
Last time

I
Dependent types (x : ⌧) ! ⌧ 0

I
Some Agda

I
Encoding the list ADT with only 8 and !

↵ list = 8�(� ! (↵ ! � ! �) ! �)

This time

I
Connection between logic and types

Curry-Howard correspondence

Logic $ Type system

propositions, � $ types, ⌧
(constructive) proofs, p $ expressions, M

‘p is a proof of �’ $ ‘M is an expression of type ⌧ ’
simplification of proofs $ reduction of expressions

dominic
PLC (Reynolds)

dominic
2IPC (Girard)

dominic
vs.

dominic
second-order intuitionistic propositional calculus

Intuitionistic (constructive) logic Extra

I
About provability rather than truth (in classical logic) –

propositions are inhabited by proofs (justification)

I
Weaker than classical logic (no LEM or equivalently no

double-negation elimination or equivalently no Peirce’s law)

I
but extremely useful

If we did have LEM:

8p.terminates(p) _ ¬terminates(p)

Propositions inhabited by proofs) LEM solves halting problem!

Not allowed in a constructive logic

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof. Either
p
2
p
2 is rational, or it is not (LEM!).

If it is, we can take a = b =
p
2, since

p
2 is irrational by a

well-known theorem attributed to Euclid.

If it is not, we can take a =
p
2 and b =

p
2
p
2, since then

ba = (
p
2
p
2)

p
2 =

p
2
p
2⇥

p
2 =

p
22 = 2.

QED

Intuitionistic (constructive) logic Extra

I
About provability rather than truth (in classical logic) –

propositions are inhabited by proofs (justification)

I
Weaker than classical logic (no LEM or equivalently no

double-negation elimination or equivalently no Peirce’s law)

I
but extremely useful

If we did have LEM:

8p.terminates(p) _ ¬terminates(p)

Propositions inhabited by proofs) LEM solves halting problem!

Not allowed in a constructive logic

Second-order intuitionistic propositional calculus (2IPC)

2IPC propositions: � ::= p | � ! � | 8 p (�) , where p ranges over

an infinite set of propositional variables.

2IPC sequents: � ` � , where � is a finite (multi)set of 2IPC
propositions and � is a 2IPC proposition.

� ` � is provable if it is in the set of sequents inductively
generated by:

(Id) � ` � if � 2 �

(!I)
�,� ` �0

� ` � ! �0 (!E)
� ` � ! �0 � ` �

� ` �0

(8I) � ` �

� ` 8 p (�)
if p /2 fv(�) (8E)

� ` 8 p (�)
� ` �[�0/p]

5.2 Curry-Howard correspondence 65

Second-order intuitionistic propositional calculus (2IPC)

2IPC propositions: φ ::= p | φ→ φ | ∀ p (φ) , where p ranges over

an infinite set of propositional variables.

2IPC sequents: Φ ⊢ φ , where Φ is a finite (multi)set of 2IPC

propositions and φ is a 2IPC proposition.

Φ ⊢ φ is provable if it is in the set of sequents inductively generated by:

(Id) Φ ⊢ φ if φ ∈ Φ

(→I)
Φ,φ ⊢ φ′

Φ ⊢ φ→ φ′
(→E)

Φ ⊢ φ→ φ′ Φ ⊢ φ

Φ ⊢ φ′

(∀I)
Φ ⊢ φ

Φ ⊢ ∀ p (φ)
if p /∈ fv(Φ) (∀E)

Φ ⊢ ∀ p (φ)

Φ ⊢ φ[φ′/p]

Slide 61

Note that if we identify propositional variables with PLC’s type variables, then 2IPC
propositions are just PLC types. Every proof of a 2IPC sequent Φ ⊢ φ can be described
by a PLC expression M satisfying Γ ⊢ M : φ, once we have fixed a labelling Γ = {x1 :
φ1, . . . , xn : φn} of the propositions in Φ = {φ1, . . . ,φn} with variables x1, . . . , xn. M
is built up by recursion on the structure of the proof of the sequent using the following
transformations:

(Id) Φ,φ ⊢ φ %→ (id) x : Φ, x : φ ⊢ x : φ

(→I)
Φ,φ ⊢ φ′

Φ ⊢ φ→ φ′

%→ (fn)
x : Φ, x : φ ⊢M : φ′

x : Φ ⊢ λx : φ (M) : φ→ φ′

(→E)
Φ ⊢ φ→ φ′ Φ ⊢ φ

Φ ⊢ φ′

%→ (app)
x : Φ ⊢M1 : φ→ φ′ x : Φ ⊢M2 : φ

x : Φ ⊢M1 M2 : φ′

(∀I)
Φ ⊢ φ

Φ ⊢ ∀ p (φ)
%→ (gen)

x : Φ ⊢M : φ

x : Φ ⊢ Λ p (M) : ∀ p (φ)

(∀E)
Φ ⊢ ∀ p (φ)

Φ ⊢ φ[φ′/p]
%→ (spec)

x : Φ ⊢M : ∀ p (φ)

x : Φ ⊢M φ′ : φ[φ′/p]

This is illustrated on Slide 62. The example on that slide uses the fact that the logical

dominic

dominic
p. 51

A 2IPC proof

(!E)

(!I)
(!I)

(Id){p & q, p, q} ` p

{p & q, p} ` q ! p

{p & q} ` p ! q ! p
(8E)

(Id){p & q} ` 8 r ((p ! q ! r) ! r)
{p & q} ` (p ! q ! p) ! p

(8I)

(8I)

(!I)

{p & q} ` p

{ } ` p & q ! p

{ } ` 8 q (p & q ! p)

{ } ` 8 p, q (p & q ! p)

where p & q is an abbreviation for 8 r ((p ! q ! r) ! r).

The PLC expression corresponding to this proof is:

⇤ p, q (� z : p & q (z p (� x : p, y : q (x)))).

dominic
∀p, q ((p & q) → p).

Exercise (4 mins)

In 2IPC, prove:

8p, q, r , s(((p ! q ! r) ! r) ! s) ! (p ! q ! s)

hint: Is there a PLC function with type:

8p, q, r , s(((p ! q ! r) ! r) ! s) ! p ! q ! s

(i.e., function with three parameters and result type s)

Since p ^ q = 8r .((p ! q ! r) ! r) then

8p, q, r , s (((p ! q ! r) ! r) ! s) ! (p ! q ! s)
⇠= 8p, q, s ((p ^ q) ! s) ! (p ! q ! s)

The proof of which is witnessed by the curry function, via the
Curry-Howard correspondence.

Curry-Howard proof in Agda

exercise : forall {p q r s : Set} ->

(((p -> q -> r) -> r) -> s) -> p -> q -> s

exercise k p q = k (\f -> f p q)

Logical operations definable in 2IPC

I Truth: true
def
= 8 p (p ! p).

I Falsity: false
def
= 8 p (p).

I Conjunction: � & �0 def= 8 p ((�! �0 ! p)! p)
(where p /2 fv(�,�0)).

I Disjunction: � _ �0 def= 8 p ((�! p)! (�0 ! p)! p) (where
p /2 fv(�,�0)).

I Negation: ¬� def
= �! false.

I Existential quantification: 9 p (�) def
= 8 p0 (8 p (�! p0)! p0)

(where p0 /2 fv(�, p)).

2IPC is a constructive logic

For example, there is no proof of the Law of Excluded Middle

8 p (p _ ¬p)

Using the definitions on Slide 67, this is an abbreviation for

8 p, q ((p ! q)! ((p !8 r (r))! q)! q)

(The fact that there is no closed PLC term of type 8 p (p _ ¬p) can be

proved using the technique developed in the Tripos question 13 on paper

9 in 2000.)

Curry-Howard correspondence

Logic $ Type system

propositions, � $ types, ⌧
(constructive) proofs, p $ expressions, M

‘p is a proof of �’ $ ‘M is an expression of type ⌧ ’
simplification of proofs $ reduction of expressions

dominic

Proof simplification $ term reduction

! E

! I

.

.

.

�, ` 0

� ` ! 0

.

.

.

� `
� ` 0

.

.

.

� : �, x : ` M : 0

� : � ` �x : (M) : ! 0

.

.

.

� : � ` N :

� : � ` (�x : (M))N : 0

(simplify)

✏✏

(�-reduce)

✏✏

cut

.

.

.

�, ` 0

.

.

.

� `
� ` 0 cut

.

.

.

� : �, x : ` M : 0

.

.

.

� : � ` N :

� : � ` M[N/x] : 0

Type-inference versus proof search

Type-inference: ‘given � and M, is there a type ⌧ such that
� ` M : ⌧?’
(For PLC/2IPC this is decidable.)

Proof-search: ‘given � and �, is there a proof term M such that
� ` M : �?’

(For PLC/2IPC this is undecidable.)

Course outline

I
Introduction. The role of type systems in programming
languages. Formalizing type systems. [1 lecture]

I
ML polymorphism. ML-style polymorphism. Principal type
schemes and type inference. [2 lectures]

I
Polymorphic reference types. The pitfalls of combining ML
polymorphism with reference types. [1 lecture]

I
Polymorphic lambda calculus. Syntax and reduction
semantics. Examples of datatypes definable in the
polymorphic lambda calculus. Applications. [2 lectures]

I
Further topics. The Curry-Howard correspondence
(types-as-formulae, terms-as-proofs) as a source of type
systems. Dependent types. [2 lectures]

	Introduction
	ML Polymorphism
	An ML type system
	Examples of type inference, by hand
	Principal type schemes
	A type inference algorithm

	Polymorphic Reference Types
	The problem
	Restoring type soundness

	Polymorphic Lambda Calculus
	From type schemes to polymorphic types
	The PLC type system
	PLC type inference
	Datatypes in PLC

	Further Topics
	Dependent types
	Curry-Howard correspondence

