I. Course Intro and Sorting Networks

Thomas Sauerwald

Easter 2016

SRS UNIVERSITY OF

Outline

Outline of this Course

S
e

I. Course Intro and Sorting Networks Outline of this Course

(Tentative) List of Topics

[IA Algorithms] [IB Complexity Theory j [II Advanced Algorithmsj
i D

s 1. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

[IA Algorithms] [IB Complexity Theory j [II Advanced Algorithms]
i D

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

IlIl. Linear Programming

= V. Approximation Algorithms: Covering Problems

= V. Approximation Algorithms via Exact Algorithms

= VI. Approximation Algorithms: Travelling Salesman Problem

= VII. Approximation Algorithms: Randomisation and Rounding

= VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

a6 I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

[IA Algorithms] [IB Complexity Theory j [II Advanced Algorithms]
__— ——

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

IlIl. Linear Programming

= V. Approximation Algorithms: Covering Problems

= V. Approximation Algorithms via Exact Algorithms

= VI. Approximation Algorithms: Travelling Salesman Problem

= VII. Approximation Algorithms: Randomisation and Rounding

= VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

= closely follow CLRS3 and use the same numberring
ALGORITHMS = however, slides will be self-contained (mostly)
[_eeee oo

a6 I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

[IA Algorithms] [IB Complexity Theory j [II Advanced Algorithms]
i D

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

[ll. Linear Programming

= V. Approximation Algorithms: Covering Problems

= V. Approximation Algorithms via Exact Algorithms

= VI. Approximation Algorithms: Travelling Salesman Problem

= VII. Approximation Algorithms: Randomisation and Rounding

= VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

= closely follow CLRS3 and use the same numberring
ALGORITHMS = however, slides will be self-contained (mostly)
[_eeee oo

s 1. Course Intro and Sorting Networks Outline of this Course 3

Outline

Some Highlights

S
e

I. Course Intro and Sorting Networks Some Highlights

Linear Programming and Simplex

maximize 3x;1 + Xo +
subject to
Xq -+ Xo -+
2X1 + 2X2 —+
4x4 + Xo +
X1, X2, X3

s
Sl

2X3

3x3
5X3
2X3

30
36

IVIAIAIA

I. Course Intro and Sorting Networks

Some Highlights

Linear Programming and Simplex

X3
X2
(0,12,0)
(0,0,4.8) @
e (8,4,0)
(8.25,0,15) @
X4
(9,0,0)
maximize 3x;1 + X2 4+ 2x3
subject to
X4 + X 4+ 3x3 < 30
2x1 4+ 2x2 + 5x3 < 24
4y + X + 2x3 < 36
X1, X2, X3 > 0

s
I. Course Intro and Sorting Networks Some Highlights

Linear Programming and Simplex

X3
X2
0,12,0
(0,12.0)
0,0,4.8) e
(9.6)
e (8,4,0)
(8.25,0,1.5) @ %8
27.75
X4
9,0,0
(7277)
maximize 3x;1 + X2 4+ 2x3
subject to
X1 + X + 3x3 < 30
2X1 + 2X2 + 5X3 S 24
4y + X + 2x3 < 36
X1, X2, X3 > 0

i
I. Course Intro and Sorting Networks Some Highlights

Linear Programming and Simplex

X3
X2
0,12,0
(0,12.0)
0,0,4.8) e
(9.6)
e (8,4,0)
(8.25,0,1.5) @ %8
27.75
X4
9,0,0
(7277)
maximize 3x;1 + X2 4+ 2x3
subject to
X1 + X + 3x3 < 30
2X1 + 2X2 + 5X3 S 24
4y + X + 2x3 < 36
X1, X2, X3 > 0

i
I. Course Intro and Sorting Networks Some Highlights

Linear Programming and Simplex

X3
X2
0,12,0
(0,12.0)
0,0,4.8) e
(9.6)
0,0; e (8,4,0)
(0 (8.25,0,1.5) @ 28
27.75
X4
9.0.0
27
maximize 3x;1 + X2 4+ 2x3
subject to
X1 + X + 3x3 < 30
2x1 4+ 2x2 + 5x3 < 24
4 + X2 + 2x3 < 36
X1, X2, X3 > 0

s
I. Course Intro and Sorting Networks

Some Highlights

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anxp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;; represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,””* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.

I. Course Intro and Sorting Networks Some Highlights

Travelling Salesman Problem: The 42 (49) Cities

WO 00 I DU W

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.
. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18.
19.
. Phoenix, Ariz.
21.
22.
23.
24.
25.
26.
27.
28.

Carson City, Nev.
Los Angeles, Calif.

Santa Fe, N. M.
Denver, Colo.
Cheyenne, Wyo.
Omaha, Neb.

Des Moines, Iowa
Kansas City, Mo.
Topeka, Kans.

Oklahoma City, Okla.
. Dallas, Tex.

30.
31.
32.
33.

Little Rock, Ark.
Memphis, Tenn.
Jackson, Miss.
New Orleans, La.

'S
S

. Birmingham, Ala.
. Atlanta, Ga.

. Jacksonville, Fla.
. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

. New York, N. Y.

. Hartford, Conn.
.‘Providence, R. I.

I. Course Intro and Sorting Networks

Some Highlights

Road Distances

2
13| 145 149 104 108 114 106
14 | 187 185 140 144 150 142
15| 187 191 146 150 136 142
16| 161 170 120 124 130 115
17| 142 146 101 104 111 97
18] 174 178 153 138 143 129
1

20| 163 165 120 123 124 106
21

29 33 30 21 18 3%
3 11 41 37 47 57
5 12 55 41 53 b4

L2 52888 888
4
kN
+
3

1

65186 142 133 140 130 130 134 138 116 g5 1o 73 b9 EH g8 43 26

84 77 56 64 65 9o 87 58 36 68 50 30
61 50 34 42 49 82 77 Bo 30 62 70 49 21
771452759555517

21 14 29 40 77114111 84 b4 96107 87 60 40 37
32 27 36 47 78116112 84 66 98 95 75 47 36 39
36 30 34 45 77115110 83 63 97 9 72 44 32 36
54 48 46 59 ﬂgnqns 88 66 98 79 59 31 36 42
61 57 59 71 9b130126 98 75 98 85 b2 38 47 53
43 39 Bo 71103131 136109 93115 99 81 §3 61 62
36 51 63 75106142 140112 93126108 88 60 64 66
39 63 76 87120155150123 100123109 86 62 71 78
60 75 86 97126160155 128 104 128 113 go 67 76 82
44 62 ZB 89 121 lgg 155 127 108 136 124 101 75 79 81
46 64 83 90130164160 133 114 136134 111 85 85 86
66 83 102 110 147 185 179 155 133 159 146 122 98 105 107
52 71 93 98136172 172 148 126 158 147 124 121 97 99
33 73 96 99137176 178 151 131 163 159 135 108 102 103
5170 93 97134171 176151 139 161 165 139 118 102 xof
45 65 87 91117166 171 144 125 157 156 139 113 95 97
63 83 105 109 147 186 188 164 144 176 182 161 134 119 116
66 84111 113 150 186 192 166 147 180 188 167 140 124 119

TABLE I

Roap Disrances BETwWEEN CrTies 1N Apjustep UNITS
The figures in the table are mileages between the two specified numbered cities, less 11,
divided by 17, and rounded to the nearest integer.

8

12
9
28
3
2
[
54
59
79
71
7
&
86
90

88 101 108
94 107 114

12

27
54

9

506

41 32 25
8383 6

1 2 3 45 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23

24

27 28 29

37

38 39 40 41

I. Course Intro and Sorting Networks

Some Highlights

The (Unique) Optimal Tour (699 Units ~ 12,345 miles)

This tour has a length of 12,345 miles when
the adjusted units are expressed in miles

Fic. 16. The optimal tour of 49 cities.

I. Course Intro and Sorting Networks Some Highlights 9

Outline

Introduction to Sorting Networks

S
e

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
= execute one operation at a time

can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

= we already know several (comparison-based) sorting algorithms:

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons
= can only handle inputs of a fixed size
= sequence of comparisons is set in advance

.-,.E:,. I. Course Intro and Sorting Networks Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons
= can only handle inputs of a fixed size

= sequence of comparisons is set in advance
= Comparisons can be performed in parallel in sublinear time!

Allows to sort n numbers

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons
= can only handle inputs of a fixed size
= sequence of comparisons is set in advance

Allows to sort n numbers
= Comparisons can be performed in parallel in sublinear time!

[N |
\

[Simple concept, but surprisingly deep and complex theory!]

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

.-,.E;, I. Course Intro and Sorting Networks Introduction to Sorting Networks

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y, returns two
operates in O(1) J outputs x” = min(x, y) and y’ = max(x, y)

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

e
e

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wire connect output of one comparator to the input of another

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

e
e

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wire connect output of one comparator to the input of another

= special wires: ninput wires ay, ap, . . ., an and n output wires by, bo, ..., bp
X ——>| > x’ = min(x, y) x L a3 oy min(x, y)
comparator 3 7
y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

e
e

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wire connect output of one comparator to the input of another
= special wires: n input wires ay, ap, . . ., an and n output wires by, bo, ..., b

AN
[Convention: use the same name for both a wire and its value.]

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A sorting network is a comparison network which

Comparison Network works correctly (that is, it sorts every input)

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wire connect output of one comparator to the input of another

= special wires: n input wires ay, ap, . . ., an and n output wires by, bo, ..., b
X —> > x’ = min(x, y) x L a3 oy min(x, y)
comparator 3 7
y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

a

a

as

as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

A horizontal line represents
a sequence of distinct wires
v
ai
A C
az
E
as
B D
as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

A horizontal line represents
a sequence of distinct wires
v
ai
A C
az
E
as
B D
as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

A horizontal line represents
a sequence of distinct wires
74
ay ——
A C
az
E
as
B D
as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

A horizontal line represents
a sequence of distinct wires
v
ai
A C
az
E
as
B D
as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

v
ai b1
A C
ao b2
E
as bs
D

as b4
B
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

v
ai b1
A C
ao T . by
E
as —d bs
D

as b4
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

[V
ai b1
A C
ao . . by
E

as —l bs

as g b4
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

[V
ai b1
A C
ao . . by
E

as —l bs

as . b4
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

[V
ai b1
A C
ao . . by
E

as —l bs

as . b4
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

[V
ai b1
A C
ao o b2
D E

as —l bs

as b4
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

[V
ai b1
A C
ao . b2
D E

as - b3

as b4
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic v/

v
ai b1
A C
ao T . by
E
as —d bs
D

as b4
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

v
ai b1
A C
ao * T s by
=
as * . bs
Lo

as —d by
B
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

v
ai b1
A C
a * t b
=
as * . bs
Lo

as —d by
B
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

v
ai b1
A C
a * el
| e
as * . bs
Lo

as —d by
B
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

v
ai b1
A C
a * el
| e
as * | bs
o)

as —d . by
£
55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

74

ai b1
A C

a * e o— b

| e
as o bs
B D{
as — 4 . ba

55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

v

ai b1
A C

a * e —— b

| e
a3 ——— o bs
B D{
ay *—o . bs

55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

v

ai b1
A C

a * e —— b

| e
a3 ——— o bs
B D{
as * e . by

55 I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

74
ay by
A C
a » - —o—— b
| e
a— J bs
B D
ay . e - by
N

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

55 I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

a

a

as

as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Sl
o 5

9
a
5 A
a
2
as
6
as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9
a
5 A
a
2
as
6
as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 2
a
5 A 6
a
2 5 E
as
6 b 9
as

by

bo

by

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 2

ai b1
5 A C 6

as bo
2 5 E

as b3
6 b 9

as b4

N

[This network is in fact a sorting network (Exercise)]

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

a by
A C
a by
as bs
B D
as by
N

[This network would not be a sorting network (Why?’?)]

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9
a
5 A
a
2
as
6
as

by

bo

by

Depth of a wire:

YEy
YEY

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 2
a
5 A 6
a
2 5 E
as
6 b 9
as

by

bo

by

Depth of a wire:

= Input wire has depth 0

YEy
YEY

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 2
a
5 A 6
a
2 5 E
as
6 b 9
as

by

bo

by

Depth of a wire:

= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have

depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2

ai b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2

ai b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2

ai b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0 1
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2

ai b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0 L
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2

ai b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0 1 1 2
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2

ai b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0 1 1 2 2
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2

ai b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0 1 1 2 2 3
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2
ai b1
5 A 9 ¢ 6 5
as bo
2 2 5 E 6
as b3
6 B 6 b 9 9
as b4
depth O 11 2 2 3
. Maximum depth of an output
Depth of a wire: : Lo
- Input wire has depth 0 wire equals total running time

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

5 Fd
G-

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

—— Lemma 27.1
If a comparison network transforms the input a = {(ai, a,...,an) into
the output b = (b1, bs, ..., bn), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai),f(a2),...,f(an)) into
f(b) = (f(b1), f(b2), ..., f(bn)).

\

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

—— Lemma 27.1
If a comparison network transforms the input a = {(ai, a,...,an) into
the output b = (b1, bs, ..., bn), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai),f(a2),...,f(an)) into
f(b) = (f(b1), f(b2), ..., f(bn)).

\

J) ——

min(f (x), f(y)) = f(min(x, y))
max(f(x), f(y)) = f(max(x, y))

JO) ——

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

s
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

—— Lemma 27.1

If a comparison network transforms the input a = {(ai, a,...,an) into
the output b = (b1, bs, ..., bn), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai1),f(a2),...,f(as)) into

f(b) = (f(b1), f(be), - .., F(bn)).

\

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2" possible sequences
of 0’'s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

5
I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:

5
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

5
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

* Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

* Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

* Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

<
F(x) = 0 !fx < a,
1 ifx> a;.

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

* Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

<
F(x) = 0 !fx < a,
1 ifx> a;.

= Since the network places a; before a;, by the previous lemma

s I. Course Intro and Sorting Networks Introduction to Sorting Networks

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

* Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

<
F(x) = 0 !fx < a,
1 ifx> a;.

= Since the network places a; before a;, by the previous lemma
= f(a)) is placed before f(a;)

s I. Course Intro and Sorting Networks Introduction to Sorting Networks

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

* Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

f(x):{o if x < a,

1 ifx>a.

Since the network places a; before a;, by the previous lemma

= f(a)) is placed before f(a;)

= But f(g) = 1 and f(a;) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly O

I. Course Intro and Sorting Networks Introduction to Sorting Networks

Some Basic (Recursive) Sorting Networks

21

3 !

4

5 L
n*:.' I
n+1

SHS
o Y5

n-wire Sorting Network

227

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Some Basic (Recursive) Sorting Networks

1 —

- —

3 I *

‘5" ! n-wire Sorting Network |~ Bubble Sort
n-1 —

n — *
n+1

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

el
|

Some Basic (Recursive) Sorting Networks

OO =

n-wire Sorting Network

n—1—

n —

n-wire Sorting Network

n+1

£

Bubble Sort

227

%) I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Some Basic (Recursive) Sorting Networks

1 —
17 —
a1 -
‘5" ! n-wire Sorting Network [~ Bubble Sort
n—1 —
n ! [
n+1 !
1 —
o] !
3 — I I
g n-wire Sorting Network | Insertion Sort
n—1—
1]
n+1 l
i
a6 I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1 —

- —

3 I *

‘5" ! n-wire Sorting Network |~ Bubble Sort
n-1 —

n — *
n+1

(These are Sorting Networks, but with depth ©(n).]

1 —
2 — ! !
2] 1
g n-wire Sorting Network | Insertion Sort
n—1—|
n—j I I
n+1
I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Outline

Batcher’s Sorting Network

S
e

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

o

[Sequences of one or two numbers are defined to be bitonic.]

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

.-,.E.,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2) ?

SR I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
* (1,4,6,8,3,2) v

SR I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) 7

.-,.E.,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v

.-,.E.,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v
* (9,8,3,2,4,6) ?

.-,.E.,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v
*= (9,8,3,2,4,6) v

.-,.E.,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2
(6,9,4,2,3,5
*= (9,8,3,2,4,6
(4,5,7,1,2,6

) v
) v
) v
) ?

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v
*= (9,8,3,2,4,6) v
. (4 +-2;

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

» (1,4,6,8,3,2) v

* (6,9,4,2,3,5) v

*= (9,8,3,2,4,6) v

= (4 52,

= binary sequences: ?

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v

* (6,9,4,2,3,5) v

*= (9,8,3,2,4,6) v

= (4 2]

= binary sequences: 0'1/0%, or, 1'0/1%, for i,j, k > 0.

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

‘-,.E,‘ I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.
N
LWe always assume that nis even.J

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

.-,.E,, I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

bitonic

00 = = =0 0

.-,.E;, I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

0 — 0
0 0 | bitonic,
1 0 clean
I 1 0
bitonic
1 1
0 0 L
bitonic
0 1
0 1

.-,.E;, I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

0 — 0 0 — 0
0 0\ bitonic, 0 0 bitoni
. o clean . | itonic
L 1 0 L 1 0
bitonic bitonic
1 1 1 1
0 0 bitonic 1 1\ bitonic,
0 | itonic I | clean
0 — | 0 — |

.-,.E:,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

—— Lemma 27.3 \

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is clean.

} bitonic

bitonic,
clean
bitonic bitonic,
1onic clean

bitonic

bitonic

0
0
0
0
1
0
1
— 1

oo == =—0 0

O - = - - - o ©
—__ - — o = o o

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

—— Lemma 27.3 \

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is clean.

} bitonic

bitonic,
clean
bitonic bitonic,
1onic clean

bitonic

bitonic

0
0
0
0
1
0
1
— 1

oo == =—0 0

O - = - - - o ©
—__ - — o = o o

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0.]

I. Course Intro and Sorting Networks Batcher’s Sorting Network

20

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0.]

divide compare combine
top top bitonic,
clean
bitonic -‘ s wdine | () n R 18
bitonic
bottom bottom
(a)

I. Course Intro and Sorting Networks Batcher’s Sorting Network

20

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0.]

bitonic

bitonic

divide

0 bottom
0
" 1
[bottom
0

compare

top top 0
i
i ...1... SITRCI [T n e 0 n [EERTH | 11
—

()

top
TS 1| oeomeiine
|

(b)

combine

bottom

El=[=]

=[] =]

bottom

bitonic,
clean

bitonic

bitonic

bitonic,
clean

—_ —_

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

20

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0.]

top top 0 bitonic,
0 [0] [0] clean
itonic 4l i i |
1] o] o e
| bottom bottom | bitonic
0 0
L © L
(o] []
1 top top 0 bitonic,
— [0] [0] clean
Y — i |
0 o] 0] 0 | s
bottom bottom | bitonic
0
L @ L

s 1. Course Intro and Sorting Networks Batcher's Sorting Network

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0.]

top top 0 bitonic,
0 [0] [0] clean
itonic 4l i i |
T o] O I e
1 bottom bottom | bitonic
0 0
L © L
[0] []
1 top top 0 bitonic,
— [0] [0] clean
Y — i |
0 o] 1
bottom bottom | bitonic
0
L d L
() N

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

a6 I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

The Bitonic Sorter

| Brronic-
| SORTER[n/2]
—| HALE- 1
— | CLEANER[n]
| Brronic-
| SORTER[1/2]

(a)

bitonic

coc o~~~ 0o o

== lo = |lo o o |l

==l |lole e |

9 9 o9 o

(b)

—-— - -~ 0 oo oo

sorted

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-

ple zero-one values are shown on the wires.

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

21

The Bitonic Sorter

| Brronic-
| SORTER[n/2]
—| HALE- 1
__| CLEANER[n]
| Brronic-
| SORTER[n/2]

(a)

bitonic

==l |~ |lole e |

S = =]

==l |lole e |

9 9 o9 o

(b)

- - - 2o oo o

sorted

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Recursive Formula for depth D(n):

D(n) =

0 ifn=1,
D(n/2) +1 ifn=2%,

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

21

The Bitonic Sorter

Recursive Formula for depth D(n):

s,

—| HALE-
_ | CLEANER[n] |7

Bironic- —
SORTER[n/2] |

Brronic- —
SORTER[n/2] |

(a)

bitonic sorted

==l |~ |lole e |
==l |lole e |
9 9 o9 o
- - - 2o oo o

S = =]

(b)

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

D(n) =

Henceforth we will always
assume that n is a power of 2.

/
0 ifn=1,
D(n/2) +1 ifn=2%,

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

21

The Bitonic Sorter

— | Brronic-
— | SORTER[n/2]
—| HALE- 1

_ | CLEANER[n] |7

— | Brronic-
— L | SoRrTER[n/2]

(a)

bitonic sorted

coc o~~~ 0o o
== lo = |lo o o |l
==l |lole e |
9 9 o9 o
—-— - -~ 0 oo oo

(b)

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Recursive Formula for depth D(n):

D(n) =

Henceforth we will always
assume that n is a power of 2.
z
0 ifn=1,
D(n/2) +1 ifn=2%,

BITONIC-SORTER([n] has depth log n and sorts any zero-one bitonic sequence.

5
I. Course Intro and Sorting Networks

Batcher’s Sorting Network 21

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

I. Course Intro and Sorting Networks Batcher’s Sorting Network

22

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:

I. Course Intro and Sorting Networks Batcher’s Sorting Network

22

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

I. Course Intro and Sorting Networks Batcher’s Sorting Network

22

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111
= concatenating X with Y (the reversal of Y) = 0000011111110000

.-,.E,, I. Course Intro and Sorting Networks Batcher’s Sorting Network

22

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

= concatenating X with Y (the reversal of Y) = 0000011111110000
S

L This sequence is bitonic!]

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

= concatenating X with Y (the reversal of Y) = 0000011111110000
S

LThis seqguence is bitonic! J

fices to perform a bitonic sort on X concatenated with Y*.

{Hence in order to merge the sequences X and Y, it suf-

J

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, - .., @n/2) and (@n 241, 8nj242, - - -

) an>

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

23

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (a1, a, . .

-»8n/2,8n, 8n-1,y- -, 8n/241)

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

23

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

23

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

5
I. Course Intro and Sorting Networks Batcher’s Sorting Network

23

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

a 0, 0 by a 0, 0 by
0 0 0 0
a b a b
sorted j 1 0 bj bitonic aj 1 0 bj bitonic
“ : I . bs bitonic 4 : . by
as 0 1 bs ag 1 1 by
0 1 0 0
a b a b
sorted ° 0 0 ® Y} bitonic 7 0 1 7} bitonic
a by e bs
ag —La L pg as O v L b
(a) (b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (ap /241, Gn/242, - - -» an) into two bitonic sequences (b, by, ..., bpy2) and (bpj241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER([n]. The bitonic input sequence
(a1, @z, ...y nj2—1, Gnj2s ns Ap—1s - - - > Anj2+25 An/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bnja+1).

5
I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

a, O 0 p, a, O 0 p,

a 0 0 by - a 0 0 by -
sorted @ 1 0 by bitonic a 1 0 by bitonic
1 0 1 0
ay by - by

bitonic
as 0 I] bs s 1 1 by
d dg 0 1 bitoni a7 0 0 by bitoni
1 1 1
sorte @ 0 0, itonic a 0 1 b itonic
1 1 0 1

7
ag by a5 ——— o bs
(2) (b)

[Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.]

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (ap /241, /o425 - » ap) into two bitonic sequences (by, by, ..., bpy2) and (bp/241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER([n]. The bitonic input sequence
(a1, az, ..., An/2—15 Anj2> Ans Gp—1, - - - » An/242, Gn/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bnja+1).

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

a 0, 0 by a 0, 0 by
0 0 0 0
a b a b
sorted j 1 0 bj bitonic aj 1 0 bj bitonic
“ : I . bs bitonic 4 : . by
as 0 1 bs ag 1 1 by
0 1 0 0
a b a b
sorted ° 0 0 ® Y} bitonic 7 0 1 7} bitonic
a by e bs
ag —La L pg as O v L b
(a) (b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (ap /241, Gn/242, - - -» an) into two bitonic sequences (b, by, ..., bpy2) and (bpj241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER([n]. The bitonic input sequence
(a1, @z, ...y nj2—1, Gnj2s ns Ap—1s - - - > Anj2+25 An/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bnja+1).

5
I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2
» Remaining part is identical to BITONIC-SORTER[7]

a 0, 0 by a 0, 0 by
0 0 0 0

a b a b
sorted 2 1 0 bz bitonic az 1 0 bz bitonic

3 3 3 3

ay 1 0 by - ay 1 0 by

as 0 I 1 b bitonic . 1 1 b

0 1y a 0 0

6 6 I 7 7
rted bit bitoni
sorte a 0 0 b7 1ronic ag 0 1 b6 1ronic

ag 1 1 by as 0 o1 bs

(a) (b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (@p 241, Gn/242, - - -» an) into two bitonic sequences (b, by, ..., bpy2) and (bpj241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
(a1, @z, ...y nj2—1, Gn/2s ns Ap—1s - - - > Apj2+25 An/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bpja+1).

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (2/2)

¥ Brronic- —

SORTER[n/2] | — sorted

sorted

BiTonic- —

SORTER[1/2] | sorted

— = = = o |~ o |l

>
= Sy
>
— = = = o |= o |

[N = =)

(a) (b)

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n] with the first half-cleaner altered to
compare inputs i and n —i+1fori =1,2,...,n/2. Here,n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[7/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

e 1. Course Intro and Sorting Networks Batcher's Sorting Network 24

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER(N]

= sorts any bitonic sequence
= depth log n

HaLE-
CLEANER[n]

BrTONIC-
SORTER[n/2]

BrroNic-
SORTER[n/2]

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

25

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER(N]
= sorts any bitonic sequence
= depth log n

2. MERGER([n]

= merges two sorted input sequences
= depth logn

HaLE-
CLEANER[n]

BrTONIC-

SORTER[n/2]

BrroNic-

SORTER[n/2]

Brronic-

SORTER[11/2]

BiToNIC-

SORTER[n/2]

s
";;!“ I. Course Intro and Sorting Networks Batcher’s Sorting Network

25

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER([N]
= sorts any bitonic sequence
= depth log n

2. MERGER([n]

= merges two sorted input sequences
= depth logn

Batcher’s Sorting Network
= SORTER(nN] is defined recursively:

HALF-
CLEANER[7]

BrTONIC-

SORTER[n/2]

BrroNic-

SORTER[n/2]

Brronic-
SORTER[11/2]

Bironic-
SORTER[/2]

SoRTER[n/2]

= If n = 2K, use two copies of SORTER[n/2] to

sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
= If n =1, network consists of a single wire.

SORTER[n/2]

i
I. Course Intro and Sorting Networks

Batcher’s Sorting Network

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER([N]
= sorts any bitonic sequence
= depth log n

2. MERGER([n]

= merges two sorted input sequences
= depth logn

Batcher’s Sorting Network

= SORTER(nN] is defined recursively:

= If n = 2K, use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].

= If n =1, network consists of a single wire.

AN

[can be seen as a parallel version of merge sort]

HALF-
CLEANER[7]

BrTONIC-

SORTER[n/2]

BrroNic-

SORTER[n/2]

Brronic-

SORTER[11/2]

Bironic-

SORTER[n/2]

SoRTER[n/2]

SORTER[n/2]

5
E:';,' I. Course Intro and Sorting Networks

Batcher’s Sorting Network

25

Unrolling the Recursion (Figure 27.12)

el Bl
o 5

| SorteR[n/2]

MERGER[7]

| SorteR[n/2]

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

26

Unrolling the Recursion (Figure 27.12)

£

| SorteR[n/2]

MERGER|[n]

| SorteR[n/2]

MERGER|[2]

MERGER[2]

MERGER [4] [

MERGER|[2]

AL

MERGER[2]

MERGER [4] [

MERGER[8]

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

26

Unrolling the Recursion (Figure 27.12)

: Sorter[n/2] | | :

: : MERGER|[n]

: Sorter[n/2] | | :

1 0 0

N I i
1 ol L.

S B0 i
1 0 0 !

N I i
0 ol § .0

S Y0 !
depth 1 2 23 4 4 4 4556

MERGER[2]

MERGER[2]

MERGER[4] [

MERGER[2]

MERGER[2]

MERGER[4] [

MERGER[8]

B (]

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

26

Unrolling the Recursion (Figure 27.12)

: Sorter[n/2] | | :

: : MERGER|[n]

: Sorter[n/2] | | :

1 0 0

N I i
1 ol L.

S B0 i
1 0 0 !

N I i
0 ol § .0

S Y0 !
depth 1 2 23 4 4 4 4556

- - —_ 0 o o O O

MERGER[2]
MERGER[4] [
MERGER[2]

MERGER[8]

AL

MERGER[2]
MERGER[4] [
MERGER[2]

Recursion for D(n):

0

B =1 p(n2) + log n

ifn=1,
if n= 2%,

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

26

Unrolling the Recursion (Figure 27.12)

: Sorter[n/2] | | :

: : MERGER|[n]

: Sorter[n/2] | | :

1 0 0

N I i
1 ol L.

S B0 i
1 0 0 !

N I i
0 ol § .0

S Y0 !
depth 1 2 23 4 4 4 4556

- - —_ 0 o o O O

MERGER[2]

MERGER[2]

MERGER[4] [

AL

MERGER[2]

MERGER[2]

MERGER[4] [

MERGER[8]

Recursion for D(n):

D(n

=

_Jo
| D(n/2) + log n

ifn=1,
if n= 2%,

Solution: D(n) = ©(log? n).

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

26

Unrolling the Recursion (Figure 27.12)

o [[MERGER|[2] [[

"] Sorter [n/2] [MERGER[4] [[

] [[MERGER[2] [[

o T MERGER|[n] T MERGER[8]

o [MERGER|[2] [

"] Sorter [n/2] [MERGER[4] [[

: : : MERGER[2] : :

1 1 0 1 0 0

0 L 1 0 L o Recursionfor D(n):

1 0 1 0

0t L 1 Lo 0 itn=1,
|0 0 o D(n)= : p
0 Il il I D(n/2) +logn if n= 2",
0 (4] I (4] 1 . 5

a0 1 - Solution: D(n) = ©(log? n).

depth 1 2 2 3 4 4 4 4556

SORTER[n] has depth ©(log? n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).]
N

[Quite elaborate construction, and involves huges constants.J

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2 smallerkeysin by, ..., b2 andthe n/2 largerkeysin b, /41, .. ., bn.

.-,.E.,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

27

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).]

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2 smallerkeysin by, ..., b2 andthe n/2 largerkeysin b, /41, .. ., bn.
N

[Perfect halver of depth log, n exist ~ yields sorting networks of depth ©((log n)?).]

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2 smallerkeysin by, ..., b2 andthe n/2 largerkeysin b, /41, .. ., bn.

Approximate Halver

An (n, e)-approximate halver, e < 1, is a comparison network that for
every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bnjo+1, . .-, bn and at most ek of its k largest keys in by, ..., by2.

.-,.E:,. I. Course Intro and Sorting Networks Batcher’s Sorting Network

27

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2 smallerkeysin by, ..., b2 andthe n/2 largerkeysin b, /41, .. ., bn.

Approximate Halver

An (n, e)-approximate halver, e < 1, is a comparison network that for
every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bnjo41,- .-, bn and at most ek of it@k largest keys in by, ..., by/».

'[We will prove that such networks can be constructed in constant depth!

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

27

Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings

= For every subset S C V being in one part,

IN(S)| > min{z. - [S],n/2 — [S]}

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

28

Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings

= For every subset S C V being in one part,

IN(S)| > min{z. - [S],n/2 — [S]}

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

28

Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings

= For every subset S C V being in one part,

IN(S)| > min{z. - [S],n/2 — [S]}

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

28

Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings

= For every subset S C V being in one part,

IN(S)| > min{z. - [S],n/2 — [S]}

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

28

Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings

= For every subset S C V being in one part,

IN(S)| > min{y - [S|,n/2 - |S|}

AN

Specific definition tailored for sorting
network - many other variants exist!

5
I. Course Intro and Sorting Networks Batcher’s Sorting Network

28

Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings

= For every subset S C V being in one part,

IN(S)| > min{y - [S|,n/2 - |S|}

Expander Graphs:
= probabilistic construction “easy”: take d (disjoint) random matchings

= explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

= many applications in networking, complexity theory and coding theory

5
I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

From Expanders to Approximate Halvers

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

From Expanders to Approximate Halvers

I. Course Intro and Sorting Networks Batcher’s Sorting Network

29

Existence of Approximate Halvers (not examinable)

Proof:

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)

Proof:
= X := keys with the k smallest inputs

i
I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs

s I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs

= For every u € N(Y): 3 comparat. (u,v),veYyY

s I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs

= For every u € N(Y): 3 comparat. (u,v),veYyY
= Let u, v; be their keys after the comparator u

Let ug, vg4 be their keys at the output

I. Course Intro and Sorting Networks Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs

! |
* Forevery u e N(Y): 3 comparat. (u,v),veY Do
= Let u, v; be their keys after the comparator ur Ut Ud
Let ug, vg4 be their keys at the output Lo
| 1
! |
| 1
| I
! 1
! |
I
1= 7
|]
| |
|
V-
|
Vi ! Vi Vd
| 1
| |
| 1
| |
| |
| !
;;. I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)

Proof:
= X := keys with the k smallest inputs

= Y := wires in lower half with kK smallest outputs
= For every u € N(Y): 3 comparat. (u,v),veYyY
= Let u, v; be their keys after the comparator u

Let ug, vg4 be their keys at the output
= Note that vy € X

ut

Ud

Vi

Vd

s 1. Course Intro and Sorting Networks

Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

Sl
o 5

X := keys with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator u

Let ug, vg4 be their keys at the output
Note that vy € X
Further: ug < u < v < vy

ut

Ud

Vi

Vd

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

Sl
o 5

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u € N(Y): 3 comparat. (u,v),ve Y

Let u;, v; be their keys after the comparator u Ut

Ud

Let ug, vg4 be their keys at the output

Note that vy € X
Further: ug < ut < vi<vg=ug e X

Since u was arbitrary:

YT+ IN(Y)| < k.

Vi

Vd

I. Course Intro and Sorting Networks Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

nffi
o 5

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u € N(Y): 3 comparat. (u,v),ve Y

Let u;, v; be their keys after the comparator u Ut

Ud

Let ug, vg4 be their keys at the output

Note that vy € X

Since u was arbitrary:

YT+ IN(Y)| < k.

!
!
|
|
|
:
Further: ug < ut < vi<vg=ug e X |
|
|
|
Since G is a bipartite (n, d, i1)-expander: - -

Vi

Vd

I. Course Intro and Sorting Networks Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

nffi
o 5

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u € N(Y): 3 comparat. (u,v),ve Y

Let u;, v; be their keys after the comparator u Ut

Ud

Let ug, vg4 be their keys at the output

Note that vy € X

Since u was arbitrary:

YT+ IN(Y)| < k.

!
!
|
|
|
:
Further: ug < ut < vi<vg=ug e X |
|
|
|
Since G is a bipartite (n, d, i1)-expander: - -

Y1+ IN(Y)I

Vi

Vd

I. Course Intro and Sorting Networks Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

nffi
o 5

= Note that vy € X

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator u

ut

Ud

Let ug, vg4 be their keys at the output

Since u was arbitrary:
Y[+ IN(Y) < k.

|
|
|
|
|
|
|
|
Further: ug < ut < vi<vg=ug e X |
|
|
|
|

Since G is a bipartite (n, d, i1)-expander:

Y1+ INCY) > [Y] +min{u[Y],n/2 — Y]}

Vi

Vd

I. Course Intro and Sorting Networks Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

nffi
o 5

= Note that vy € X

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator u

ut

Ud

Let ug, vg4 be their keys at the output

Since u was arbitrary:
Y[+ IN(Y) < k.

|
|
|
|
|
|
|
|
Further: ug < ut < vi<vg=ug e X |
|
|
|
|

Since G is a bipartite (n, d, i1)-expander:

Y1+ INCY) > Y]+ min{u|Y],n/2 —|Y[}
=min{(1+ p)|Y|,n/2}.

Vi

Vd

I. Course Intro and Sorting Networks Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

nffi
o 5

X := keys with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u € N(Y): 3 comparat. (u,v),veY
Let u;, v; be their keys after the comparator

Let ug, vg4 be their keys at the output

= Note that vy € X

Further: ug < ut < vi<vg=ug e X
Since u was arbitrary:

Y[+ IN(Y) < k.
Since G is a bipartite (n, d, i1)-expander:
Y]+ IN(Y) > [Y] 4 min{u| Y], n/2 —|Y]}
=min{(1+ p)|Y|,n/2}.
Combining the two bounds above yields:
A+ plYl <k

ut

Ud

Vi

Vd

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

= X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u € N(Y): 3 comparat. (u,v),ve Y

Let u;, v; be their keys after the comparator u Ut

Ud

Let ug, vg4 be their keys at the output

= Note that vy € X

Since u was arbitrary:
Y[+ IN(Y) < k.

|
|
|
|
|
|
|
|
Further: ug < ut < vi<vg=ug e X |
|
|
|
|

= Since Gis a bipartite (n, d, ;1)-expander:

Y1+ INCY) > [Y] +min{u[Y],n/2 — Y]}

= min{(1 + p)|Y|,n/2}.

Vi

Vd

Combining the two bounds above yields:

(A +wlYl <k
O

[Here we used that k < n/2] o

s 1. Course Intro and Sorting Networks Batcher's Sorting Network

30

Existence of Approximate Halvers (not examinable)

Proof:

= X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

= For every u € N(Y): 3 comparat. (u,v),veYyY u
. t

Let u;, v; be their keys after the comparator u

Ud

Let ug, vg4 be their keys at the output

= Note that vy € X

Since u was arbitrary:
Y[+ IN(Y) < k.

|
|
|
|
|
|
|
|
Further: ug < ut < vi<vg=ug e X |
|
|
|
|

= Since Gis a bipartite (n, d, ;1)-expander:

Y1+ INCY) > [Y] +min{u[Y],n/2 — Y]}

= min{(1 + p)|Y|,n/2}.

Vi

Vd

Combining the two bounds above yields:

(14wl Y| < k.

* Same argument = at most ¢ - k,

e:=1/(n+ 1), of the k largest input keys are Lo
placed in by, ..., bp/o. |

= typical application of expander gaphs in parallel algorithms
= Much more work needed to construct the AKS sorting network

s 1. Course Intro and Sorting Networks Batcher's Sorting Network

30

AKS network vs. Batcher’s network

Donald E. Knuth (Stanford) Richard J. Lipton (Georgia Tech)

“Batcher's method is much “The AKS sorting network is

better, unless n exceeds the galactic: it needs that n be

78 i
total memory capacity of all Lar ger ﬁl,/anti ogs;) ;70 f/’na/ ly
computers on earth!” ¢ smaller than Baichers

network for n items.”

5
I. Course Intro and Sorting Networks Batcher’s Sorting Network 31

Siblings of Sorting Network

Sorting Networks
= sorts any input of size n

= special case of Comparison Networks

comparator

2

<

| 7

‘-,‘E',‘ I. Course Intro and Sorting Networks

Batcher’s Sorting Network

32

Siblings of Sorting Network

Sorting Networks

= sorts any input of size n
= special case of Comparison Networks

Switching (Shuffling) Networks
= creates a random permutation of n items
= special case of Permutation Networks

comparator
L] P <
2] > |7
switch
7 ?
] _ - :~_
N ... 7
i
ok
2 7z i S N ?
- L 4

I. Course Intro and Sorting Networks Batcher’s Sorting Network

32

Siblings of Sorting Network

Sorting Networks

= sorts any input of size n

= special case of Comparison Networks

Switching (Shuffling) Networks

= creates a random permutation of n items

= special case of Permutation Networks

Counting Networks

= balances any stream of tokens over n wires
= special case of Balancing Networks

"-.E 5

comparator

L] P <
2] > |7

switch
7 ?
] _ - :w_

i

ok
2 7z i S N ?
- L P
balancer
7 S
4~

518

2 | 4

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

Outline

Counting Networks

S
e

I. Course Intro and Sorting Networks

Counting Networks

33

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting

Processors collectively assign s&:cessive values from a given range.

Values could represent addresses in memories
or destinations on an interconnection network

i
I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

‘-,.E,‘ I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

‘-,.E,‘ I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O

‘-,.E,‘ I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

‘-,.E,‘ I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O

I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O

O

I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O

‘-,.E,‘ I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O

O

I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O

© ©

I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O

O

‘-,.E,‘ I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

© C

O

I. Course Intro and Sorting Networks Counting Networks

34

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

© C

[Number of tokens differs by at most one]

O

.-,.E.,. I. Course Intro and Sorting Networks Counting Networks

34

Bitonic Counting Network

~——— Counting Network (Formal Definition)
1. Let xy, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires

2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the
designated output wires

5
I. Course Intro and Sorting Networks Counting Networks

35

Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires

2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the
designated output wires

3. Inaquiescent state: 37, x; = Y1, Vi

0<y—y <tiforanyi<]j.

4. A counting network is a balancing network with the step-property:

i
I. Course Intro and Sorting Networks Counting Networks

35

Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires

2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the
designated output wires

3. Inaquiescent state: 37, x; = Y1, Vi
4. A counting network is a balancing network with the step-property:

0<y—y <tiforanyi<]j.

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

i
I. Course Intro and Sorting Networks Counting Networks

35

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have S7/2 x4 = [$37 x],and 3

78 xei = |3 220)

2. Ifzf’ﬂx,-fzizhv,,thenx,7y,-for/71,...,

3 Y =27, yi+1,then3j=12 ..

,nwith x; = y; +1and x; = y; for j # i.

S
e

I. Course Intro and Sorting Networks

Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

——— Key Lemma

have the step property, then so does the output y1, ..., ¥a.

Consider a MERGER[n]. Then if the inputs xi, ..., X,/2 and Xp/241, - -

. Xn

Proof (by induction on n being a power of 2)

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xpand y1,..
1. We have 372 xoi¢ = [1 327, %], and 3
2. 130, xi=
B Y xi=30, yi+1,then3lj=12 ..

., ¥n have the step property. Then:

78 xei = |3 220)

S, yithenx;=yifori=1,...,n

,nwith x; = y; + 1 and x; =

yiforj#i.

9 o690 oo o4

Proof (by induction on n being a power of 2)

I. Course Intro and Sorting Networks

Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xpand yi,...
1. We have 372 xoi¢ = [1 327, %], and 3
2. 130, xi=
B Y =31, yi+1,thenTj=12..,

, ¥n have the step property. Then:

7/12 Xoi = [Zr 1X’J

S, yithenx;=yifori=1,...,n

nwith x; = y; + 1 and x; =

yiforj#i.

9 o690 oo o4

Proof (by induction on n being a power of 2)
= Case n = 2 s clear, since MERGER(2] is a single balancer

I. Course Intro and Sorting Networks

Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xpand yi,...

1. We have S7/2 x4 = [$37 x],and 3

2. 130, xi=
Y, =", yi+1,then3lj=12 .,

, ¥n have the step property. Then:

78 xei = |3 220)

S, yithenx;=yifori=1,...,n

nwith x; = y;+1and x; =

yiforj#i.

9 o690 oo o4

Proof (by induction on n being a power of 2)
= Case n = 2 s clear, since MERGER(2] is a single balancer

"n>2:

I. Course Intro and Sorting Networks

Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xpand yi,...

1. We have 72 xoiq = [13°0,

2. 1E3°0, x =31,y thenx; =

, ¥n have the step property. Then:

x|, and 7/ = 3 7)

yifori=1,...,n

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

—9 9 9o o4

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2: Letz,...

Sl
SR

/
,Znjzand zj, . ..

» 2y be the outputs of the MERGER([n/2] subnetworks

I. Course Intro and Sorting Networks

Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xpand yi,...
1. We have 372 xoi_1 = [}
2. 1E3°0, x =31,y thenx; =

2

P/

, ¥n have the step property. Then:

x|, and 7/ = 3 7)

yifori=1,...,n

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1
X2
3
X4
x5
X6
x7
X8

—9 9 9o o4

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2: Letz,...

Sl
SR

/
,Znjzand zj, . ..

» 2y be the outputs of the MERGER([n/2] subnetworks

I. Course Intro and Sorting Networks

Counting Networks

36

Correctness of the Bitonic Counting Network

Facts
Let x1,...,xnand yi, ..., y» have the step property. Then:
1. We have Y7231 = [£ 20, xi], and 2 xor = | 5 350, X
2., =", yi,thenx;=yfori=1,...,n

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1
X2
3
X4
x5
X6
x7
X8

—9 9 9o o4

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2: Letz,...

/
,Znjzand zj, . ..

» 2y be the outputs of the MERGER([n/2] subnetworks

I. Course Intro and Sorting Networks

Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 1

Xo I
X3 22

X4 I
X5 I

X 3 |
x7

xg 2 |

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2 letz,...,zyand z,. .. ,z,’7/2 be the outputs of the MERGER[n/2] subnetworks

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 A1

Xo I
X3 22

X4 I
X5 I

X 3 |
x7

xg 28

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2 letz,...,zyand z,. .. ,z,’7/2 be the outputs of the MERGER[n/2] subnetworks

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xy 2z
Xo 2] I
3 22
X4 zé I
% l 2
X |
X7 z"1
xg 24 I

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2 letz,...,zyand z,. .. ,z,’7/2 be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,2{7/2 have the step property

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
X 73 |
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)
= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2 letz,...,zyand z,. .. ,z,g/z be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,2{7/2 have the step property

" letZ = E”/z ziand Z' = "2 2

i=1 “i

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
X BB
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)
= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2 letz,...,zyand z,. .. ,z,/,/2 be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,2{7/2 have the step property
" letZ = E"/zz, and Z' = "2 2

i=1 “i

2 2
" Fl= Z= [+ 13 e Xl and 2/ = |3 5272 5] + T3 20000 X1

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
X BB
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)
= Case n = 2 s clear, since MERGER(2] is a single balancer
"n>2 letz,...,zyand z,. .. ,z,/,/2 be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,2{7/2 have the step property
" letZ = E"/zz, and Z' = "2 2

i=1 “i

2 2
" Fl= Z= [+ 13 e Xl and 2/ = |3 5272 5] + T3 20000 X1

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
X BB
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer

"n>2 letz,...,zyand z,. .. ,z,/,/2 be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,2{7/2 have the step property

" letZ = E”/z ziand Z' .= Y12 2

R Z= 1+ 3 el and 2 = [72 %] + [500 000 Xi]

= Case 1: If Z = Z’, then F2 implies the output of MERGER[n] is y; = 2y (i—1)/2) V

i
I. Course Intro and Sorting Networks Counting Networks

36

Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [30, %], and X7 2 xei = |1 300, x|

2. Ifzf’ﬂx,-fzi:wy,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% | 2
Xg g I
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)

= Case n = 2 s clear, since MERGER(2] is a single balancer

"n>2 letz,...,zyand z,. .. ,z,/,/2 be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,2{7/2 have the step property

" letZ = E”/z ziand Z' .= Y12 2

R Z= 1+ 3 el and 2 = [72 %] + [500 000 Xi]

= Case 1: If Z = Z’, then F2 implies the output of MERGER[n] is y; = 2y (i—1)/2) V

" Case2:If|Z—2Z'| =1,F3implies z = z/ fori = 1, ..., n/2 except a unique j with z; # Z;.

Balancer between z; and z/ will ensure that the step property holds.

T)
i
I. Course Intro and Sorting Networks Counting Networks

36

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X3

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

@© »—

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X4

® =

X3 1

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X1
X2 2
X3 1
X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X1 40—@

X2

X3 40—6)

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 40—@ y

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 40—@)

X2

@O

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

(2)
&)

% -@O+—O

X4

7

)2

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X2 Y2

% @4'—@ A ¥s

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

X1 @—1{7 2

X2 Y2

X3 4@4'—@ A Y

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

X4 @—1{7 Y
X2 4) Y2
X:

3 1) 4 Y3
X4 ® b Ya

i
I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

. &g
X2 4))2
X3 ———4

: X ! X Yo
X4 ——4 ———— V4

i
I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

Xi @—1{7 iz
X2 4))2
X3 ———4¢

: X ! X Yo
X4 ——4 ———— V4

i
I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

. O
X2 4))2
1Y
X3 —4
: X ! X Yo
X4 ———4 ———— V4

i
I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

@ = T S

X2 ¢ Y2

X3 ® Y3

Xa 4»—@ 3 Va

i
I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

X1@

X2

X3

———)2

{2 }—1{7 7
O—
'}
A

0%

X4 40—@ 3

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1@

X2

X3

———)2

{2 }—1\'7 7
O—
'}
A

0%

X4 40—@ 3

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1@

X2

X3

———)2

{2 }—1{7 7
O—
'}
A

0%

X4 40—@ 3

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1@

X2

X3

{2 }—1{7 »

@—07 Yo
A

0%

X4 40—@\

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

0%

Ya

X1 @ @—1{7 2

Xo { @—»7 Yo
Y

X X X

X4 40—@\

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1@

X2

X3

{2 }—1{7 »

X4

A

0%

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1@

X2

——— V1

X3

X4

0%

——— V4

@&—
D
@—4

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1@

X2

——— V1

X3

X4

0%

——— V4

O
@—07 Y2
(3)y——

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

" @

X2

X3

———)2

X4

{2 }—1{7 1z
(1)
A

0%

@

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

" @

X2

X3

——— V1

X4

@—
Do
@—4

0%

——— V4

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

" @

X2

X3

——— V1

X4

@—
O
@—4

0%

——— V4

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

" @

X2

X3

——— V1

X4

@—
O
@—4

0%

——— V4

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

" @

X2

X3

——— V1

X4

@—
De—r
(3)—

0%

——— V4

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Sl
Sl

X1—@

{2 }—1\'7 »

2 D+
X3 y b ! 4 0%
X4 * Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Xq —@ y 2 »

X2 *® Yo

X X 3 @

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

Xq —@ y 2 »

X2 *® Yo

e X i @-»
®) x Y Ya

i
I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

X2 Y2

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

@ @@

X2 Y2

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X2 Y2

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X2 L 2 V2]

i
I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

R T e RSO
Xo 40—@ 4 Y2

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

P
Xo 40—@ 4 Y2
®) { 3 MO

i
I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

X 1 y &
Xo 4»—@ 4)2

X4 {6 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

e TP
Xo 4»—@ 4 Y2

X4 {6 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

X A\ A @—"7 yi @
Xo 4«—@ 4)2

X4 -6 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

7

)2

0%

Ya

O

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

g X) X n @
Xo 4«—@ Y2

X4 —{ 6 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

g 1 A r— O
Xo —4 4 @—}@

X4 6 e Ya

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 X L 4 X Y1 @
X —— 4) @)
X3 4«—@ 3 Vs @

X4 6 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

g 1 A r—n @

Xo ———4

(=
?
5

X3 4¢'—@ 3 Y3 @

X4 6 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

be > . 2
Xo —a O @) e
xs ——o—(5) y3
% —@¥ Vi

O

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Xy {

X2 (a)

X3 5 b
X4 4

%@

)2

®

ye@

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

®

X4 ———4

%@

)2

®

ye@

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X4 ———4

%@

)2

®

ye@

Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X X y X rn @

X4 ———4

Ya

X3 4}{—@ 4 ———)3 @
—(©)

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

X X y X rn @

X2 ¢ Y2

®

R e —» @
—®

X4 ———4

Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 X »
X2) Y2
———)3
{7 Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 X »
X2) Y2
———)3
{7 Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 X »
X2) Y2
———)3
{7 Ya

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

Xy 4 1 i
X2))2
B2 (O
X4 Y Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

"R &——3—» 0O

X2 Y2

X3 s 5 F@—ibi 0% @
}

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

"R &———» O

X2 Y2

X3 X @—4»—@—07 Y3 @
)

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

"R O S

X2 Y2

X3 X @—4»—@—07 y3 @
)

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

"R &% 0O

X2 ¢ Y2

®

X3 s ? 3 @—07 y3 @

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

<

%7

{6 }—1{7 »

———)2

———)3

X4

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

KX

——— V1

———)2

———)3

X4

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

KX

——— V1

———)2

———)3

X4

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 X 6 7 @

X2 *® Yo

®

X A i @ @

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

x 3 O SO N0
Xo 4)2 @
X A i @+ @

X4 Ya

i
E:';.! I. Course Intro and Sorting Networks Counting Networks

Bitonic Counting Network in Action (Asychnronous Execution)

X1 (6)—o— V1

X2 4)2
A

X3 y @—»7 y3

X4 4 Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 {6 —e— W1

X2 4)2
A

X3 y @—07 y3

X4 4 Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

* Yo

) @_‘.7 ¥s

X4

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

@

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

@

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

R

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

@

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

@

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

@

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

) @07 ¥s

Ya

®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

Ya

ORO)
® ®
®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

) ®.7 ¥s

Ya

ORO)
® ®
®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 Y1

X2)2

X @
A

X4 Y Ya

ORO)
® ®
®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X1 Y1

X2)2

X @
A

X4 Y Ya

ORO)
® ®
®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

Ya

ORO)
® ®
®

I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X4

X2

X3

X4

7

)2

Ya

ORO)
® ®
®

I. Course Intro and Sorting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X 1 1 NONC)
. v @ ®

\

X X X MO,

X b ve (@)
-

Counting can be done as follows:
Add local counter to each output wire /, to
assign consecutive numbers i, i+ n,i+2-n,...

I. Course Intro and Sorting Networks Counting Networks 37

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

X4

X2

X3

X4

X5

X6

X7

X8

»

Yo

Y3

Ya

Y5

Y6

y7

Y8

I. Course Intro and Sorting Networks

Counting Networks

38

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

Consists of log n BLOCK[n] networks each of which has depth log n

38

Counting Networks

I. Course Intro and Sorting Networks

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.

i
I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting [The converse is not true!]

Counting vs. Sorting)
| If a network is a counting network, then it is also a sorting network.

Sl
o 5

I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.

Proof.

i
I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.

= Let C be a counting network, and S be the corresponding sorting network

s
I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.

= Let C be a counting network, and S be the corresponding sorting network

i
I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S
C S

i
I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S
1
0
C 0 S
1

i
I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.

i
I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

0 1
1 0

C 1 0 S
0 1

I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.

= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.

= Cis a counting network = all ones will be routed to the lower wires

01 1
110 0

C 1 1 0 S
0o 1

(55 I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

0 1 1 1
110]o0 0

C 1 1|1 0 S
0lolo 1

(55 I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

0 1 1 1 1
1100 1 0
C 1 1]1]o 0 S
0lojoo 1

(55 I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

0 1 111 1
1100 1)1 0
C 1 1]1]o 0 0 S
0lojloojo 1

(55 I. Course Intro and Sorting Networks Counting Networks

39

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires
= S corresponds to C = all zeros will be routed to the lower wires

0 1 111 1
1100 1)1 0
C 1 1]1]o 0 0 S
0lojloojo 1

(55 I. Course Intro and Sorting Networks Counting Networks

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires
= S corresponds to C = all zeros will be routed to the lower wires

0 1 111 1 0
1100 1)1 0 0
C 1 1]1]o 0 0 1S
0lojloojo 1 1

(55 I. Course Intro and Sorting Networks Counting Networks

From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires
= S corresponds to C = all zeros will be routed to the lower wires

= By the Zero-One Principle, Sis a sorting network. O
o 1 1 1.1 1 0
1]0]0 1]1 0 0
C 1 _1]1]o.0 0 1 S
0ojojoo0]oO 1 1

I. Course Intro and Sorting Networks Counting Networks

39

Outline

Load Balancing on Graphs

S
e

I. Course Intro and Sorting Networks

Load Balancing on Graphs

40

Communication Models: Diffusion vs. Matching

O O AI=NI=h—= O
O BI=NI=AI=- O O
O O O Oml=nl—=+
O O O OnI=vl=

O O O NI=NI=p—=
Bl=l=pl=- O O O
NI=p= O O ONI=

1
i
4
0
0
0
1
4

OO O OO0OOo

onl=vI—- O O O

o= O O O

OO O OOoOOo

I. Course Intro and Sorting Networks Load Balancing on Graphs

4

Communication Models: Diffusion vs. Matching

O O O OnI=nl=

1
i
2
0
0
0
0

O O RI=NI=AI= O
O RI=NVI=hI—- O O

O O O NI=NI=p—=
B=l=pl—- O O O
NI=p= O O ORNI=

1
i
Z
0
0
0
1
4

OO O OO0OOo

onl=vI—- O O O

o= O O O

OO O OOoOOo

I. Course Intro and Sorting Networks Load Balancing on Graphs

4

Smoothness of the Load Distribution

= x! € R" be a load vector at round t
= X denotes the average load

i
I. Course Intro and Sorting Networks Load Balancing on Graphs

42

Smoothness of the Load Distribution

= x! € R" be a load vector at round ¢
= X denotes the average load

AN
[Want that x' converges for t — oo to (X, X, . . . ,Y)!]

e 1. Course Intro and Sorting Networks Load Balancing on Graphs

42

Smoothness of the Load Distribution

= x! € R" be a load vector at round t
= X denotes the average load

AN
[Want that x' converges for t — oo to (X, X, . . . ,Y)!]

Metrics

= Lo-norm: @f = /377 (x! — X)?
= makespan: max; x!
= discrepancy: max; x! — min_; x;.

e
I. Course Intro and Sorting Networks Load Balancing on Graphs

42

Smoothness of the Load Distribution

= x! € R" be a load vector at round t
= X denotes the average load

AN
[Want that x' converges for t — oo to (X, X, . . . ,Y)!]

Metrics

= Lo-norm: @f = /377 (x! — X)? (2 O, ©
= makespan: max; x! M
= discrepancy: max; x! — min_; x;. @A?@

e
I. Course Intro and Sorting Networks Load Balancing on Graphs 42

Smoothness of the Load Distribution

= x! € R" be a load vector at round ¢
= X denotes the average load

AN
[Want that x' converges for t — oo to (X, X, . . . ,Y)!]

Metrics

= Lo-norm: @f = /377 (x! — X)?
= makespan: max; x!
= discrepancy: max; x! — min_; x;.

For this example:
= o' =02+ 02 +3852+052+12+ 12+ 1.52+ 0.52 = /17
= max’_; x/ =6.5

= max’_; x{ —min?_, x/ =5

e 1. Course Intro and Sorting Networks Load Balancing on Graphs 42

Smoothness of the Load Distribution

= x! € R" be a load vector at round ¢
= X denotes the average load

AN
[Want that x' converges for t — oo to (X, X, . . . ,Y)!]

Metrics

= f-norm: &f = /377 (x! — X)?
= makespan: max; x!
= discrepancy: max; x! — min_; x;.

For this example:
= o' =02+ 02 +3852+052+12+ 12+ 1.52+ 0.52 = /17
= max’_; x/ =6.5

= max’_; x{ —min?_, x/ =5

e 1. Course Intro and Sorting Networks Load Balancing on Graphs 42

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
M; = <1 — adeg(i) if i =],
0 otherwise.

.-,.E,, I. Course Intro and Sorting Networks Load Balancing on Graphs

43

Diffusion Matrix

N
How to pick « for a d-regular graph?
" o= :—j may lead to oscillation (if graph is bipartite)
"a= d+r1 ensures convergence
o= 21—d ensures convergence (and all eigenvalues of M are non-negative)
Y,
Diffusion Matrix /

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

i
I. Course Intro and Sorting Networks Load Balancing on Graphs

43

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:
a if (i,) € E,
M; = <1 — adeg(i) if i =],

0 - ~ otherwise.
neighbors of i

.-,.E,, I. Course Intro and Sorting Networks Load Balancing on Graphs

43

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

Further let v(M) := max,, 1 |ui|, where us =1 > pp > -+ > pp > —1
are the eigenvalues of M.

.-,.E.,. I. Course Intro and Sorting Networks Load Balancing on Graphs

43

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

Further let v(M) := max,, 1 |ui|, where us =1 > pp > -+ > pp > —1
are the eigenvalues of M.

First-Order Diffusion: Load vector x’ satisfies

X' =M. x=1.

.-,.E.,. I. Course Intro and Sorting Networks Load Balancing on Graphs

43

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

Further let v(M) := max,, 1 |ui|, where us =1 > pp > -+ > pp > —1

are the eigenvalues of M. B

I
| This can be also seen as a random walk on G!

%
First-Order Diffusion: Load vector x’ satisfies

X' =M. x=1.

i
I. Course Intro and Sorting Networks Load Balancing on Graphs

43

1D grid

I. Course Intro and Sorting Networks

Load Balancing on Graphs

44

Sl
SR

1D grid

2D grid

I. Course Intro and Sorting Networks

Load Balancing on Graphs

44

el Bl
o 5

1D grid

2D grid

3D grid

I. Course Intro and Sorting Networks

Load Balancing on Graphs

44

1D grid

Y(M) =15
Hypercube
(M)~ 1~ g

2D grid

3D grid

Load Balancing on Graphs

44

1D grid

M)~ 1 -
Hypercube
(M)~ 1~ g

2D grid 3D grid

Random Graph

2

’\/(M) <1

Load Balancing on Graphs

44

Sl
o 5

(M) =1 —

1D grid

n2

Hypercube

2D grid

"/(M) ~ 1 — 15

Random Graph

2

’\/(M) <1

3D grid

(M) ~ 1 —#

Complete Graph

44

I. Course Intro and Sorting Networks

Load Balancing on Graphs

1D grid

2D grid 3D grid
*—o—0—0—0—0—0—0
|
~ 1
M)~ 1 - Y My=1-1 AM) =1 -5
Hypercube Random Graph Complete Graph
N
7
1
V(M) ~ 1 - Y(M) <1 Y(M) ~

I. Course Intro and Sorting Networks

(v(M) € (0,1] measures connectivity of G)

Load Balancing on Graphs

44

Diffusion of Load on a Ring

0.000

/\

0.000 0.000

7 N

0.000 0.000

0.000 Step: 0

0.000 0.000

N 7

0.000 0.000

_

0.000

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.000

0.000 0.250
0.000 Step: 1
0.000 0.250
0.000 0.000

_

0.000

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

/ 0.000 \I:I
0.000 0.062
0.000 0.250
0.000 Step: 2 0375
0.000 0.250
\ /
0.000 0.062

—_

0.000

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0018 \:l
0.000 0.094
0.000 0.234
0.000 Step: 3 0312
0.000 0.234
0.000 \ / -

0.016

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

_/ 0.031 \El

0.004 0.109

7 3

0.000 0.219

0.000 Step: 4 0.273

0.000 0.219

,— =

0.031

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

—
/ 0044 \El
0010 0.117
0.001 0.205
0.000 Step: 5 0.246
0.001 0.205

N =

0010 \:/ 0.117

0.044

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

—
]
/ \
0.016 0.121
0.003 0193
0.000 Step: 6 0.226
0.003 0193

N m

0.016 \:/ 0.121

0.054

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

—
]
/ \
0.022 0122
0.006 0.183
0.002 Step: 7 0.209
0.006 0.183

N m

0.022 \:/ 0.122

0.061

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

—
I:I/ 0.067 \EI
0.028 0122
0.009 0175
0.004 Step: 8 0.196
0.009 0175

N m

0.028 \:/ 0.122

0.067

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

[

= 2 0071 \D
0.033 0.121
0.012 0.167
0.006 Step: 9 0.185
0.012 0.167

N m

0.033 0.121

0.071

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

[

= 0074 \D
0.087 0120
/ \
0.016 0.160
0.009 Step: 10 0.176
0.016 0.160

0.074

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

[

= 0076 \D
0.041 0.119
=/ \D
0.020 0.154
0.013 Step: 11 0.168
0.020 0.154

0.076

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= — o078 \D
0.044 0117
0.023 0.149
0.016 Step: 12 0.161
0.023 0.149

0.078

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

=

I:I/ o078 \El
0.048 0115
0.027 0.144
0.020 Step: 13 0.155
0.027 0.144

0.079

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

I:I/ 0.080 \El
0.050 0113
0.030 0139
0.023 Step: 14 0.149
0.030 0139

0.080

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

I:I/ 0.081 \El
0.053 0112
0.033 0.135
0.027 Step: 15 0.144
0.033 0.135

0.081

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

I:I/ 0.082 \El
0.055 0.110
0.037 0.132
0.030 Step: 16 0.140
0.037 0.132

0.082

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

I:I/ 0.082 \El
0.057 0.108
0.040 0128
0.033 Step: 17 0.136
0.040 0128

0.082

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

I:I/ 0.082 \D
0.059 0107
0.042 0.125
0.036 Step: 18 0.132
0.042 0.125

0.082

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

I:l/ 0.083 \:l
0.061 0.105
0.045 04122
0.039 Step: 19 0.129
0.045 0422

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= e O
0.062 0.104
0.048 0.120
0.042 Step: 20 0.126
0.048 0.120

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= e O
0.064 0.103
0.050 0.117
0.045 Step: 21 0.123
0.050 0.117

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= e O
0.065 0.101
0.052 0.115
0.047 Step: 22 0.120
0.052 0.115

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

— ooes []
0.066 / \ 0.100
0.054 0.113
0.050 Step: 23 0.117
0.054 0.113

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

— ooes []
0.067 / \ 0.099
0.056 0111
0.052 Step: 24 0.115
0.056 0111

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

0.069 / \ 0.098
0.058 0.109
0.054 Step: 25 0.113
0.058 0.109

0.083

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

0.070 / \ 0.097
0.060 0.107
0.056 Step: 26 0.111
0.060 0.107

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

=

0.070 / \ 0.096
0.061 0.106
0.058 Step: 27 0.109
0.061 0.106

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

0.071 / \ 0.095
0.063 0.104
0.059 Step: 28 0.107
0.063 0.104

0.083

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

0.072 / \ 0.094
0.064 0.103
0.061 Step: 29 0.106
0.064 0.103

0.083

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

=]
0.073 / \ 0.094
0.065 0.101
0.063 Step: 30 0.104
0.065 0.101

0.083

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

=]
0.074 / \ 0.093
0.067 0.100
0.064 Step: 31 0.103
0.067 0.100

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= -
0.074 / \ 0.092
0.068 0.099
0.065 Step: 32 0.101
0.068 0.099

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

=

= -
0.075 / \ 0.092
0.069 0.098
0.066 Step: 33 0.100
0.069 0.098

0.083

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= -
0.075 / \ 0.091
0.070 0.097
0.068 Step: 34 0.099
0.070 0.097

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=
:| / 0.083 \E

0.076 0.091

- N

0.071

0.069 Step: 35

0.083

0.096

0.098

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= -
0.076 / \ 0.090
0.071 0.095
0.070 Step: 36 0.097
0.071 0.095

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= -
0.077 / \ 0.090
0.072 0.094
0.071 Step: 37 0.096
0.072 0.094

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=
:| / 0.083 \E

0.077 0.089

= N

0.073

0.071 Step: 38

0.083

0.094

0.095

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=
] / 0.083 \E

0.078 0.089

= N

0.074

0.072 Step: 39

0.083

0.093

0.094

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=
] / 0.083 \E

0.078 0.089

= =

0.074

0.073 Step: 40

0.083

0.092

0.094

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

- -
0.078 / \ 0.088
0.075 0.092
0.074 Step: 41 0.093
0.075 0.092

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

- -
0.079 / \ 0.088
0.075 0.091
0.074 Step: 42 0.092
0.075 0.091

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

- -
0.079 / \ 0.088
0.076 0.091
0.075 Step: 43 0.092
0.076 0.091

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

- -
0.079 / \ 0.087
0.077 0.090
0.075 Step: 44 0.091
0.077 0.090

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

=

= -
0.080 / \ 0.087
0.077 0.090
0.076 Step: 45 0.091
0.077 0.090

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

=
] / 0.083 \D

0.080 0.087

= N

0.077

0.076 Step: 46

0.083

0.089

0.090

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=

= -
0.080 / \ 0.087
0.078 0.089
0.077 Step: 47 0.090
0.078 0.089

0.083

I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=
] / 0.083 \D

0.080 0.086

= N

0.078

0.077 Step: 48

0.083

0.089

0.089

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=
] / 0.083 \D

0.081 0.086

= N

0.079

0.078 Step: 49

0.083

0.088

0.089

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Diffusion of Load on a Ring

=
] / 0.083 \D

0.081 0.086

= N

0.079

0.078 Step: 50

0.083

0.088

0.089

‘-,.E,‘ I. Course Intro and Sorting Networks Load Balancing on Graphs

45

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

5
I. Course Intro and Sorting Networks Load Balancing on Graphs

46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:

i
I. Course Intro and Sorting Networks Load Balancing on Graphs

46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X

5
I. Course Intro and Sorting Networks Load Balancing on Graphs

46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

t
€= -Vitoz-Vat---+an-Vn

i
I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
n
e'=ar-vitaz- Vot tan Vp= a;j - V.
N\ i=2
[er is orthogonal to v1J

i
I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
n
e'=ar-vitaz- Vot tan Vp= a;j - V.
N\ i=2
= For the first order diffusion scheme, [e’ is orthogonal to v1J

et+1 _ Met

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
n
e'=ar-vitaz- Vot tan Vp= a;j - V.
N\ i=2
= For the first order diffusion scheme, [e’ is orthogonal to v1J

n
et“ = Me’ =M. <Z a,'V,'>
i=2

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
n
e'=ar-vitaz- Vot tan Vp= a;j - V.
N\ i=2
= For the first order diffusion scheme, [e’ is orthogonal to v1J

n n
eH~1 — Met =M. <Z aivi> = Za“u,vl
i=2 i=2

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vito Vot -+ ap Vo= a;j - V.
i=2

/\
= For the first order diffusion scheme, [e’ is orthogonal to v1J

n n
eH~1 — Met =M. <Z aivi> = Za“u,vl
=2 i=2

= Taking norms and using that the v;’s are orthogonal,

16715 = |1Me’|3

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vito Vot -+ ap Vo= a;j - V.
i=2

/\
= For the first order diffusion scheme, [e’ is orthogonal to v1J

n n
eH~1 — Met =M. <Z aivi> = Za“u,vl
=2 i=2

= Taking norms and using that the v;’s are orthogonal,

n
eIz = [IMe'|lz = afuf|vill2
i=2

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vito Vot -+ ap Vo= a;j - V.
N\ i=2

= For the first order diffusion scheme, [e’ is orthogonal to v1J

n n
eH~1 — Met =M. <Z aivi> = Za“u,vl
=2 i=2

= Taking norms and using that the v;’s are orthogonal,

n n

2 2

e = IMe'ls = > a2uful <23 aflul3
i=2 i=2

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vito Vot -+ ap Vo= a;j - V.
i=2

/\
= For the first order diffusion scheme, [e’ is orthogonal to v1J

n n
eH~1 — Met =M. <Z aivi> = Za“u,vl
=2 i=2

= Taking norms and using that the v;’s are orthogonal,

n n

2 2 2 2

e 15 = Ml = S ofuf [ul <7D o ulls =7 €'l
i=2 i=2

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

' < y(M)" - @°.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vito Vot -+ ap Vo= a;j - V.
i=2

/\
= For the first order diffusion scheme, [e’ is orthogonal to v1J

n n
eH~1 — Met =M. <Z aivi> = Za“u,vl
=2 i=2

= Taking norms and using that the v;’s are orthogonal,

n n
2 2 2 2
le 15 = Me5 = S~ afufllul < 4> aflvills =2 - elf O
i=2 i=2

o I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o' = pf - @O

i
I. Course Intro and Sorting Networks Load Balancing on Graphs

47

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o' = pf - @O

Proof:

i
I. Course Intro and Sorting Networks Load Balancing on Graphs

47

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o' = pf - @O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;

5
I. Course Intro and Sorting Networks Load Balancing on Graphs

47

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o' = pf - @O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

el = Me'™' = M'e® = My, = lew’

S
I. Course Intro and Sorting Networks Load Balancing on Graphs

47

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o' = pf - @O

Proof:

= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

e = Met' = Mt 0 _ M’v,- _ ngw’
and

(@) = lle'llz = wi'l|villz = pi' (9°)".

S
I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o' = pf - @O

Proof:

= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

e = Met' = Mt 0 _ M’v,- _ ngw’
and

(@) = lle'llz = wi'l|villz = pi' (9°)". 0

S
I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

S
I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

S
I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

S
I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x9, the num-
ber of iterations untiI0 x! satisfies

t ; log(®~ /€)
! < e is at most T M)

sl
I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

Here load consists of integers
that cannot be divided further.

J

Idealised Case Discrete Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x9, the num-

ber of iterations until0 x! satisfies
®! < eis at most log(®”/<)
1—~(M)

o 5

I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x9, the num-

ber of iterations until0 x! satisfies
®! < eis at most log(®”/<)
1—~(M)

o 5

Here load consists of integers
that cannot be divided further.

Discrete Case

yt:M.yt—1+At

I. Course Intro and Sorting Networks

Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

= Mt Y= M.yt A
:Mt'XO

[Here load consists of integers]

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x9, the num-

ber of iterations until0 x! satisfies
®! < eis at most log(®”/<)
1—~(M)

o 5

I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

= Mt Y= M.yt A
:Mt'XO

[Here load consists of integers]

t
:M[-yO+ZMI75.AS

s=1

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x9, the num-
ber of iterations until0 x! satisfies

t i log(¢” /<)
®' < eis at most T M)

5 Y

I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

=M. xt—? yi=M.ytt Al
— M. XO

[Here load consists of integers]

t
:Mt_yo_'_ZMt—s.As

s=1

Linear System Non-Linear System
= corresponds to Markov chain = rounding of a Markov chain
= well-understood = harder to analyze

Given any load vector x9, the num-
ber of iterations untiI0 x! satisfies

t ; log(®~ /€)
! < e is at most T M)

s I. Course Intro and Sorting Networks Load Balancing on Graphs

48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

that cannot be divided further.

Discrete Case :
Rounding Error

yi=M.ytt Al

[Here load consists of integers]

t
:M[-yO+ZMI75.AS

s=1

Non-Linear System
= rounding of a Markov chain
= harder to analyze

Given any load vector x9, the num-
ber of iterations untiI0 x! satisfies

t ; log(®~ /€)
! < e is at most T M)

How close can it be made
to the idealised case?

Sl
I. Course Intro and Sorting Networks

Load Balancing on Graphs

	Outline of this Course
	Some Highlights
	Introduction to Sorting Networks
	Batcher's Sorting Network
	Counting Networks
	Load Balancing on Graphs

