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Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

. each bridge ?(actly once?

e Q Is there a tour which visits every
island exactly once?
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What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs) .
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—— Undirected Graph ——————
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What is a Graph?

~——— Directed Graph

A graph G = (V, E) consists of: 0

= V: the set of vertices .'

= E: the set of edges (arcs) (—%
L G is not connected | (3)—(4)
—— Undirected Graph ——————

A graph G = (V, E) consists of:
= V: the set of vertices

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

= E: the set of (undirected) edges o e
~——— Paths and Connectivity —[ Gis connedeﬁ ‘
= A sequence of edges between two e o
vertices forms a path
: : V=1{1,2,34}
= If each pair of vertices has a path )5
linking them, then G is connected E={{1,2},{1,3},{2,3},{3,4}}

Later: edge-weighted graphs G = (V, E, w)
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Representations of Directed and Undirected Graphs
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Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.
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Representations of Directed and Undirected Graphs

12345

1fo 100 1

(2) 20101 11
30101 0

® 4o 11 01
@ 5011010
(a) (b) (©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G. . . . . q
(Most times we will use the adjacency-list representatlon!j
1 23 45 6
110 1.0 1 00
2(0 00 0 1 0
©) ©) 30000 11
410 1 0 0 0 O
5(0 0 01 00
G) O») 610 0000 1
(a) (©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.
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Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.
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Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of | V|, and E instead of |E|)
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Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
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Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

= Visited and all neighbors

nfii
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Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2:

3:

4: assert(s in G.vertices())
5:

6:

7: for v in G.vertices():

8: v.predecessor = None
9: v.d = Infinity

10:  v.colour = "white"
11: Q = Queue()

12:

13:

14:sd=0

15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"
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Breadth-First-Search: Pseudocode

. def bfs(G,s)

assert(s in G.vertices())

: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent

v.d = Infinity i i
g sy vertices before going any deeper
1

: Q= Queue()

14:sd=0
15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"
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0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: for v in G.vertices(): . .

8  vpredecessor = None = From any vertex, visit all adjacent

9 v.d = Infinity i i

R e vertices before going any deeper

]; Q = Queue() = Vertex Colours:

sy White | = Unvisited

125 gﬁﬂfe“r;(:)"g’ey" Grey = Visited, but not all neighbors
e 2]EYd = Visited and all neighbors

19: while not Q.isEmpty(): : nnn

20: u=Q.extract() * Runtime 777

21:  assert (u.colour == "grey") i

22: for v in u.adjacent() . .

23:  ifv.colour = "white" Assuming that all executions of the FOR-loop
24: v.colour = "grey" g : &

55 A O for u takes O(|u.adj|) (adjacency list model!)
26: v.predecessor = u

27: Q.insert(v)
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6.1 & 6.2: Graph Searching TS. 9



Breadth-First-Search: Pseudocode

0
1
2
3
4
58
6
7
8
9

10:

. def bfs(G,s)
assert(s in G.vertices())
for v in G.vertices(): . . .
vpredecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
L vertices before going any deeper
© Q= Queue() = Vertex Colours:
D edeo White | = Unvisited
: gcigfeur;(:)"grev“ Grey = Visited, but not all neighbors
ElETe = Visited and all neighbors
. while not Q.isEmpty(): . : nnn
U = Q extract) Runtime ??7
assert (u.colour == "grey") i
for v in u.adjacent() . ]
if v.colour = "white" Assuming that all executions of the FOR-loop
v.colour = "grey" g H H
A O for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u 1\
Q.insert(v) AN —
u.colour = "black" [ Zuev |U.adj| - 2|E| ]
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Depth-First Search: Basic Ideas

Basic Idea

]

2 —]

= Given an undirected/directed graph G = (V, E) and source vertex s

= As soon as we discover a vertex, explore from it ~~ Solving Mazes

= Two time stamps for every vertex: Discovery Time, Finishing Time
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Depth-First-Search: Pseudocode

0:
1:
2
3
4
5:
6
7
8
9
0

—_

DR @ D@

def dfs(G,s):

assert(s in G.vertices())

for v in G.vertices():
v.predecessor = None
v.colour = "white"

dfsRecurse(G,s)

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()
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gf = We always go deeper before visiting
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8 v.predecessor = None

9 v.colour = "white"

0: dfsRecurse(G,s)

—

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
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v.predecessor = s
dfsRecurse(G,v)
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s.f = time()
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0: def dfs(G,s):
11
2
3
4:  assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
8 v.predecessor = None = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
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def disRecurse(G,s): Grey = Visited, but not all neighbors
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s.d = time() = Visited and all neighbors

for v in s.adjacent()
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for v in s.adjacent()
if v.colour = "white"
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Depth-First-Search: Pseudocode

0: def dfs(G,s):
11
2
3
4:  assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
8 v.predecessor = None = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
= Unvisited
el el eel(C ) Grey = Visited, but not all neighbors
s.colour = "grey'
s.d = time() 3]Eled = Visited and all neighbors
for v in s.adjacent() - 9
if v.colour = "white" * Runtime O(V + E)

v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

PNahON 2O
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Paranthesis Theorem (Theorem 22.7)

910111213141516

8

7
(s (v(y (xx) (r(uu)rny)v)s)(w(zzw)

15

TS.
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Problem
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= Goal: Output a linear ordering of all vertices
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Topological Sort
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pants @
T e
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Problem
‘ = Given: a directed acyclic graph (DAG)

jacket = Goal: Output a linear ordering of all vertices
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Solving Topological Sort

\( watch

pants shoes
N
(oot

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time
AN

2

[ Runtime O(V + E) ] tices — use DFS directly!

74
[Don’t need to sort the ver-]

o 5 6.1 & 6.2: Graph Searching TS.
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Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.
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Summary of Graph Searching

Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

S
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Summary of Graph Searching

~——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

= Runtime O(V + E)

S
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