
I. Course Intro and Sorting Networks
Thomas Sauerwald

Easter 2016

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

I. Course Intro and Sorting Networks Outline of this Course 2

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

I. Course Intro and Sorting Networks Some Highlights 4

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, AND S. JOHNSON
The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as
follows: Find the shortest route (tour) for a salesman starting from a

given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d1i), where doi represents the 'distance' from I to J,
arrange the points in a cyclic order in such a way that the sum of the d1j
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most (n - 1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,3"78 little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the djj used representing road distances as
taken from an atlas.

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It
appears to have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly little in the way of results has appeared in
the mathematical literature.10 It may be that the minimal-distance tour problem
was stimulated by the so-called Hamiltonian game' which is concerned with finding
the number of different tours possible over a specified network. The latter problem
is cited by some as the origin of group theory and has some connections with the
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be
credited with stimulating interest in the traveling-salesman problem in many quar-
ters. As early as 1937, he tried to obtain near optimal solutions in reference to
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re-
call that they heard about the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall
the problem). The relations between the traveling-salesman problem and the
transportation problem of linear programming appear to have been first explored by
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and
H. Kuhn.4 5'6

393

I. Course Intro and Sorting Networks Some Highlights 6

Travelling Salesman Problem: The 42 (49) Cities

394 DANTZIG, FULKERSON, AND JOHNSON

In order to try the method on a large problem, the following set of 49
cities, one in each state and the District of Columbia was selected:

1. Manchester, N. HI. 18. Carson City, Nev. 34. Birmingham, Ala.
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga.
3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla.
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C.
5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C.
6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va.
7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C.
8. Chicago, Ill. 25. Des Moines, Iowa 41. Boston, Mass.
9. Milwaukee, Wis. 26. Kansas City, Mo. 42. Portland, Me.

10. Minneapolis, Minn. 27. Topeka, Kans. A. BaltimoreA Md.

12. Bismark, N. D. 28. Oklahoma City, Okla. B. Wilmington, Del.
13. Helenar, MNt. 29. Dallas, Tex. C. Philadelphia, Penn.
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J.
15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y.
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn.
17. Salt Lake City, Utah 33. New Orleans, La. G. Providence, R. I.

The reason for picking this particular set was that most of the road
distances between them were easy to get from an atlas. The triangular
table of distances between these cities (Table I) is part of the original one
prepared by Bernice Brown of The Rand Corporation. It gives dj=
K7 (di; - 11) (IJ = 1, 2, * , 42), where dii is the road distance in miles
between I and J. The d1i have been rounded to the nearest integer.
Certainly such a linear transformation does not alter the ordering of the
tour lengths, although, of course, rounding could cause a tour that was
not optimal in terms of the original mileage to become optimal in terms of
the adjusted units used in this paper.

We will show that the tour (see Fig. 16) through the cities 1, 2, * *, 42
in this order is minimal for this subset of 42 cities. Moreover, since in
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts)
by the shortest road distance one goes through A, B, * * *, G, successively,
it follows that the tour through 49 cities 1, 2, .*, 40, A, B, *., G, 41,
42 in that order is also optimal.

PRELIMINARY NOTIONS

Whenever the road from I to J (in that order) is traveled, the value
XIJ I is entered into the IJ element of a matrix; otherwise xiJ 0 is
entered. A (directed) tour through n cities can now be thought of as a
permutation matrix of order n which represents an n-cycle (we assume

* This particular transformation was chosen to make the d1j of the original table
less than 256 which would permit compact storage of the distance table in binary
representation; however, no use was made of this.

I. Course Intro and Sorting Networks Some Highlights 7

Road Distances

\0)
cO

 0O

00
n

00
e

cn
C

- I-
tr\

o
C

N
C

cl

cn cn -t
00

rN

C
4

f
0

00\,O

0
tn

0 \
'

C
C

,
C

-)
n

n\ ,O

c
0

t
Q

>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

O
.

0
q O

 00
ol

o
e

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i
c

C
t'I t n

+
+ t-oo

0
N

0

0
>

n
cn

0
t-

z
>

? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C
,

C
,>

e
?-\,

roo +r"
0

e
0

?
0

?
\o

0
c

o
O

-

t" 00]00 C
~

H

F
,,

E
m

N

>
+

>
>

t
+

+
?

+?t
+

O

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t

t
Q

'
m

+m
O

>

tw
#)b

.-w
9

C
-4 C

,
C

4
Q

o
\1-

\0
0

00 ac
s

(0
iC

it

3
i0

t
00

I- ,

t1
?

t (~~~~~~~n
Itm

-<
. r -\o

,O
 C

o ~O
 rO

o
e 4

? 6>t
I

00
M

M

f-

4 r
> 00

C
6 O

 H
e %4

00)
Q

o

an
~

b
6

on
6

H

X

?
O

H

ct

+
tn

a> a>
4

0

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cn
r

X
bt

X
e\o \0

to
00

0
0 C

, O
 0

O
n m

?i

? 00
0tC

I
0

0 0 00
.

00 ??o
00

L"O

tO

ci t es) c i
t'Thf?ci

.00'
000

cn
st 0,

4i

~ ~4-~0)
00

ci
C

)
C

S) t~ 'tci\O

'-ci t0-~ ~,
j.0

t 0-
H

00

0C

i

cd
-,o

o-o
r-

coZ\~
00

oo
O

(7

0
ft+m

?
s

SA
?

c
H

cn

ocall 0
0

0
W

C

S-
o

tn
o

cic~~-000000
00m

000-'-'M
~

c
00c

Z
t '.'

t0
t"-'t00

ci)
0

i
0

H

a
-

tc
t Z-000

ci
00

V
-.

t O

0)'
C

,
0

0
0

0"0o
C

it
N

',
''

kf
~~

)'t'ci0000
-~~~~~~~ci'C

00
0000

d
I0~0

cic
-p\

-
0

ci
0

0 O
~~~~(~~f--~~ 

'-cic~~ 0',tci0',00 
O

~~~~c-) 
~~ t-0',tfl\,~~~~ ci00

0
C

X
~~~~~~~~~~~~~~~~~~~~- 

*0 
C

' 
- 

)+ mo 
v00 

1c H
F 

tl 
C

A
 C

 n 
C

 
,oo 

t- 
o 

_I 

-o 
o 

ci 
~cif-~0 

O
 

0 
0 

', 
-, 

, 
00 

- 
t 

r 
0 

o 
0 

C
 

C
 

c 
F4 

i 
" 

0 
\O

'-ci00 
ci 

0N
00\0 

00 
f--0000 

-00X
-= 

~-A
 

tit- 
c 

C
A

 
"C

, 
00 

0N
0c'c 

ci 
0 

c 
c 

i 
c00 roN

 
C

o\ 
r' 

" 
04 

r 
r0 

00 
-\ 

"O
 

cm
 

C
\ 

m
 

0 
rb4 

t- 
-t 

r\. 
o 

m
O

O
 

C
P\ 0 

0 
t3n C

n 
\ d 

U
N

 CP\00 
r-0 

0 
0 

c 
0 

i 
0 

't 
' 

0 
N

 
, 

' 
b0 

""O
 

-- 
m

0 
00 

ci 
m

m
00 0 

't 
'tci)00 

080 O
N

 
i00 

fm
 cN

 
' 

0 
'0 

' 

0) 
ci 

ci 
'-'~0 

'-ci'~0 'tf--00 
000000 

O
N

O
 

c 
\.O

 
ci 

t- 
',tr 

~\C
 0 

w
m

 

ci 
'tci)'-ci00 

00 
f--i 

c 
o 

it N ci 
m

 
4 c 

cO
 

n 
q- tn 

W
 

0e 
ci'- 

O
~ci 

0-?O
 ci 

~i't"0 
'ciO

N
O

 
ci 

c 
I-,0 O

N
- 

'-cic'o 
-,o 

O
C

) C
O

 C
 

)'c\ 
. tO

 X
 

o0 0) 
Q

r0 
F- 

0 
C

')'t 
t-4 

4 
0 

0 
f- 

C
= 

f\ 
C

%
 

f 
00 

-* 

c')t 
C

4 
" 

) 
'cX

Io --\O
 

t 
-f 

O
N

 
0 

ci 
c 

c 
cn 

t 
- 

'tO
-00 

+ 
 

00 
.) 

- 
I 

C
, ) 0) 

F- 
H

 
-00 

0)0 
O

N
 

O
N

O
C

= 
0 

- 

\O
 

-C
O

 
ciO

N
 rC

 
' 

C
A

 
o 

't00 
)o 

n 
O

N
 O

 
rt 

O
 

C
' )\00 

ci ' 
rcic 

o 
00- o"- 

- 

-0 
00 

000 
'- 

c 
ci 

\i' 
C

) 
"0f--00 

0 
0 

M
 

0 
0 

- 
O

N
 

C
IA

 
O

 0C
i-' 

0 
0 

0- 
r0 

00 
C

0 ci 
C

 
00 

0-O
N

 I- 
c 

i 
' 

- 
0 

-c 
c 

0 

ci 
i 

- 
00 

0-0 
c 

0 
'H

'tc 
C

n 
C

Y
'o 

-I 
'. 

-0 
00 

O
t 

) 
0000 

- 
C

A
 

11- 
-00 

C
i ci 

000 
? 

W
 

0 
C

c 
" 

' 
- 

- 
- 

- 
O

 
- -00N

 
0 

M
'- 

\o 
0 

c 
M

q0-~ 
0N

 
cc-\,O

N
'.0 

"C
 ci 

O
O

N
 ci 

\,O
 00 \000 

ci 
't~~~ci00ciC

')C
00c~~ic0 

'-~ 
\O

C
ic 

C
A

ic 
cn -,i,-4t 

tj 

t 
- 

O
 

M
O

O
 ', 

O
 

O
 

V
 

- 
0\, 

C
) 

',) 
'.O

O
N

N
C

) 
00 

" 
C

) 
, -- 

-C
 

C
'\00 

0 
ci 

'I 
O

 
O

'4 
. 

C
l C

n 0 
000 

O
 

t 
0 

0M
 

- 
O

 
-??? 

r 

f-o- 
0 

C
, 

-'t 
O

0 
0 

C
0 

' t 
--C

-) 
o 

0 
00 

0\, 
- O

 
'ci00 

O
C

A
 

t 
00 

0 
M

 
t 

ci 
C

')'-ci 
f--- 

C
''- 

' t '3 t o ci 
o)0000 

'-cit 
' t't 

0'-t 
c')'-+W

'c 
) 

t 
ci 

0 
V

6 
V

 
c 

ci 
ci ~~~ 

~ 't'0 
0-C

 
f- -'c 

ci 
(' 

''c 
)0 

0'-- 
'-i- 

-vi 
-l0'" 

'C
A

~ici 
c 

0c 
0 X

ci 
0- 

ci 
0 't0"0 

0-'-800c C
"C

i 
0 

, 
0 

C
')'t 

', 
00 

C
,) 

cn 
i'c 

tl 
''' 

-i 
i'c 

f 
cici 

C
A

ci 
I- 

\- 
.-0 

-N
#- 

C
A

 
-, 

c 
N

.t 
'' 

C
'. 

iN
-tc'c) 

' 
o~~~~~~~~~~~~~~~~~~~~~~~C

 
H

7O
 

r- 
-1 

r 
tn 

3 
\3 ,O

 
45 

m
 

C
4 

C
A

 
-n+< 

t6> 
c n 

'-f 
0 

O
 C
i4 

\ 
- 'I- 

i 
O

 
\cO

 
O

 
00 

0)0 
cn 

')ci 
'-'- 

i-I 
O

- 
O

N
-C

 
f--"-, 

'-) 
m

 

i ' 
0 

%
,O

 
0O

 
' 

tt-\ 
00\ )O

 
c\ 

0 
04 

0) 
O

N
C

 
f 

O
N

 
-\ C

> 
Y

 
C

f- O
 

ci'3 
' 

+ + 
+ 

)00 0 
O

a 
-0 

00 
ooci 

C
",00 

'-ci'-o 
C

-- 
ci 

't'-ci 
f--f-- 

f-i 
' 

i- 
00 

i 
cO

N
cO

N
 

0 
0- 

0C
 

- 

C
'O

cim
 -c 

-n 
--N

o 
000 

o 0 
0w

'0000 
1. 

t-0 
C

" ,'- 
r- 

00 
'T0 

C
O

N
 00 

O
 

sf-C
-A

 
f- 

' 
iti 

c 

N
m

 
m

 
M

) 
'i s) 

ooO
 

O
O

 
y 

Q
tN

 130dt 
000 C

~, 
O

 
i 

Z 
o 

o 
M

c 
\O

 
8-Q

-) 
C

\ 

S~~~~~~~diF~~~~~~~" 
r*tO

 
"_ G

e 
.- 

V
d iU4(" 

N
6~h 

N
eez 

F#0 
) 

-m
m

etm
 

m
bo 

m
m

 

I. Course Intro and Sorting Networks Some Highlights 8



The (Unique) Optimal Tour (699 Units ≈ 12,345 miles)

C
) 

U
l)~~~~~ 

I 
X

4 

0 

C
C

 

A
 

0~~~~~~~~~~0 

* 
| 

~~~A


./H

'-

fC
s

E 4*

400
~

~
~

0

_~~~~~~~~~
V

40M

<

I. Course Intro and Sorting Networks Some Highlights 9

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

I. Course Intro and Sorting Networks Introduction to Sorting Networks 10

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Comparison Networks

A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)

wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)

wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another

special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

D

DD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

D

D

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

DD

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

DD

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)

This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)

This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth

0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0

1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1

1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1

2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2

2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2

3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

a b
Network

f(a) f(b)
Network

f f

710 Chapter 27 Sorting Networks

f (x)

f (y)

min(f (x), f (y)) = f (min(x, y))

max(f (x), f (y)) = f (max(x, y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

To prove the claim, consider a comparator whose input values are x and y. The
upper output of the comparator is min(x, y) and the lower output is max(x, y).
Suppose we now apply f (x) and f (y) to the inputs of the comparator, as is shown
in Figure 27.4. The operation of the comparator yields the value min(f (x), f (y))
on the upper output and the value max(f (x), f (y)) on the lower output. Since f
is monotonically increasing, x ≤ y implies f (x) ≤ f (y). Consequently, we have
the identities

min(f (x), f (y)) = f (min(x, y)) ,

max(f (x), f (y)) = f (max(x, y)) .

Thus, the comparator produces the values f (min(x, y)) and f (max(x, y)) when
f (x) and f (y) are its inputs, which completes the proof of the claim.
We can use induction on the depth of each wire in a general comparison network

to prove a stronger result than the statement of the lemma: if a wire assumes the
value ai when the input sequence a is applied to the network, then it assumes the
value f (ai) when the input sequence f (a) is applied. Because the output wires are
included in this statement, proving it will prove the lemma.
For the basis, consider a wire at depth 0, that is, an input wire ai . The result

follows trivially: when f (a) is applied to the network, the input wire carries f (ai).
For the inductive step, consider a wire at depth d, where d ≥ 1. The wire is the
output of a comparator at depth d, and the input wires to this comparator are at a
depth strictly less than d. By the inductive hypothesis, therefore, if the input wires
to the comparator carry values ai and a j when the input sequence a is applied,
then they carry f (ai) and f (a j) when the input sequence f (a) is applied. By
our earlier claim, the output wires of this comparator then carry f (min(ai , a j))
and f (max(ai , a j)). Since they carry min(ai , a j) and max(ai , a j) when the input
sequence is a, the lemma is proved.

As an example of the application of Lemma 27.1, Figure 27.5(b) shows the sort-
ing network from Figure 27.2 (repeated in Figure 27.5(a)) with the monotonically
increasing function f (x) = #x/2$ applied to the inputs. The value on every wire
is f applied to the value on the same wire in Figure 27.2.
When a comparison network is a sorting network, Lemma 27.1 allows us to

prove the following remarkable result.

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma
⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma
⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network ???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network ???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

I. Course Intro and Sorting Networks Batcher’s Sorting Network 17

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 ?

〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X

〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 ?

〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X

〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 ?

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X
〈4, 5, 7, 1, 2, 6〉 ?

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

((((((〈4, 5, 7, 1, 2, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

((((((〈4, 5, 7, 1, 2, 6〉
binary sequences: ?

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

((((((〈4, 5, 7, 1, 2, 6〉
binary sequences: 0i1j0k , or, 1i0j1k , for i, j, k ≥ 0.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.
714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.
714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉

We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉

Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (2/2)

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 24

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]

merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L RSpecific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y

Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output

Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output

Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X

Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}

= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (not examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander gaphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

AKS network vs. Batcher’s network

Donald E. Knuth (Stanford)

“Batcher’s method is much
better, unless n exceeds the
total memory capacity of all
computers on earth!”

Richard J. Lipton (Georgia Tech)

“The AKS sorting network is
galactic: it needs that n be
larger than 278 or so to finally
be smaller than Batcher’s
network for n items.”

I. Course Intro and Sorting Networks Batcher’s Sorting Network 31

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Course Intro and Sorting Networks Batcher’s Sorting Network 32

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Course Intro and Sorting Networks Batcher’s Sorting Network 32

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Course Intro and Sorting Networks Batcher’s Sorting Network 32

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

I. Course Intro and Sorting Networks Counting Networks 33

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Course Intro and Sorting Networks Counting Networks 35

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Course Intro and Sorting Networks Counting Networks 35

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Course Intro and Sorting Networks Counting Networks 35

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

Proof (by induction on n being a power of 2)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

Consider a MERGER[n]. Then if the inputs x1, . . . , xn/2 and xn/2+1, . . . , xn

have the step property, then so does the output y1, . . . , yn.

Key Lemma

Proof (by induction on n being a power of 2)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer

n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i

F1⇒ Z = d 1
2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .
Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .
Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1

111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1

1

11111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 1

1

1111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 11

1

111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111

1

11111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 1111

1

1111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 11111

1

111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111

1

11

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 1111111

1

1

1

11111111111

1

11111111111111

1

1111111 1

2

2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 11111111

1

1

11111111111

1

11111111111111

1

1111111 1

2

2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

3

3 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1

1111111111

1

11111111111111

1

1111111 1

2 2

2

2

2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1

1

111111111

1

11111111111111

1

1111111 1

2 2

2

2

2

2

2

222222222222222222222222222222222

2

22222 2

33

3

33333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11

1

11111111

1

11111111111111

1

1111111 1

2 2

2

2 2

2

2

222222222222222222222222222222222

2

22222 2

33 3

3

3333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

111

1

1111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 33

3

333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1111

1

111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2

22222222222222222222222222222222

2

22222 2

33 333

3

33

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111

1

11111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2

2

2222222222222222222222222222222

2

22222 2

33 3333

3

3

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

111111

1

1111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

22

2

222222222222222222222222222222

2

22222 2

33 33333

3

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1111111

1

111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222

2

22222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111

1

11

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2222

2

2222222222222222222222222222

2

22222 2

33 333333

3

3

33333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

111111111

1

1

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

22222

2

222222222222222222222222222

2

22222 2

33 333333

3

3

3

3333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1111111111

1

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222

2

22222222222222222222222222

2

22222 2

33 333333

3

33

3

333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2222222

2

2222222222222222222222222

2

22222 2

33 333333

3

333

3

33333

3

3 3 3 3 3 3 3

3

33333 3

4

4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1

1111111111111

1

1111111 1

2 2

2

2 2 2

2

22222222

2

222222222222222222222222

2

22222 2

33 333333

3

3333

3

3333

3

3 3 3 3 3 3 3

3

33333 3

4

4

444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1

1

111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222

2

22222222222222222222222

2

22222 2

33 333333

3

33333

3

333

3

3 3 3 3 3 3 3

3

33333 3

4 4

4

44444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11

1

11111111111

1

1111111 1

2 2

2

2 2 2

2

2222222222

2

2222222222222222222222

2

22222 2

33 333333

3

333333

3

33

3

3 3 3 3 3 3 3

3

33333 3

4 44

4

4444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111

1

1111111111

1

1111111 1

2 2

2

2 2 2

2

22222222222

2

222222222222222222222

2

22222 2

33 333333

3

3333333

3

3

3

3 3 3 3 3 3 3

3

33333 3

4 444

4

444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111

1

111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222

2

22222222222222222222

2

22222 2

33 333333

3

33333333

3

3

3 3 3 3 3 3 3

3

33333 3

4 4444

4

44444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111

1

11111111

1

1111111 1

2 2

2

2 2 2

2

2222222222222

2

2222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 44444

4

4444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111111

1

1111111

1

1111111 1

2 2

2

2 2 2

2

22222222222222

2

222222222222222222

2

22222 2

33 333333

3

333333333

3

3

3 3 3 3 3 3

3

33333 3

4 444444

4

444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111111

1

111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222

2

22222222222222222

2

22222 2

33 333333

3

333333333

3

3

3

3 3 3 3 3

3

33333 3

4 4444444

4

44444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111

1

11111

1

1111111 1

2 2

2

2 2 2

2

2222222222222222

2

2222222222222222

2

22222 2

33 333333

3

333333333

3

3 3

3

3 3 3 3

3

33333 3

4 44444444

4

4444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111111111

1

1111

1

1111111 1

2 2

2

2 2 2

2

22222222222222222

2

222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3

3

3 3 3

3

33333 3

4 444444444

4

444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111111111

1

111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222

2

22222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3

3

3 3

3

33333 3

4 4444444444

4

44444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111

1

11

1

1111111 1

2 2

2

2 2 2

2

2222222222222222222

2

2222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3

3

3

3

33333 3

4 44444444444

4

4444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111111111111

1

1

1

1111111 1

2 2

2

2 2 2

2

22222222222222222222

2

222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3

3

3

33333 3

4 444444444444

4

444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111111111111

1

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222

2

22222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444

4

44444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2222222222222222222222

2

2222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

3

3333 3

4 44444444444444

4

4444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1

111111 1

2 2

2

2 2 2

2

22222222222222222222222

2

222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

3

3

333 3

4 444444444444444

4

444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6

666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1

1

11111 1

2 2

2

2 2 2

2

222222222222222222222222

2

22222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33

3

33 3

4 4444444444444444

4

44

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6

6

66666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

11

1

1111 1

2 2

2

2 2 2

2

2222222222222222222222222

2

2222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

333

3

3 3

4 44444444444444444

4

4

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 6

6

6666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

111

1

111 1

2 2

2

2 2 2

2

22222222222222222222222222

2

222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

3333

3

3

4 444444444444444444

4

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 66

6

666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111

1

11 1

2 2

2

2 2 2

2

222222222222222222222222222

2

22222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666

6

66666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

11111

1

1 1

2 2

2

2 2 2

2

2222222222222222222222222222

2

2222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4

444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 6666

6

6666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

111111

1

1

2 2

2

2 2 2

2

22222222222222222222222222222

2

222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4

4

44444444444

4

44444444444444444444444444444

4

4444444 4

5

5 55555

5

555555555555555

5

5 5 5

5

5 5

6 66666

6

666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222

2

22

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44

4

4444444444

4

44444444444444444444444444444

4

4444444 4

55

5

5555

5

555555555555555

5

5 5 5

5

5 5

6 666666

6

66666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

2222222222222222222222222222222

2

2

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444

4

444444444

4

44444444444444444444444444444

4

4444444 4

55 5

5

555

5

555555555555555

5

5 5 5

5

5 5

6 6666666

6

6666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

22222222222222222222222222222222

2

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444

4

44444444

4

44444444444444444444444444444

4

4444444 4

55 55

5

55

5

555555555555555

5

5 5 5

5

5 5

6 66666666

6

666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44444

4

4444444

4

44444444444444444444444444444

4

4444444 4

55 555

5

5

5

555555555555555

5

5 5 5

5

5 5

6 666666666

6

66666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

2

2222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444444

4

444444

4

44444444444444444444444444444

4

4444444 4

55 5555

5

5

555555555555555

5

5 5 5

5

5 5

6 6666666666

6

6666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

2

2

222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444

4

44444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 66666666666

6

666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22

2

22 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44444444

4

4444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

5

55555555555555

5

5 5 5

5

5 5

6 666666666666

6

66

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

222

2

2 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444444444

4

444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

5

5

5555555555555

5

5 5 5

5

5 5

6 6666666666666

6

6

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

2222

2

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444

4

44

4

44444444444444444444444444444

4

4444444 4

55 55555

5

55

5

555555555555

5

5 5 5

5

5 5

6 66666666666666

6

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44444444444

4

4

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555

5

55555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444444444444

4

4

44444444444444444444444444444

4

4444444 4

55 55555

5

5555

5

5555555555

5

5 5 5

5

5 5

6 666666666666666

6

6

666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

55555

5

555555555

5

5 5 5

5

5 5

6 666666666666666

6

6

6

66666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4

4444444444444444444444444444

4

4444444 4

55 55555

5

555555

5

55555555

5

5 5 5

5

5 5

6 666666666666666

6

66

6

6666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4

4

444444444444444444444444444

4

4444444 4

55 55555

5

5555555

5

5555555

5

5 5 5

5

5 5

6 666666666666666

6

666

6

666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44

4

44444444444444444444444444

4

4444444 4

55 55555

5

55555555

5

555555

5

5 5 5

5

5 5

6 666666666666666

6

6666

6

66

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444

4

4444444444444444444444444

4

4444444 4

55 55555

5

555555555

5

55555

5

5 5 5

5

5 5

6 666666666666666

6

66666

6

6

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444

4

444444444444444444444444

4

4444444 4

55 55555

5

5555555555

5

5555

5

5 5 5

5

5 5

6 666666666666666

6

666666

6

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444

4

44444444444444444444444

4

4444444 4

55 55555

5

55555555555

5

555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444

4

4444444444444444444444

4

4444444 4

55 55555

5

555555555555

5

55

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

6

6666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444

4

444444444444444444444

4

4444444 4

55 55555

5

5555555555555

5

5

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

6

6

666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444

4

44444444444444444444

4

4444444 4

55 55555

5

55555555555555

5

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66

6

66666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444

4

4444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

666

6

6666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444

4

444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5

5 5

5

5 5

6 666666666666666

6

6666666

6

6666

6

666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444

4

44444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5

5

5

5

5 5

6 666666666666666

6

6666666

6

66666

6

66666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444

4

4444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5

5

5

5 5

6 666666666666666

6

6666666

6

666666

6

6666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444

4

444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

6666666

6

666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444

4

44444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666

6

66

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444

4

4444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

666666666

6

6

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444

4

444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

6666666666

6

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444

4

44444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444

4

4444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6

666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444

4

444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6

6

66666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444

4

44444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

66

6

6666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444444

4

4444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

666

6

666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444444

4

444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666

6

66 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444

4

44444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

66666

6

6 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444444444

4

4444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

666666

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444444444

4

444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444

4

44

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444444444444

4

4

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444444444444

4

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4

444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4

4

44444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

44

4

4444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

444

4

444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444

4

44 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

44444

4

4 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

444444

4

4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444

4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444

4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

Consists of log n BLOCK[n] networks each of which has depth log n

I. Course Intro and Sorting Networks Counting Networks 38

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

Consists of log n BLOCK[n] networks each of which has depth log n

I. Course Intro and Sorting Networks Counting Networks 38

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network

Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C

S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network

Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S

Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S

Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.

C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires

By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires

By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

I. Course Intro and Sorting Networks Load Balancing on Graphs 40

Communication Models: Diffusion vs. Matching

1

6

5 4

3

2 1

6

5 4

3

2

M =



1
2

1
4 0 0 0 1

4
1
4

1
2

1
4 0 0 0

0 1
4

1
2

1
4 0 0

0 0 1
4

1
2

1
4 0

0 0 0 1
4

1
2

1
4

1
4 0 0 0 1

4
1
2

 M(t) =



1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 1

2
1
2 0

0 0 0 1
2

1
2 0

0 0 0 0 0 0



I. Course Intro and Sorting Networks Load Balancing on Graphs 41

Communication Models: Diffusion vs. Matching

1

6

5 4

3

2 1

6

5 4

3

2

M =



1
2

1
4 0 0 0 1

4
1
4

1
2

1
4 0 0 0

0 1
4

1
2

1
4 0 0

0 0 1
4

1
2

1
4 0

0 0 0 1
4

1
2

1
4

1
4 0 0 0 1

4
1
2

 M(t) =



1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 1

2
1
2 0

0 0 0 1
2

1
2 0

0 0 0 0 0 0



I. Course Intro and Sorting Networks Load Balancing on Graphs 41

Smoothness of the Load Distribution

x t ∈ Rn be a load vector at round t

x denotes the average load

Want that x t converges for t →∞ to (x , x , . . . , x)!

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Course Intro and Sorting Networks Load Balancing on Graphs 42

Smoothness of the Load Distribution

x t ∈ Rn be a load vector at round t

x denotes the average load

Want that x t converges for t →∞ to (x , x , . . . , x)!

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Course Intro and Sorting Networks Load Balancing on Graphs 42

Smoothness of the Load Distribution

x t ∈ Rn be a load vector at round t

x denotes the average load

Want that x t converges for t →∞ to (x , x , . . . , x)!

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Course Intro and Sorting Networks Load Balancing on Graphs 42

Smoothness of the Load Distribution

x t ∈ Rn be a load vector at round t

x denotes the average load

Want that x t converges for t →∞ to (x , x , . . . , x)!

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Course Intro and Sorting Networks Load Balancing on Graphs 42

Smoothness of the Load Distribution

x t ∈ Rn be a load vector at round t

x denotes the average load

Want that x t converges for t →∞ to (x , x , . . . , x)!

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Course Intro and Sorting Networks Load Balancing on Graphs 42

Smoothness of the Load Distribution

x t ∈ Rn be a load vector at round t

x denotes the average load

Want that x t converges for t →∞ to (x , x , . . . , x)!

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Course Intro and Sorting Networks Load Balancing on Graphs 42

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to pick α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Course Intro and Sorting Networks Load Balancing on Graphs 43

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to pick α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Course Intro and Sorting Networks Load Balancing on Graphs 43

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to pick α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Course Intro and Sorting Networks Load Balancing on Graphs 43

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to pick α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Course Intro and Sorting Networks Load Balancing on Graphs 43

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to pick α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Course Intro and Sorting Networks Load Balancing on Graphs 43

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to pick α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Course Intro and Sorting Networks Load Balancing on Graphs 43

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Course Intro and Sorting Networks Load Balancing on Graphs 44

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Course Intro and Sorting Networks Load Balancing on Graphs 44

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Course Intro and Sorting Networks Load Balancing on Graphs 44

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Course Intro and Sorting Networks Load Balancing on Graphs 44

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Course Intro and Sorting Networks Load Balancing on Graphs 44

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Course Intro and Sorting Networks Load Balancing on Graphs 44

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Course Intro and Sorting Networks Load Balancing on Graphs 44

Diffusion of Load on a Ring

1.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Step: 0

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.500

0.250

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.250

Step: 1

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.375

0.250

0.062

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.062

0.250

Step: 2

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.312

0.234

0.094

0.016

0.000

0.000

0.000

0.000

0.000

0.016

0.094

0.234

Step: 3

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.273

0.219

0.109

0.031

0.004

0.000

0.000

0.000

0.004

0.031

0.109

0.219

Step: 4

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.246

0.205

0.117

0.044

0.010

0.001

0.000

0.001

0.010

0.044

0.117

0.205

Step: 5

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.226

0.193

0.121

0.054

0.016

0.003

0.000

0.003

0.016

0.054

0.121

0.193

Step: 6

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.209

0.183

0.122

0.061

0.022

0.006

0.002

0.006

0.022

0.061

0.122

0.183

Step: 7

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.196

0.175

0.122

0.067

0.028

0.009

0.004

0.009

0.028

0.067

0.122

0.175

Step: 8

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.185

0.167

0.121

0.071

0.033

0.012

0.006

0.012

0.033

0.071

0.121

0.167

Step: 9

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.176

0.160

0.120

0.074

0.037

0.016

0.009

0.016

0.037

0.074

0.120

0.160

Step: 10

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.168

0.154

0.119

0.076

0.041

0.020

0.013

0.020

0.041

0.076

0.119

0.154

Step: 11

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.161

0.149

0.117

0.078

0.044

0.023

0.016

0.023

0.044

0.078

0.117

0.149

Step: 12

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.155

0.144

0.115

0.079

0.048

0.027

0.020

0.027

0.048

0.079

0.115

0.144

Step: 13

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.149

0.139

0.113

0.080

0.050

0.030

0.023

0.030

0.050

0.080

0.113

0.139

Step: 14

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.144

0.135

0.112

0.081

0.053

0.033

0.027

0.033

0.053

0.081

0.112

0.135

Step: 15

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.140

0.132

0.110

0.082

0.055

0.037

0.030

0.037

0.055

0.082

0.110

0.132

Step: 16

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.136

0.128

0.108

0.082

0.057

0.040

0.033

0.040

0.057

0.082

0.108

0.128

Step: 17

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.132

0.125

0.107

0.082

0.059

0.042

0.036

0.042

0.059

0.082

0.107

0.125

Step: 18

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.129

0.122

0.105

0.083

0.061

0.045

0.039

0.045

0.061

0.083

0.105

0.122

Step: 19

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.126

0.120

0.104

0.083

0.062

0.048

0.042

0.048

0.062

0.083

0.104

0.120

Step: 20

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.123

0.117

0.103

0.083

0.064

0.050

0.045

0.050

0.064

0.083

0.103

0.117

Step: 21

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.120

0.115

0.101

0.083

0.065

0.052

0.047

0.052

0.065

0.083

0.101

0.115

Step: 22

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.117

0.113

0.100

0.083

0.066

0.054

0.050

0.054

0.066

0.083

0.100

0.113

Step: 23

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.115

0.111

0.099

0.083

0.067

0.056

0.052

0.056

0.067

0.083

0.099

0.111

Step: 24

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.113

0.109

0.098

0.083

0.069

0.058

0.054

0.058

0.069

0.083

0.098

0.109

Step: 25

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.111

0.107

0.097

0.083

0.070

0.060

0.056

0.060

0.070

0.083

0.097

0.107

Step: 26

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.109

0.106

0.096

0.083

0.070

0.061

0.058

0.061

0.070

0.083

0.096

0.106

Step: 27

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.107

0.104

0.095

0.083

0.071

0.063

0.059

0.063

0.071

0.083

0.095

0.104

Step: 28

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.106

0.103

0.094

0.083

0.072

0.064

0.061

0.064

0.072

0.083

0.094

0.103

Step: 29

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.104

0.101

0.094

0.083

0.073

0.065

0.063

0.065

0.073

0.083

0.094

0.101

Step: 30

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.103

0.100

0.093

0.083

0.074

0.067

0.064

0.067

0.074

0.083

0.093

0.100

Step: 31

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.101

0.099

0.092

0.083

0.074

0.068

0.065

0.068

0.074

0.083

0.092

0.099

Step: 32

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.100

0.098

0.092

0.083

0.075

0.069

0.066

0.069

0.075

0.083

0.092

0.098

Step: 33

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.099

0.097

0.091

0.083

0.075

0.070

0.068

0.070

0.075

0.083

0.091

0.097

Step: 34

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.098

0.096

0.091

0.083

0.076

0.071

0.069

0.071

0.076

0.083

0.091

0.096

Step: 35

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.097

0.095

0.090

0.083

0.076

0.071

0.070

0.071

0.076

0.083

0.090

0.095

Step: 36

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.096

0.094

0.090

0.083

0.077

0.072

0.071

0.072

0.077

0.083

0.090

0.094

Step: 37

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.095

0.094

0.089

0.083

0.077

0.073

0.071

0.073

0.077

0.083

0.089

0.094

Step: 38

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.094

0.093

0.089

0.083

0.078

0.074

0.072

0.074

0.078

0.083

0.089

0.093

Step: 39

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.094

0.092

0.089

0.083

0.078

0.074

0.073

0.074

0.078

0.083

0.089

0.092

Step: 40

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.093

0.092

0.088

0.083

0.078

0.075

0.074

0.075

0.078

0.083

0.088

0.092

Step: 41

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.092

0.091

0.088

0.083

0.079

0.075

0.074

0.075

0.079

0.083

0.088

0.091

Step: 42

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.092

0.091

0.088

0.083

0.079

0.076

0.075

0.076

0.079

0.083

0.088

0.091

Step: 43

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.091

0.090

0.087

0.083

0.079

0.077

0.075

0.077

0.079

0.083

0.087

0.090

Step: 44

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.091

0.090

0.087

0.083

0.080

0.077

0.076

0.077

0.080

0.083

0.087

0.090

Step: 45

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.090

0.089

0.087

0.083

0.080

0.077

0.076

0.077

0.080

0.083

0.087

0.089

Step: 46

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.090

0.089

0.087

0.083

0.080

0.078

0.077

0.078

0.080

0.083

0.087

0.089

Step: 47

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.089

0.089

0.086

0.083

0.080

0.078

0.077

0.078

0.080

0.083

0.086

0.089

Step: 48

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.089

0.088

0.086

0.083

0.081

0.079

0.078

0.079

0.081

0.083

0.086

0.088

Step: 49

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Diffusion of Load on a Ring

0.089

0.088

0.086

0.083

0.081

0.079

0.078

0.079

0.081

0.083

0.086

0.088

Step: 50

I. Course Intro and Sorting Networks Load Balancing on Graphs 45

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:

Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:

Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x

Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)

=
n∑

i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2

=
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2 =
n∑

i=2

α2
i µ

2
i ‖vi‖2

2

≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2 =
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2

= γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2 =
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the first order diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2
2 = ‖Met‖2

2 =
n∑

i=2

α2
i µ

2
i ‖vi‖2

2 ≤ γ2
n∑

i=2

α2
i ‖vi‖2

2 = γ2 · ‖et‖2
2

et is orthogonal to v1

I. Course Intro and Sorting Networks Load Balancing on Graphs 46

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µt
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

(Φt)2 = ‖et‖2
2 = µ2t

i ‖vi‖2
2 = µ2t

i (Φ0)2.

I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µt
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

(Φt)2 = ‖et‖2
2 = µ2t

i ‖vi‖2
2 = µ2t

i (Φ0)2.

I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µt
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

(Φt)2 = ‖et‖2
2 = µ2t

i ‖vi‖2
2 = µ2t

i (Φ0)2.

I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µt
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

(Φt)2 = ‖et‖2
2 = µ2t

i ‖vi‖2
2 = µ2t

i (Φ0)2.

I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µt
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

(Φt)2 = ‖et‖2
2 = µ2t

i ‖vi‖2
2 = µ2t

i (Φ0)2.

I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µt
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

(Φt)2 = ‖et‖2
2 = µ2t

i ‖vi‖2
2 = µ2t

i (Φ0)2.

I. Course Intro and Sorting Networks Load Balancing on Graphs 47

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

Summary and Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Course Intro and Sorting Networks Load Balancing on Graphs 48

	Outline of this Course
	Some Highlights
	Introduction to Sorting Networks
	Batcher's Sorting Network
	Counting Networks
	Load Balancing on Graphs

