Last time

- Dependent types $(x: \tau) \rightarrow \tau'$
- Some Agda
- \blacktriangleright Encoding the list ADT with only \forall and \rightarrow

$$\alpha \text{ list} = \forall \beta (\beta \to (\alpha \to \beta \to \beta) \to \beta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This time

Connection between logic and types

Curry-Howard correspondence

Logic	\leftrightarrow	Type system
propositions, ϕ (constructive) proofs, p ' p is a proof of ϕ ' simplification of proofs	$\begin{array}{c} \leftrightarrow \\ \leftrightarrow \\ \leftrightarrow \\ \leftrightarrow \end{array}$	types, $ au$ expressions, M ' M is an expression of type $ au$ ' reduction of expressions
2IPC (Girard)	VS.	PLC (Reynolds)

second-order intuitionistic propositional calculus

Intuitionistic (constructive) logic

- About provability rather than truth (in classical logic) propositions are inhabited by proofs (justification)
- Weaker than classical logic (no LEM or equivalently no double-negation elimination or equivalently no Peirce's law)
- but extremely useful

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that b^a is rational.

Proof. Either $\sqrt{2^{\sqrt{2}}}$ is rational, or it is not (LEM!).

If it is, we can take $a = b = \sqrt{2}$, since $\sqrt{2}$ is irrational by a well-known theorem attributed to Euclid.

If it is not, we can take $a = \sqrt{2}$ and $b = \sqrt{2^{\sqrt{2}}}$, since then $b^a = (\sqrt{2^{\sqrt{2}}})^{\sqrt{2}} = \sqrt{2^{\sqrt{2} \times \sqrt{2}}} = \sqrt{2^2} = 2$.

QED

Intuitionistic (constructive) logic

- About provability rather than truth (in classical logic) propositions are inhabited by proofs (justification)
- Weaker than classical logic (no LEM or equivalently no double-negation elimination or equivalently no Peirce's law)

but extremely useful

If we did have LEM:

 $\forall p.terminates(p) \lor \neg terminates(p)$

Propositions inhabited by proofs \Rightarrow LEM solves halting problem! Not allowed in a constructive logic

Second-order intuitionistic propositional calculus (2IPC)

2IPC propositions: $\phi ::= p | \phi \rightarrow \phi | \forall p(\phi)$, where *p* ranges over an infinite set of propositional variables.

2IPC sequents: $\Phi \vdash \phi$, where Φ is a finite (multi)set of 2IPC propositions and ϕ is a 2IPC proposition.

 $\Phi \vdash \phi$ is provable if it is in the set of sequents inductively generated by:

$$(\mathsf{Id}) \Phi \vdash \phi \quad \text{if } \phi \in \Phi$$

$$(\rightarrow \mathsf{I}) \frac{\Phi, \phi \vdash \phi'}{\Phi \vdash \phi \rightarrow \phi'} \qquad (\rightarrow \mathsf{E}) \frac{\Phi \vdash \phi \rightarrow \phi' \quad \Phi \vdash \phi}{\Phi \vdash \phi'}$$

$$(\forall \mathsf{I}) \frac{\Phi \vdash \phi}{\Phi \vdash \forall p(\phi)} \text{ if } p \notin fv(\Phi) \qquad (\forall \mathsf{E}) \frac{\Phi \vdash \forall p(\phi)}{\Phi \vdash \phi[\phi'/p]}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

In 2JPC

Label hypotheses with variables & reursively, build up a "proof term" describing the 2IPC proof $\overline{\mathbf{x}}: \mathbf{Q}, \mathbf{x}: \mathbf{Q} \vdash \mathbf{M}: \mathbf{Q}'$ $(\rightarrow I)$ $(\mathcal{O} \rightarrow \varphi)$ $\overline{\chi}: \overline{\mathbb{Q}} \vdash$

Label hypotheses with variables & reursively, build up a "proof term" describing the 2IPC proof $\overline{\mathfrak{X}}: \Phi, \mathfrak{X}: \varphi \vdash M: \varphi'$ (fn) $\overline{\mathbf{x}}: \overline{\mathcal{Q}} \vdash \lambda \mathbf{x}: \varphi(\mathbf{m}): \mathcal{Q} \rightarrow \varphi'$

$$(\mathrm{Id}) \ \Phi, \phi \vdash \phi \qquad \mapsto \qquad (\mathrm{id}) \ \overline{x} : \Phi, x : \phi \vdash x : \phi \\ (\to \mathrm{I}) \ \frac{\Phi, \phi \vdash \phi'}{\Phi \vdash \phi \to \phi'} \qquad \mapsto \qquad (\mathrm{fn}) \ \frac{\overline{x} : \Phi, x : \phi \vdash M : \phi'}{\overline{x} : \Phi \vdash \lambda x : \phi (M) : \phi \to \phi'} \\ (\to \mathrm{E}) \ \frac{\Phi \vdash \phi \to \phi' \quad \Phi \vdash \phi}{\Phi \vdash \phi'} \qquad \mapsto \qquad (\mathrm{app}) \ \frac{\overline{x} : \Phi \vdash M_1 : \phi \to \phi' \quad \overline{x} : \Phi \vdash M_2 : \phi}{\overline{x} : \Phi \vdash M_1 M_2 : \phi'} \\ (\forall \mathrm{I}) \ \frac{\Phi \vdash \phi}{\Phi \vdash \forall p (\phi)} \qquad \mapsto \qquad (\mathrm{gen}) \ \frac{\overline{x} : \Phi \vdash M : \phi}{\overline{x} : \Phi \vdash \Lambda p (M) : \forall p (\phi)} \\ (\forall \mathrm{E}) \ \frac{\Phi \vdash \forall p (\phi)}{\Phi \vdash \phi [\phi'/p]} \qquad \mapsto \qquad (\mathrm{spec}) \ \frac{\overline{x} : \Phi \vdash M : \forall p (\phi)}{\overline{x} : \Phi \vdash M \phi' : \phi [\phi'/p]}$$

A 2IPC proof

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where p & q is an abbreviation for $\forall r ((p \rightarrow q \rightarrow r) \rightarrow r)$.

The PLC expression corresponding to this proof is:

 $\wedge p, q(\lambda z : p \& q(z p(\lambda x : p, y : q(x)))).$

$$p \& q = \forall r . (p \rightarrow q \rightarrow r) \rightarrow r$$

$$\frac{id}{2 : p \& q, x : p, y : q \vdash x : p}$$

$$\frac{id}{2 : p \& q \vdash 2 : \forall r . (p \rightarrow q \rightarrow r) \rightarrow r}$$

$$\frac{z : p \& q \vdash \lambda x : p \lambda y : q(x) : p \rightarrow (q \rightarrow p)}{2 : p \& q \vdash \lambda z : p \& q \vdash 2 p : (p \rightarrow q \rightarrow r) \rightarrow p}$$

$$\frac{z : p \& q \vdash \lambda z : p \& \mu z \mapsto \lambda z : p \& q \vdash \lambda z \mapsto \lambda z : p \& d \vdash \lambda z \mapsto \lambda z : p \& d \vdash \lambda z \mapsto \lambda z : p \& d \vdash \lambda z : p \& d \vdash \lambda z \mapsto \lambda z : p \& d \vdash \lambda z \mapsto \lambda z : p \& d \vdash \lambda z \mapsto \lambda z : p \& d \vdash \lambda z \mapsto \lambda z \mapsto$$

Exercise (4 mins)

In 2IPC, prove:

$$orall p,q,r,s(((p
ightarrow q
ightarrow r)
ightarrow r)
ightarrow s)
ightarrow (p
ightarrow q
ightarrow s)$$

hint: Is there a PLC function with type:

$$\forall p, q, r, s(((p
ightarrow q
ightarrow r)
ightarrow r)
ightarrow s)
ightarrow p
ightarrow q
ightarrow s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(i.e., function with three parameters and result type s)

Since
$$p \land q = \forall r.((p \rightarrow q \rightarrow r) \rightarrow r)$$
 then
 $\forall p, q, r, s (((p \rightarrow q \rightarrow r) \rightarrow r) \rightarrow s) \rightarrow (p \rightarrow q \rightarrow s)$
 $\cong \forall p, q, s ((p \land q) \rightarrow s) \rightarrow (p \rightarrow q \rightarrow s)$

The proof of which is witnessed by the *curry* function, via the Curry-Howard correspondence.

・ロト・日本・モト・モート ヨー うへで

Curry-Howard proof in Agda

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\begin{array}{cccc}
 & & & & & \\ \hline \Phi & & & & \\ \hline \Phi & & & & \\ \hline \Phi & & \\ \hline$$

Logical operations definable in 2IPC

- Truth: true $\stackrel{\text{def}}{=} \forall p (p \rightarrow p)$.
- Falsity: false $\stackrel{\text{def}}{=} \forall p(p)$.
- ► Conjunction: $\phi \& \phi' \stackrel{\text{def}}{=} \forall p ((\phi \to \phi' \to p) \to p)$ (where $p \notin fv(\phi, \phi')$).
- ▶ Disjunction: $\phi \lor \phi' \stackrel{\text{def}}{=} \forall p ((\phi \to p) \to (\phi' \to p) \to p)$ (where $p \notin fv(\phi, \phi')$).
- Negation: $\neg \phi \stackrel{\text{def}}{=} \phi \rightarrow \textit{false}.$
- ► Existential quantification: $\exists p(\phi) \stackrel{\text{def}}{=} \forall p' (\forall p(\phi \rightarrow p') \rightarrow p')$ (where $p' \notin fv(\phi, p)$).

2IPC is a constructive logic

For example, there is no proof of the Law of Excluded Middle

 $\forall p (p \lor \neg p)$

Using the definitions on Slide 67, this is an abbreviation for

 $\forall p, q ((p \rightarrow q) \rightarrow ((p \rightarrow \forall r (r)) \rightarrow q) \rightarrow q)$

(The fact that there is no closed PLC term of type $\forall p (p \lor \neg p)$ can be proved using the technique developed in the Tripos question 13 on paper 9 in 2000.)

Curry-Howard correspondence

Logic	\leftrightarrow	Type system
propositions, ϕ	\leftrightarrow	types, $ au$
(constructive) proofs, <i>p</i>	\leftrightarrow	expressions, M
'p is a proof of ϕ '	\leftrightarrow	' M is an expression of type $ au$ '
simplification of proofs	\leftrightarrow	reduction of expressions

Proof simplification \leftrightarrow term reduction

(日)、

э

Type-inference: 'given Γ and M, is there a type τ such that $\Gamma \vdash M : \tau$?' (For PLC/2IPC this is decidable.)

Proof-search: 'given Γ and ϕ , is there a proof term M such that $\Gamma \vdash M : \phi$?'

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(For PLC/2IPC this is undecidable.)

Course outline

- Introduction. The role of type systems in programming languages. Formalizing type systems. [1 lecture]
- ML polymorphism. ML-style polymorphism. Principal type schemes and type inference. [2 lectures]
- Polymorphic reference types. The pitfalls of combining ML polymorphism with reference types. [1 lecture]
- Polymorphic lambda calculus. Syntax and reduction semantics. Examples of datatypes definable in the polymorphic lambda calculus. Applications. [2 lectures]
- Further topics. The Curry-Howard correspondence (types-as-formulae, terms-as-proofs) as a source of type systems. Dependent types. [2 lectures]