6.1 & 6.2: Graph Searching

Frank Stajano Thomas Sauerwald

Lent 2016

& UNIVERSITY OF
4P CAMBRIDGE

Outline

Introduction to Graphs and Graph Searching

-;.E»,- 6.1 & 6.2: Graph Searching

TS.

Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Kénigsberg 1737

6.1 & 6.2: Graph Searching

TS.

Origin of Graph Theory

.S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?

6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

.S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?

6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

@ Is there a tour which crosses

each bridge exactly once?
©
©

6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

. each bridge exactly once?

6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses
. each bridge ?(actly once?

e Q Is there a tour which visits every
.' island exactly once?

.-,,E,, 6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

. each bridge ?(actly once?

e Q Is there a tour which visits every
island exactly once?

. ~» 1B course: Complexity Theory

.-,,E,, 6.1 & 6.2: Graph Searching TS. 3

What is a Graph?

Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

6.1 & 6.2: Graph Searching TS.

What is a Graph?

Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

6.1 & 6.2: Graph Searching TS.

What is a Graph?

Directed Graph

A graph G = (V, E) consists of:

= V: the set of vertices
= E: the set of edges (arcs)

.

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

.

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

0'9

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

\. J

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

.

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V={1,23,4}
E= {{1) 2}7 {1) 3}7 {27 3}7 {37 4}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

\. J

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ——

* A sequence of edges between two
vertices forms a path

.

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V={1,23,4}
E= {{1) 2}7 {1) 3}7 {27 3}7 {37 4}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

\. J

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ——

* A sequence of edges between two
vertices forms a path

Path p = (1,2,3,4)

L

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V={1,23,4}
E= {{1) 2}7 {1) 3}7 {27 3}7 {37 4}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

\. J

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ——

* A sequence of edges between two
vertices forms a path

Path p=(1,2,3,1), which is a cycle

Ve

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V={1,23,4}
E= {{1) 2}7 {1) 3}7 {27 3}7 {37 4}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

\. J

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ——
* A sequence of edges between two
vertices forms a path

= If each pair of vertices has a path
linking them, then G is connected

.

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V={1,23,4}
E= {{1) 2}7 {1) 3}7 {27 3}7 {37 4}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs) .
Gis

\.

. v
not connected e o

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

~——— Paths and Connectivity —[G

is connected

ﬁ 0'9

* A sequence of edges between two
vertices forms a path

= If each pair of vertices has a path
linking them, then G is connected

V={1,23,4}
E= {{1) 2}7 {1) 3}7 {27 3}7 {37 4}}

6.1 & 6.2: Graph Searching

TS.

What is a Graph?

~——— Directed Graph

A graph G = (V, E) consists of: 0

= V: the set of vertices .'

= E: the set of edges (arcs) (—%
L G is not connected | (3)—(4)
—— Undirected Graph ——————

A graph G = (V, E) consists of:
= V: the set of vertices

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

= E: the set of (undirected) edges o e
~——— Paths and Connectivity —[Gis connedeﬁ ‘
= A sequence of edges between two e o
vertices forms a path
: : V=1{1,2,34}
= If each pair of vertices has a path)5
linking them, then G is connected E={{1,2},{1,3},{2,3},{3,4}}

Later: edge-weighted graphs G = (V, E, w)

6.1 & 6.2: Graph Searching TS. 4

Representations of Directed and Undirected Graphs

12345

1fo1 00 1

@ (2) 20101 11
30 1010

n.e 4o 11 01
G @ 5011010

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.

6.1 & 6.2: Graph Searching TS.

Representations of Directed and Undirected Graphs

12345

1fo 100 1

(2) 20101 11
30101 0

® 4o 11 01
@ 5011010
(a) (b) (©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G. q
(Most times we will use the adjacency-list representatlon!j
1 23 45 6
110 1.0 1 00
2(0 00 0 1 0
©) ©) 30000 11
410 1 0 0 0 O
5(0 0 01 00
G) O») 610 0000 1
(a) (©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

6.1 & 6.2: Graph Searching TS.

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

6.1 & 6.2: Graph Searching

TS.

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort]
Minimum Spanning Trees]

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings ’

[

Geometric Algorithms]

6.1 & 6.2: Graph Searching

TS.

Overview

Amortized Analysis })

Fibonacci Heaps

Disjoint Sets)

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings ’

[

Geometric Algorithms]

6.1 & 6.2: Graph Searching TS.

Overview

Amortized Analysis))

Fibonacci Heaps Aty Buase

Disjoint Sets j P

Graphs, DFS/BFS, Topological Sort Sorting

Minimum Spanning Trees

Y Y Y Ya N
e

Dynamic Programming

Single-Source/All-Pairs Shortest Paths

Greedy

‘ Maximum Flow, Bipartite Matchings

[Geometric Algorithms

—

6.1 & 6.2: Graph Searching TS. 0

Overview

Amortized Analysis))

Fibonacci Heaps Aty Buase

Disjoint Sets j

Graphs, DFS/BFS, Topological Sort Sorting

Minimum Spanning Trees

Dynamic Programming

Single-Source/All-Pairs Shortest Paths

Greedy

‘ Maximum Flow, Bipartite Matchings

[Geometric Algorithms]

5 6.1 & 6.2: Graph Searching TS. 0

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

.-,,E,, 6.1 & 6.2: Graph Searching TS. 6

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

6.1 & 6.2: Graph Searching TS. 6

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of | V|, and E instead of |E|)

6.1 & 6.2: Graph Searching TS. 6

Outline

Breadth-First Search

-;.E»,- 6.1 & 6.2: Graph Searching

TS.

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s

i
m: ;.. 6.1 & 6.2: Graph Searching TS. 8

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths

nfii
E;‘E 6.1 & 6.2: Graph Searching TS. 8

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

= Visited and all neighbors

nfii
E;‘E 6.1 & 6.2: Graph Searching TS. 8

Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2:

3:

4: assert(s in G.vertices())
5:

6:

7: for v in G.vertices():

8: v.predecessor = None
9: v.d = Infinity

10: v.colour = "white"
11: Q = Queue()

12:

13:

14:sd=0

15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

6.1 & 6.2: Graph Searching TS.

Breadth-First-Search: Pseudocode

. def bfs(G,s)

assert(s in G.vertices())

: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent

v.d = Infinity i i
g sy vertices before going any deeper
1

: Q= Queue()

14:sd=0
15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

5 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

g ‘(,'S,edvei;'scsi,sr(): N = From any vertex, visit all adjacent
9 v.d = Infinity i i

T L vertices before going any deeper
11: Q= Queue) = Vertex Colours:

13: e | = -~

A s White | = Unvisited

15: s.colour = "grey" = Visj i

IR e Grey = Visited, but not all neighbors
17: N\ .

18 ElETe = Visited and all neighbors

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

5 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

8 o VV'S,edéi’ef;i(L None = From any vertex, visit all adjacent
9 v.d = Infinity i i

T L vertices before going any deeper
11: Q= Queue) = Vertex Colours:

13: ita | = i

A s White | = Unvisited

15: s.colour = "grey" = Visj i

IR e Grey = Visited, but not all neighbors
17: \Via .

18 ElETe = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime 27?2

20: u=Q.extract()
21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

5 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

8 o VV'S,edéi’ef;i(L None = From any vertex, visit all adjacent
9 v.d = Infinity i i r
T L vertices before going any deepe
11: Q= Queue) = Vertex Colours:

13: ite | = i

A s White | = Unvisited

15: s.colour = "grey” Grey = Visited, but not all neighbors
16: Q.insert(s)

17: \Via .

18 ElETe = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime 27?2

20: u=Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

5 6.1 & 6.2: Graph Searching TS. 9

Bre

adth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: for v in G.vertices(): . .

8 vpredecessor = None = From any vertex, visit all adjacent

9 v.d = Infinity i i

R e vertices before going any deeper

]; Q = Queue() = Vertex Colours:

sy White | = Unvisited

125 gﬁﬂfe“r;(:)"g’ey" Grey = Visited, but not all neighbors
e 2]EYd = Visited and all neighbors

19: while not Q.isEmpty(): : nnn

20: u=Q.extract() * Runtime 777

21: assert (u.colour == "grey") i

22: for v in u.adjacent() . .

23: ifv.colour = "white" Assuming that all executions of the FOR-loop
24: v.colour = "grey" g : &

55 A O for u takes O(|u.adj|) (adjacency list model!)
26: v.predecessor = u

27: Q.insert(v)

28: u.colour = "black"

6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0
1
2
3
4
58
6
7
8
9

10:

. def bfs(G,s)
assert(s in G.vertices())
for v in G.vertices(): . . .
vpredecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
L vertices before going any deeper
© Q= Queue() = Vertex Colours:
D edeo White | = Unvisited
: gcigfeur;(:)"grev“ Grey = Visited, but not all neighbors
ElETe = Visited and all neighbors
. while not Q.isEmpty(): . : nnn
U = Q extract) Runtime ??7
assert (u.colour == "grey") i
for v in u.adjacent() .]
if v.colour = "white" Assuming that all executions of the FOR-loop
v.colour = "grey" g H H
A O for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u 1\
Q.insert(v) AN —
u.colour = "black" [Zuev |U.adj| - 2|E|]
6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0
1
2
3
4
58
6
7
8
9

10:

. def bfs(G,s)
assert(s in G.vertices())
for v in G.vertices(): . . .
vpredecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
Iy vertices before going any deeper
© Q= Queue() = Vertex Colours:
D edeo White | = Unvisited
: gcigfeur;(:)"grev“ Grey = Visited, but not all neighbors
ElETe = Visited and all neighbors
. while not Q.isEmpty(): . :
L2 Qextract) Runtime O(V + E)
assert (u.colour == "grey") i
for v in u.adjacent() .]
if v.colour = "white" Assuming that all executions of the FOR-loop
.col " " g 5 g
A O for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u 1\
Q.insert(v) AN —
u.colour = "black" [Zuev |U.adj| - 2|E|]
6.1 & 6.2: Graph Searching TS. 9

Execution of BFS (Figure 22.3)

Queue:

©, = (=)

[e¢)
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: s

(o] o0 o0
=) O

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X

(o] o0 o0
=) O

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X

(o] o0 o0
=) O

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X r

(o] o0 o0
=) O

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X r

(o] o0 o0
=) O

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X r w

1 [e%e] [e'e}
=) ()

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X r

©, 1 (=)

[e¢)
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X w

1 [e%e] [e'e}
=) ()

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X

©, 1 (=)

[e¢)
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X

©, 1 (=)

[e¢)
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X w

© 1 ©) x

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X w v

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X

< B 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W

< B 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W

! N .
v w X y
£
o 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W

! N .
v w X y
£
o 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W

! N .
v w X y
£
o 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W

! N .
v w X y
£
o 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W v t

S
o B 5 6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X W v

S
5 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X

% 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

% 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

% 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

B 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W ¥ f

S, 6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X W ¥ f

S, 6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

r S t u
& =
v w X y
£
S5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ ¥ f
r S t u
2 o0
N
v w X y
£
S5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ ¥ f
r S t u
2 o0
N
v w X y
£
S5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X

r S t u
& =
v w X y
£
S5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X

r S t u
& =
v w X y
£
S5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X

r S t u
\&J .
v w X y
£
35 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ ¥ f
r S t u
2 [e'e}
A 4
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ ¥ f
r S t u
2 [e'e}
A 4
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ ¥ f
r S t u
2 [e'e}
A 4
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ ¥ f
r S t u
2 [e'e}
A 4
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ ¥ f
r S t u
2 [e'e}
A 4
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X »w ¥x f X

u

6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X »w ¥x f X

u

6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X »w ¥x f X

u

6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X »w ¥x f X

6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v
r S t u
3
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v
r S t u
3
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v
r S t u
3
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v
r S t u
3
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v
r S t u
3
v w X y
£
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X X v

6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X X v

6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v
r S t u
3
v w X y
5
5 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X X v

S, 6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queve: X X M X X X X

S, 6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queve: X X M X X X X

S, 6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queve: X X M X X X X

S, 6.1 & 6.2: Graph Searching TS.

Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ X

5 6.1 & 6.2: Graph Searching TS.

Outline

Depth-First Search

-;.E»» 6.1 & 6.2: Graph Searching

TS.

Depth-First Search: Basic Ideas

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s

i
6.1 & 6.2: Graph Searching TS. 12

Depth-First Search: Basic Ideas

Basic Idea

]

2 —]

= Given an undirected/directed graph G = (V, E) and source vertex s

= As soon as we discover a vertex, explore from it ~~ Solving Mazes

6.1 & 6.2: Graph Searching

TS.

Depth-First Search: Basic Ideas

Basic Idea

]

2 —]

= Given an undirected/directed graph G = (V, E) and source vertex s

= As soon as we discover a vertex, explore from it ~~ Solving Mazes

= Two time stamps for every vertex: Discovery Time, Finishing Time

6.1 & 6.2: Graph Searching

TS.

Depth-First-Search: Pseudocode

0:
1:
2
3
4
5:
6
7
8
9
0

—_

DR @ D@

def dfs(G,s):

assert(s in G.vertices())

for v in G.vertices():
v.predecessor = None
v.colour = "white"

dfsRecurse(G,s)

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

6.1 & 6.2: Graph Searching TS.

Depth-First-Search: Pseudocode

def dfs(G,s):

0:

1:

2

3

4: assert(s in G.vertices())

gf = We always go deeper before visiting
7: forvin G.vertices(): other neighbors

8 v.predecessor = None

9 v.colour = "white"

0: dfsRecurse(G,s)

—

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

DR @ D@

35 6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):

1:

2

3

4: assert(s in G.vertices())

gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors

8 UpmEsCEEEsels e = Discovery and Finish times, .d and .f
G v.colour = "white"

10: dfsRecurse(G,s)

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

DR @ D@

o 6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
11
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
8 v.predecessor = None = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
= Unvisited
def disRecurse(G,s): Grey = Visited, but not all neighbors
s.cologr: grey
s.d = time() = Visited and all neighbors

for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

DR @ D@

35 6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
11
2
3
4: assert(s in G.vertices())
25 = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
8 v.predecessor = None = Discovery and Finish times, .d and .f
G v.colour = "white
10: dfsRecurse(G,s) = Vertex Colours:
= Unvisited
def dfsRecurse(G,s): Grey = Visited, but not all neighbors
s.colour = "grey'
s.d = time() = Visited and all neighbors

for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

PNahON 2O

i
E;‘E 6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
11
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
8 v.predecessor = None = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
= Unvisited
el el eel(C) Grey = Visited, but not all neighbors
s.colour = "grey'
s.d = time() 3]Eled = Visited and all neighbors
for v in s.adjacent() - 9
if v.colour = "white" * Runtime O(V + E)

v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

PNahON 2O

i
E;‘E 6.1 & 6.2: Graph Searching TS. 13

Execution of DFS

S w
X z
r
i
o B 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

S w
X z
r
i
o B 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

S w
X z
r
i
o B 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

S w
X z
r
i
o B 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

i
5 6.1 & 6.2: Graph Searching

Execution of DFS

:»-‘».
5 6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

»

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Execution of DFS

w

S, 6.1 & 6.2: Graph Searching

Execution of DFS

S, 6.1 & 6.2: Graph Searching

Paranthesis Theorem (Theorem 22.7)

910111213141516

8

7
(s (v(y (xx) (r(uu)rny)v)s)(w(zzw)

15

TS.

6.1 & 6.2: Graph Searching

Outline

Topological Sort

6.1 & 6.2: Graph Searching

TS.

Topological Sort

pants

shoes

5
<5 6.1 & 6.2: Graph Searching

TS.

Topological Sort

* =&

pants

jacket

shoes

Problem
= Given: a directed acyclic graph (DAG)
= Goal: Output a linear ordering of all vertices

:»-‘».
5 B 6.1 & 6.2: Graph Searching

TS. 17

Topological Sort

? socks
\
pants shoes
T

Problem
‘ = Given: a directed acyclic graph (DAG)

jacket = Goal: Output a linear ordering of all vertices

R 6.1 & 6.2: Graph Searching TS. 17

Topological Sort

\’
pants @
T e
.........

Problem
‘ = Given: a directed acyclic graph (DAG)

jacket = Goal: Output a linear ordering of all vertices

R 6.1 & 6.2: Graph Searching TS. 17

Topological Sort

\’
pants @
T e
.........

Problem
‘ = Given: a directed acyclic graph (DAG)

jacket = Goal: Output a linear ordering of all vertices

[socksj [undershorts)—{pantsshoesj [wat

R 6.1 & 6.2: Graph Searching TS. 17

Solving Topological Sort

watch

pants shoes
N
(oot

Knuth’s Algorithm (1968)
= Perform DFS’s so that all vertices are visited

= Qutput vertices in decreasing order of their finishing time

i
E:';,! 6.1 & 6.2: Graph Searching TS.

Solving Topological Sort

watch

pants
(bet)

Knuth’s Algorithm (1968)

shoes

= Perform DFS’s so that all vertices are visited

= Qutput vertices in decreasing order of their finishing time

2

[Runtime O(V/+ E)]

i
-'n;‘~ 6.1 & 6.2: Graph Searching TS.

Solving Topological Sort

\(watch

pants shoes
N
(oot

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time
AN

2

[Runtime O(V + E)] tices — use DFS directly!

74
[Don’t need to sort the ver-]

o 5 6.1 & 6.2: Graph Searching TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

w z S v

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

©0000

S, 6.1 & 6.2: Graph Searching TS.

Execution of Knuth’s Algorithm

S
X
w z S v

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

s
X
w z s v y r

S, 6.1 & 6.2: Graph Searching TS.

Execution of Knuth’s Algorithm

13/16

w z S v

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

13/16

w z S v

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

13/16

w z S v

S, 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

13/16
w z s v y r u
£
5 6.1 & 6.2: Graph Searching TS. 19

Execution of Knuth’s Algorithm

13/16

o 5. 6.1 & 6.2: Graph Searching TS. 19

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

5 6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.

)

Proof:

i
E:';,' 6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
s

= Consider any edge (u, v) € E(G) being explored, @

©—0

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. Ifv is grey,

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. Ifv is grey,

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!). ey

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle :
(can’t happen, because G is acyclicl). b

2. If v is black, M

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle :
(can’t happen, because G is acyclicl). b

2. If v is black, then v.f < u.f. M

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. M
3. If v is white,

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. H
3. If v is white, we call DFS(v) and v.f < u.f. 0 @

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. Ifv is black, then v.f < u.f. H
3. If v is white, we call DFS(v) and v.f < u.f. 0 @

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

6.1 & 6.2: Graph Searching TS.

20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

6.1 & 6.2: Graph Searching TS.

20

Summary of Graph Searching

Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

S
6.1 & 6.2: Graph Searching TS.

21

Summary of Graph Searching

~——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

= Runtime O(V + E)

S
6.1 & 6.2: Graph Searching TS.

21

	Introduction to Graphs and Graph Searching
	Breadth-First Search
	Depth-First Search
	Topological Sort

