IV. Approximation Algorithms: Covering Problems

Thomas Sauerwald

Easter 2016

Introduction

Vertex Cover

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,...

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,...

Strategies to cope with NP-complete problems

- 1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,...

Strategies to cope with NP-complete problems

- 1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,...

Strategies to cope with NP-complete problems

- 1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

We will call these approximation algorithms.

Approximation Ratio ______

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size *n*, the cost *C* of the returned solution and optimal cost *C*^{*} satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$

Introduction

Vertex Cover

- Vertex Cover Problem -

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

- Vertex Cover Problem -

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

- Vertex Cover Problem -

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

We are covering edges by picking vertices!

Vertex Cover Problem

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset V' ⊆ V such that if (u, v) ∈ E(G), then u ∈ V' or v ∈ V'.

Applications:

Applications:

 Every edge forms a task, and every vertex represents a person/machine which can execute that task

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Perform all tasks with the minimal amount of resources

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Perform all tasks with the minimal amount of resources
- Extensions: weighted vertices or hypergraphs (~→ Set-Covering Problem)

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

7 return C

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v

7 return C

APPROX-VERTEX-COVER(G)

- 1 $C = \emptyset$
- $2 \quad E' = G.E$
- 3 while $E' \neq \emptyset$
- 4 let (u, v) be an arbitrary edge of E'
- 5 $C = C \cup \{u, v\}$
- 6 remove from E' every edge incident on either u or v
- 7 return C


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

- 6 remove from E' every edge incident on either u or v
- 7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ $C = max_{i} C = E'$

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

• Running time is O(V + E) (using adjacency lists to represent E')


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C* must include at least one endpoint of edges in A,


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4
- Every optimal cover C* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint:


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4
- Every edge in *A* contributes 2 vertices to |*C*|:


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4
- Every edge in A contributes 2 vertices to |C|: |C| = 2|A|


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.


```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

6 remove from E' every edge incident on either u or v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let $A \subseteq E$ denote the set of edges picked in line 4
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

There exists an optimal vertex cover which does not include any leaves.

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

朱<mark>曾朱</mark> 881 - 886 朱**曾**多

IV. Covering Problems

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

朱<mark>曾朱</mark> 881 - 886 朱**曾**多

IV. Covering Problems

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

朱<mark>曾朱</mark> 881 - 886 朱**曾**多

IV. Covering Problems

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

朱<mark>曾朱</mark> 881 - 886 朱**曾**多

IV. Covering Problems

VERTEX-COVER-TREES(G)

- 1: $C = \emptyset$
- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

VERTEX-COVER-TREES(G)

- 1: $C = \emptyset$
- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

VERTEX-COVER-TREES(G)

- 1: $C = \emptyset$
- 2: while ∃ leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the existence of an optimal vertex cover without leaves)

Execution on a Small Example

VERTEX-COVER-TREES(G)

- 1: $C = \emptyset$
- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

Execution on a Small Example

VERTEX-COVER-TREES(G)

- 1: $C = \emptyset$
- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

- 1: $C = \emptyset$
- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

1:
$$C = \emptyset$$

- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

1:
$$C = \emptyset$$

- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

1:
$$C = \emptyset$$

- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

1:
$$C = \emptyset$$

- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

VERTEX-COVER-TREES(G)

1:
$$C = \emptyset$$

- 2: while \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

Strategies to cope with NP-complete problems -

- 1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Strategies to cope with NP-complete problems -

- 1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Such algorithms are called exact algorithms.
Strategies to cope with NP-complete problems
If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
Isolate important special cases which can be solved in polynomial-time.
Develop algorithms which find near-optimal solutions in polynomial-time.

Such algorithms are called exact algorithms.
Strategies to cope with NP-complete problems
If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
Isolate important special cases which can be solved in polynomial-time.
Develop algorithms which find near-optimal solutions in polynomial-time.

Focus on instances where the minimum vertex cover is small, that is, **less or equal** than some given integer k.

Such algorithms are called exact algorithms.
Strategies to cope with NP-complete problems
1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
2. Isolate important special cases which can be solved in polynomial-time.
3. Develop algorithms which find near-optimal solutions in polynomial-time.

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Reminiscent of Dynamic Programming.

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Proof:

 \Leftarrow Assume G_u has a vertex cover C_u of size k - 1.

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Proof:

 \Leftarrow Assume G_u has a vertex cover C_u of size k - 1.

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Proof:

 $\leftarrow \text{ Assume } G_u \text{ has a vertex cover } C_u \text{ of size } k - 1.$ Adding *u* yields a vertex cover of *G* which is of size *k*

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Proof:

- $\leftarrow \text{ Assume } G_u \text{ has a vertex cover } C_u \text{ of size } k 1.$ Adding *u* yields a vertex cover of *G* which is of size *k*
- \Rightarrow Assume *G* has a vertex cover *C* of size *k*, which contains, say *u*.

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Proof:

- $\leftarrow \text{ Assume } G_u \text{ has a vertex cover } C_u \text{ of size } k 1.$ Adding *u* yields a vertex cover of *G* which is of size *k*
- ⇒ Assume *G* has a vertex cover *C* of size *k*, which contains, say *u*. Removing *u* from *C* yields a vertex cover of G_u which is of size k - 1. □

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = VERTEX-COVER-SEARCH(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

Correctness follows by the Substructure Lemma and induction.

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = VERTEX-COVER-SEARCH(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

Running time:

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = VERTEX-COVER-SEARCH(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

Running time:

Depth k, branching factor 2

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = VERTEX-COVER-SEARCH(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

Running time:

• Depth k, branching factor $2 \Rightarrow$ total number of calls is $O(2^k)$

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = VERTEX-COVER-SEARCH(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

Running time:

- Depth k, branching factor $2 \Rightarrow$ total number of calls is $O(2^k)$
- O(E) work per recursive call

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = VERTEX-COVER-SEARCH(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

Running time:

- Depth k, branching factor $2 \Rightarrow$ total number of calls is $O(2^k)$
- O(E) work per recursive call
- Total runtime: $O(2^k \cdot E)$.

VERTEX-COVER-SEARCH(G, k)

- 1: If $E = \emptyset$ return \emptyset
- 2: If k = 0 and $E \neq \emptyset$ return \bot
- 3: Pick an arbitrary edge $(u, v) \in E$
- 4: $S_1 = VERTEX-COVER-SEARCH(G_u, k 1)$
- 5: $S_2 = VERTEX-COVER-SEARCH(G_v, k-1)$
- 6: if $S_1 \neq \bot$ return $S_1 \cup \{u\}$
- 7: if $S_2 \neq \bot$ return $S_2 \cup \{v\}$
- 8: return \perp

