colours:

```
White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors
```

Runtime ???


```
0: def bfs(G,s)
2:
3:
4:
5:
     assert(s in G.vertices())
6: # Initialize graph and gueue
7: for v in G.vertices():
       v.predecessor = None
       v.d = Infinity # .d = distance from s
10.
       v colour = "white"
11: Q = Queue()
12.
13. # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20:
       u = Q.extract()
21:
       assert (u.colour == "grey")
       for v in u.adiacent()
23.
         if v colour = "white"
24:
            v.colour = "grey"
25:
            vd = ud+1
26:
            v.predecessor = u
27:
            Q.insert(v)
28:
       u.colour = "black"
```

- From any vertex, visit all adjacent vertices before going any deeper
- Vertex Colours:

```
White = Unvisited

Grey = Visited, but not all neighbors
```

- Black = Visited and all neighbors
- Runtime ???

Assuming that all executions of the FOR-loop for u takes O(|u.adj|) (adjacency list model!)


```
0: def bfs(G,s)
2:
3:
4:
5:
    assert(s in G.vertices())
6: # Initialize graph and queue
7: for v in G.vertices():

    From any vertex, visit all adjacent

      v.predecessor = None
      v.d = Infinity # .d = distance from s
                                                vertices before going any deeper
10.
      v colour = "white"
11: Q = Queue()
                                             Vertex Colours:
12.
13. # Visit source vertex
                                                 White = Unvisited
14: s.d = 0
15: s.colour = "grey"
                                                 Grey = Visited, but not all neighbors
16: Q.insert(s)
17:
                                                 Black = Visited and all neighbors
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
                                             Runtime ???
20:
      u = Q.extract()
21:
      assert (u.colour == "grey")
      for v in u.adiacent()
                                    Assuming that all executions of the FOR-loop
23.
        if v colour = "white"
24:
          v.colour = "grey"
                                    for u takes O(|u.adj|) (adjacency list model!)
25:
          vd = ud+1
26:
          v.predecessor = u
27:
          Q.insert(v)
                                                 \sum_{u \in V} |u.adj| = 2|E|
28:
      u.colour = "black"
```



```
0: def bfs(G,s)
2:
3:
4:
5:
    assert(s in G.vertices())
6: # Initialize graph and gueue
7: for v in G.vertices():

    From any vertex, visit all adjacent

      v.predecessor = None
      v.d = Infinity # .d = distance from s
                                                vertices before going any deeper
10.
      v.colour = "white"
11: Q = Queue()
                                             Vertex Colours:
12.
13. # Visit source vertex
                                                 White = Unvisited
14: s.d = 0
15: s.colour = "grey"
                                                 Grey = Visited, but not all neighbors
16: Q.insert(s)
17:
                                                 Black = Visited and all neighbors
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():

    Runtime O(V + E)

20:
      u = Q.extract()
21:
      assert (u.colour == "grey")
      for v in u.adiacent()
                                    Assuming that all executions of the FOR-loop
23.
        if v colour = "white"
24:
          v.colour = "grey"
                                    for u takes O(|u.adj|) (adjacency list model!)
25:
          vd = ud+1
26:
          v.predecessor = u
27:
          Q.insert(v)
                                                 \sum_{u \in V} |u.adj| = 2|E|
28:
      u.colour = "black"
```


Queue: 💢

Queue: ¥ r w

Queue: 🧏 🗶 w v

Queue: 💢 💢 w v

Queue: 🧏 🗶 🗷 ν

Queue: 💢 💢 ж v

Queue: 💢 💢 ж v

Queue: 🧏 🗶 🗷 ν

Queue: $\chi \chi \chi \nu t$

Queue: $\chi \chi \chi \nu t$

Queue: \times \times \times \times \times \times \times \times \times

Queue: \times \times \times \times \times \times \times

Queue: \times \times \times \times \times \times \times

Queue: \times \times \times \times \times \times \times

Queue: $x \times x \times x$

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

Depth-First Search: Basic Ideas

- Basic Idea -

• Given an undirected/directed graph G = (V, E) and source vertex s

Depth-First Search: Basic Ideas

Basic Idea

- Given an undirected/directed graph G = (V, E) and source vertex s
- As soon as we discover a vertex, explore from it → Solving Mazes

Depth-First Search: Basic Ideas

Basic Idea

- Given an undirected/directed graph G = (V, E) and source vertex s
- As soon as we discover a vertex, explore from it ~> Solving Mazes
- Two time stamps for every vertex: Discovery Time, Finishing Time


```
0: def dfs(G,s):
      Run DFS on the given graph G
2:
      starting from the given source s
3:
4:
     assert(s in G.vertices())
5:
6:
     # Initialize graph
     for v in G.vertices():
8:
        v.predecessor = None
        v.colour = "white"
10:
      dfsRecurse(G,s)
```

```
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time
```



```
0: def dfs(G,s):
      Run DFS on the given graph G
2:
      starting from the given source s
3:
4:
     assert(s in G.vertices())
5:
6:
     # Initialize graph
     for v in G.vertices():
8:
        v.predecessor = None
        v.colour = "white"
10:
      dfsRecurse(G,s)
```

 We always go deeper before visiting other neighbors

```
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() #.d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() #.f = finish time
```



```
0: def dfs(G,s):
      Run DFS on the given graph G
2:
      starting from the given source s
3:
4:
     assert(s in G.vertices())
5:
6:
     # Initialize graph
     for v in G.vertices():
8:
        v.predecessor = None
        v.colour = "white"
10:
      dfsRecurse(G,s)
```

```
    We always go deeper before visiting 
other neighbors
```

Discovery and Finish times, .d and .f

```
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time
```



```
0: def dfs(G,s):
      Run DFS on the given graph G
2:
      starting from the given source s
3.
4:
     assert(s in G.vertices())
5:
6:
     # Initialize graph
     for v in G.vertices():
8:
       v.predecessor = None
       v.colour = "white"
10:
     dfsRecurse(G,s)
```

```
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time
```

- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .f
- Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors


```
0: def dfs(G,s):
      Run DFS on the given graph G
2:
      starting from the given source s
3.
4:
     assert(s in G.vertices())
5:
6:
     # Initialize graph
     for v in G.vertices():
8:
       v.predecessor = None
       v.colour = "white"
10:
     dfsRecurse(G,s)
```

```
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time
```

- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .f
- Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors


```
0: def dfs(G,s):
      Run DFS on the given graph G
2:
      starting from the given source s
3.
4:
     assert(s in G.vertices())
5:
6:
     # Initialize graph
     for v in G.vertices():
8:
       v.predecessor = None
       v.colour = "white"
10:
     dfsRecurse(G,s)
```

```
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() #.d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() #.f = finish time
```

- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .f
- Vertex Colours:

```
White = Unvisited
```

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

• Runtime O(V + E)

7/8

s

6/9

Execution of DFS

Execution of DFS

W

Execution of DFS

Execution of DFS

Paranthesis Theorem (Theorem 22.7)

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Solving Topological Sort

Knuth's Algorithm (1968) -

- Perform DFS's so that all vertices are visited
- Output vertices in decreasing order of their finishing time

Solving Topological Sort

Knuth's Algorithm (1968)

- Perform DFS's so that all vertices are visited
- Output vertices in decreasing order of their finishing time

Solving Topological Sort

Knuth's Algorithm (1968)

- Perform DFS's so that all vertices are visited
- Output vertices in decreasing order of their finishing time

Don't need to sort the vertices – use DFS directly!

4/5 X

Correctness of Topological Sort using DFS

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

Correctness of Topological Sort using DFS

Theorem 22.12 -

If the input graph is a DAG, then the algorithm computes a linear order.

Proof:

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

Proof:

• Consider any edge $(u, v) \in E(G)$ being explored,

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
 ⇒ u is grey and we have to show that v.f < u.f

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge (u, v) ∈ E(G) being explored,
 ⇒ u is grey and we have to show that v.f < u.f
 - 1. If v is grey,

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge $(u, v) \in E(G)$ being explored, ⇒ u is grey and we have to show that v.f < u.f
 - 1. If v is grey,

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge (u, v) ∈ E(G) being explored,
 ⇒ u is grey and we have to show that v.f < u.f
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge (u, v) ∈ E(G) being explored, ⇒ u is grey and we have to show that v.f < u.f</p>
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black,

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge $(u, v) \in E(G)$ being explored, $\Rightarrow u$ is grey and we have to show that v.f < u.f
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge (u, v) ∈ E(G) being explored,
 ⇒ u is grey and we have to show that v.f < u.f
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.
 - 3. If v is white,

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge $(u, v) \in E(G)$ being explored, $\Rightarrow u$ is grey and we have to show that v.f < u.f
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.
 - 3. If v is white, we call DFS(v) and v.f < u.f.

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge $(u, v) \in E(G)$ being explored, $\Rightarrow u$ is grey and we have to show that v.f < u.f
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.
 - 3. If v is white, we call DFS(v) and v.f < u.f.

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge $(u, v) \in E(G)$ being explored, $\Rightarrow u$ is grey and we have to show that v.f < u.f
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.
 - 3. If v is white, we call DFS(v) and v.f < u.f.
- \Rightarrow In all cases v.f < u.f, so v appears after u.

Theorem 22.12

If the input graph is a DAG, then the algorithm computes a linear order.

- Consider any edge (u, v) ∈ E(G) being explored,
 ⇒ u is grey and we have to show that v.f < u.f
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.
 - 3. If v is white, we call DFS(v) and v.f < u.f.
- \Rightarrow In all cases v.f < u.f, so v appears after u.

Summary of Graph Searching

Breadth-First-Search

- vertices are processed by a queue
- computes distances and shortest paths

 ⇒ similar idea used later in Prim's and Dijkstra's algorithm
- Runtime $\mathcal{O}(V+E)$

Summary of Graph Searching

Breadth-First-Search

- vertices are processed by a queue
- computes distances and shortest paths
 → similar idea used later in Prim's and Dijkstra's algorithm
- Runtime $\mathcal{O}(V+E)$

Depth-First-Search

- vertices are processed by recursive calls (≈ stack)
- discovery and finishing times
- application: Topogical Sorting of DAGs
- Runtime $\mathcal{O}(V+E)$

