
Last time

I
Dependent types (x : ⌧) ! ⌧ 0

I
Some Agda

I
Encoding the list ADT with only 8 and !

↵ list = 8�(� ! (↵ ! � ! �) ! �)

This time

I
Connection between logic and types



Curry-Howard correspondence

Logic $ Type system

propositions, � $ types, ⌧
(constructive) proofs, p $ expressions, M

‘p is a proof of �’ $ ‘M is an expression of type ⌧ ’
simplification of proofs $ reduction of expressions

dominic
PLC (Reynolds)

dominic
2IPC (Girard)

dominic
vs.

dominic
second-order intuitionistic propositional calculus



Intuitionistic (constructive) logic Extra

I
About provability rather than truth (in classical logic) –

propositions are inhabited by proofs (justification)

I
Weaker than classical logic (no LEM or equivalently no

double-negation elimination or equivalently no Peirce’s law)

I
but extremely useful

If we did have LEM:

8p.terminates(p) _ ¬terminates(p)

Propositions inhabited by proofs ) LEM solves halting problem!

Not allowed in a constructive logic



Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof. Either
p
2
p
2 is rational, or it is not (LEM!).

If it is, we can take a = b =
p
2, since

p
2 is irrational by a

well-known theorem attributed to Euclid.

If it is not, we can take a =
p
2 and b =

p
2
p
2, since then

ba = (
p
2
p
2)

p
2 =

p
2
p
2⇥

p
2 =

p
22 = 2.

QED
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About provability rather than truth (in classical logic) –

propositions are inhabited by proofs (justification)

I
Weaker than classical logic (no LEM or equivalently no

double-negation elimination or equivalently no Peirce’s law)

I
but extremely useful

If we did have LEM:

8p.terminates(p) _ ¬terminates(p)

Propositions inhabited by proofs ) LEM solves halting problem!

Not allowed in a constructive logic



Second-order intuitionistic propositional calculus (2IPC)

2IPC propositions: � ::= p | � ! � | 8 p (�) , where p ranges over

an infinite set of propositional variables.

2IPC sequents: � ` � , where � is a finite (multi)set of 2IPC
propositions and � is a 2IPC proposition.

� ` � is provable if it is in the set of sequents inductively
generated by:

(Id) � ` � if � 2 �

(!I)
�,� ` �0

� ` � ! �0 (!E)
� ` � ! �0 � ` �

� ` �0

(8I) � ` �

� ` 8 p (�)
if p /2 fv(�) (8E)

� ` 8 p (�)
� ` �[�0/p]
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Second-order intuitionistic propositional calculus (2IPC)

2IPC propositions: φ ::= p | φ→ φ | ∀ p (φ) , where p ranges over

an infinite set of propositional variables.

2IPC sequents: Φ ⊢ φ , where Φ is a finite (multi)set of 2IPC

propositions and φ is a 2IPC proposition.

Φ ⊢ φ is provable if it is in the set of sequents inductively generated by:

(Id) Φ ⊢ φ if φ ∈ Φ

(→I)
Φ,φ ⊢ φ′

Φ ⊢ φ→ φ′
(→E)

Φ ⊢ φ→ φ′ Φ ⊢ φ

Φ ⊢ φ′

(∀I)
Φ ⊢ φ

Φ ⊢ ∀ p (φ)
if p /∈ fv(Φ) (∀E)

Φ ⊢ ∀ p (φ)

Φ ⊢ φ[φ′/p]

Slide 61

Note that if we identify propositional variables with PLC’s type variables, then 2IPC
propositions are just PLC types. Every proof of a 2IPC sequent Φ ⊢ φ can be described
by a PLC expression M satisfying Γ ⊢ M : φ, once we have fixed a labelling Γ = {x1 :
φ1, . . . , xn : φn} of the propositions in Φ = {φ1, . . . ,φn} with variables x1, . . . , xn. M
is built up by recursion on the structure of the proof of the sequent using the following
transformations:

(Id) Φ,φ ⊢ φ %→ (id) x : Φ, x : φ ⊢ x : φ

(→I)
Φ,φ ⊢ φ′

Φ ⊢ φ→ φ′

%→ (fn)
x : Φ, x : φ ⊢M : φ′

x : Φ ⊢ λx : φ (M) : φ→ φ′

(→E)
Φ ⊢ φ→ φ′ Φ ⊢ φ

Φ ⊢ φ′

%→ (app)
x : Φ ⊢M1 : φ→ φ′ x : Φ ⊢M2 : φ

x : Φ ⊢M1 M2 : φ′

(∀I)
Φ ⊢ φ

Φ ⊢ ∀ p (φ)
%→ (gen)

x : Φ ⊢M : φ

x : Φ ⊢ Λ p (M) : ∀ p (φ)

(∀E)
Φ ⊢ ∀ p (φ)

Φ ⊢ φ[φ′/p]
%→ (spec)

x : Φ ⊢M : ∀ p (φ)

x : Φ ⊢M φ′ : φ[φ′/p]

This is illustrated on Slide 62. The example on that slide uses the fact that the logical
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A 2IPC proof

(!E)

(!I )
(!I )

(Id){p & q, p, q} ` p

{p & q, p} ` q ! p

{p & q} ` p ! q ! p
(8E )

(Id){p & q} ` 8 r ((p ! q ! r) ! r)
{p & q} ` (p ! q ! p) ! p

(8I )

(8I )

(!I )

{p & q} ` p

{ } ` p & q ! p

{ } ` 8 q (p & q ! p)

{ } ` 8 p, q (p & q ! p)

where p & q is an abbreviation for 8 r ((p ! q ! r) ! r).

The PLC expression corresponding to this proof is:

⇤ p, q (� z : p & q (z p (� x : p, y : q (x)))).

dominic
∀p, q ((p & q) → p).





Exercise (4 mins)

In 2IPC, prove:

8p, q, r , s(((p ! q ! r) ! r) ! s) ! (p ! q ! s)

hint: Is there a PLC function with type:

8p, q, r , s(((p ! q ! r) ! r) ! s) ! p ! q ! s

(i.e., function with three parameters and result type s)



Since p ^ q = 8r .((p ! q ! r) ! r) then

8p, q, r , s (((p ! q ! r) ! r) ! s) ! (p ! q ! s)
⇠= 8p, q, s ((p ^ q) ! s) ! (p ! q ! s)

The proof of which is witnessed by the curry function, via the
Curry-Howard correspondence.



Curry-Howard proof in Agda

exercise : forall {p q r s : Set} ->

(((p -> q -> r) -> r) -> s) -> p -> q -> s

exercise k p q = k (\f -> f p q)





Logical operations definable in 2IPC

I Truth: true
def
= 8 p (p ! p).

I Falsity: false
def
= 8 p (p).

I Conjunction: � & �0 def= 8 p ((�! �0 ! p)! p)
(where p /2 fv(�,�0)).

I Disjunction: � _ �0 def= 8 p ((�! p)! (�0 ! p)! p) (where
p /2 fv(�,�0)).

I Negation: ¬� def
= �! false.

I Existential quantification: 9 p (�) def
= 8 p0 (8 p (�! p0)! p0)

(where p0 /2 fv(�, p)).



2IPC is a constructive logic

For example, there is no proof of the Law of Excluded Middle

8 p (p _ ¬p)

Using the definitions on Slide 67, this is an abbreviation for

8 p, q ((p ! q)! ((p !8 r (r))! q)! q)

(The fact that there is no closed PLC term of type 8 p (p _ ¬p) can be

proved using the technique developed in the Tripos question 13 on paper

9 in 2000.)



Curry-Howard correspondence

Logic $ Type system

propositions, � $ types, ⌧
(constructive) proofs, p $ expressions, M

‘p is a proof of �’ $ ‘M is an expression of type ⌧ ’
simplification of proofs $ reduction of expressions
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Proof simplification $ term reduction

! E

! I

.

.

.

�, `  0

� `  !  0

.

.

.

� `  
� `  0

.

.

.

� : �, x :  ` M :  0

� : � ` �x :  (M) :  !  0

.

.

.

� : � ` N :  

� : � ` (�x :  (M))N :  0

(simplify)

✏✏

(�-reduce)

✏✏

cut

.

.

.

�, `  0

.

.

.

� `  
� `  0 cut

.

.

.

� : �, x :  ` M :  0

.

.

.

� : � ` N :  

� : � ` M[N/x ] :  0



Type-inference versus proof search

Type-inference: ‘given � and M, is there a type ⌧ such that
� ` M : ⌧?’
(For PLC/2IPC this is decidable.)

Proof-search: ‘given � and �, is there a proof term M such that
� ` M : �?’

(For PLC/2IPC this is undecidable.)



Course outline

I
Introduction. The role of type systems in programming
languages. Formalizing type systems. [1 lecture]

I
ML polymorphism. ML-style polymorphism. Principal type
schemes and type inference. [2 lectures]

I
Polymorphic reference types. The pitfalls of combining ML
polymorphism with reference types. [1 lecture]

I
Polymorphic lambda calculus. Syntax and reduction
semantics. Examples of datatypes definable in the
polymorphic lambda calculus. Applications. [2 lectures]

I
Further topics. The Curry-Howard correspondence
(types-as-formulae, terms-as-proofs) as a source of type
systems. Dependent types. [2 lectures]
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