Last time on **Types**...

Modified ML with polymorphic types anywhere

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Identity, Generalisation and Specialisation

$$\Gamma \vdash x : \pi \quad \text{if } (x : \pi) \in \Gamma \qquad (\text{id})$$

$$\frac{\Gamma \vdash M : \pi}{\Gamma \vdash M : \forall \alpha (\pi)} \quad \text{if } \alpha \notin ftv(\Gamma) \qquad (\text{gen})$$

$$\frac{\Gamma \vdash M : \forall \alpha (\pi)}{\Gamma \vdash M : \pi[\pi'/\alpha]} \qquad (\text{spec})$$

<□ > < @ > < E > < E > E のQ @

Last time on Types...

Modified ML with polymorphic types anywhere

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Polymorphic λ -calculus

PLC type system

$$\Gamma \vdash x : \tau \quad \text{if } (x : \tau) \in \Gamma$$
 (var)

$$\frac{\Gamma, x: \tau_1 \vdash M: \tau_2}{\Gamma \vdash \lambda x: \tau_1(M): \tau_1 \to \tau_2} \quad \text{if } x \notin \textit{dom}(\Gamma) \tag{fn}$$

$$\frac{\Gamma \vdash M_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash M_2 : \tau_1}{\Gamma \vdash M_1 M_2 : \tau_2}$$
(app)

$$\frac{\Gamma \vdash M : \tau}{\Gamma \vdash \Lambda \alpha (M) : \forall \alpha (\tau)} \quad \text{if } \alpha \notin ftv(\Gamma)$$
 (gen)

$$\frac{\Gamma \vdash M : \forall \alpha (\tau_1)}{\Gamma \vdash M \tau_2 : \tau_1[\tau_2/\alpha]}$$
(spec)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Last time on Types...

Modified ML with polymorphic types anywhere

- Polymorphic λ -calculus
 - $\Lambda \alpha (\lambda x : \alpha (x)) : \forall \alpha (\alpha \rightarrow \alpha)$
- Decideability of typing for PLC

Today...

Results on reduction (semantics) of PLC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Encoding data types in PLC (part 1)

Beta-reduction of PLC expressions

M beta-reduces to M' in one step, $M \to M'$ means M' can be obtained from M (up to alpha-conversion, of course) by replacing a subexpression which is a redex by its corresponding reduct. The redex-reduct pairs are of two forms:

$$\begin{array}{c} (\lambda\,x:\tau\,(M_1))\,M_2\to M_1[M_2/x]\\ (\Lambda\,\alpha\,(M))\,\tau\to M[\tau/\alpha]. \end{array}$$

 $M \rightarrow^* M'$ indicates a chain of finitely [†] many beta-reductions.

([†] possibly zero—which just means M and M' are alpha-convertible).

M is in beta-normal form if it contains no redexes.

Properties of PLC beta-reduction on typeable expressions

Suppose $\Gamma \vdash M : \tau$ is provable in the PLC type system. Then the following properties hold:

Subject Reduction. If $M \to M'$, then $\Gamma \vdash M' : \tau$ is also a provable typing.

Subject reduction requires substitution lemma...

Subject Reduction. If $M \to M'$, then $\Gamma \vdash M' : \tau$ is also a provable typing.

For example for: $(\lambda x : \sigma(M_1)) M_2 \rightarrow M_1[M_2/x]$

Lemma(substitution)

If $\Gamma, x : \sigma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \sigma$ then $\Gamma \vdash M_1[M_2/x] : \tau$.

Proof By induction over the typing relation on M_1 .

Fxtra

Properties of PLC beta-reduction on typeable expressions

Suppose $\Gamma \vdash M : \tau$ is provable in the PLC type system. Then the following properties hold:

Subject Reduction. If $M \to M'$, then $\Gamma \vdash M' : \tau$ is also a provable typing.

Church Rosser Property. If $M \to^* M_1$ and $M \to^* M_2$, then there is M' with $M_1 \to^* M'$ and $M_2 \to^* M'$.

Strong Normalisation Property. There is no infinite chain $M \rightarrow M_1 \rightarrow M_2 \rightarrow \ldots$ of beta-reductions starting from M.

Theorem 16, p.43

Extra

Church-Rosser (CR) + Strong Normalisation (SN) \Rightarrow exists unique *beta*-normal forms for **typeable** PLC expressions

- Existence: start from M and reduce any redexes... by (SN) this must eventually stop
- **Uniqueness:** by (CR), if $M \rightarrow^* M_1$ and $M \rightarrow^* M_2$ then

(where $M_1 \rightarrow^* M'$ and $M_2 \rightarrow^* M'$ are zero length β -reduction chanins if M_1 and M_2 are in β -normal form).

Y-combinator

$Y = \lambda f.((\lambda x.f(x x))(\lambda x.f(x x)))$

- Satisfies fixed-point combinator equation Y f = f(Y f)
- ▶ for some f, Y f does not have a beta-normal form (see Remark 17, p.43, where f = id)
- Y is not typeable in PLC

Exercise (2 min). Show that *Y* id has an infinite β -reduction chain (i.e., no β -normal form)

 $Y = \lambda f \left(\lambda x \cdot f(x x) \right) \left(\lambda x \cdot f(x x) \right)$ $\forall id \xrightarrow{\beta} (\lambda x . id (x x))(\lambda x . id (x x)) \xrightarrow{*}$ $\xrightarrow{*} id (\lambda x . id (x x))(\lambda x . id (x x)))$

PLC beta-conversion, $=_{\beta}$

By definition, $M =_{\beta} M'$ holds if there is a finite chain $M - \cdots - \cdots - M'$

where each - is either \rightarrow or \leftarrow , i.e. a beta-reduction in one direction or the other. (A chain of length zero is allowed—in which case M and M' are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for typeable PLC expressions, $M =_{\beta} M'$ holds if and only if there is some beta-normal form N with

 $M \rightarrow^* N^* \leftarrow M'$

Data types in PLC (Section 4.4)

- define a suitable PLC type for the data
- define suitable PLC expressions for values & on the data
- show PLC expressions have correct typings & behaviour (use the semantics)

Polymorphic booleans

bool
$$\stackrel{\text{def}}{=} \forall \alpha (\alpha \to (\alpha \to \alpha))$$

True
$$\stackrel{\text{def}}{=} \Lambda \alpha (\lambda x_1 : \alpha, x_2 : \alpha (x_1))$$

$$False \stackrel{\text{def}}{=} \Lambda \alpha \left(\lambda x_1 : \alpha, x_2 : \alpha (x_2) \right)$$

$$if \stackrel{\text{def}}{=} \Lambda \alpha \left(\lambda \ b : \textit{bool}, x_1 : \alpha, x_2 : \alpha \left(b \alpha x_1 x_2 \right) \right)$$

<□ > < @ > < E > < E > E のQ @

Exercise (5 min)

Given $\Gamma \vdash M_1$: bool, $\Gamma \vdash M_2$: τ , $\Gamma \vdash M_3$: τ and $\begin{cases} M_1 \rightarrow^* True \\ M_2 \rightarrow^* N_2 \\ M_3 \rightarrow^* N_3 \end{cases}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Exercise (5 min)

Given
$$\Gamma \vdash M_1$$
: bool, $\Gamma \vdash M_2$: τ , $\Gamma \vdash M_3$: τ
and
$$\begin{cases} M_1 \rightarrow^* True \\ M_2 \rightarrow^* N_2 \\ M_3 \rightarrow^* N_3 \end{cases}$$

then if $\tau M_1 M_2 M_3 \rightarrow^* ?$

$$i \not T M_{1} M_{2} M_{3}$$

$$\rightarrow i \not T True M_{2} M_{3}$$

$$by a \not \cdot : \not F (\Lambda \propto (\lambda b : bool, \lambda z_{1} : \sigma ...) T True M_{2} M_{3}$$

$$\xrightarrow{\mathcal{B}} (\lambda b : bool, x_{1} : T, x_{2} : T (b T X_{1} X_{2})) True M_{2} M_{3}$$

$$\rightarrow \# + rue T M_{2} M_{3}$$

$$\rightarrow \# (\lambda x_{1} : T, x_{2} : T (X_{1})) M_{2} M_{3}$$

$$\rightarrow \# M_{2}$$

$$\frac{\text{FACT}: \text{True} \triangleq \Lambda \alpha (\lambda x_1, \lambda_2: \alpha (x_1))}{\text{False} \triangleq \Lambda \alpha (\lambda x_1, \lambda_2: \alpha (x_2))}$$
are the only closed expressions in
 β -normal form of type bool $\triangleq \forall \alpha (\alpha \cdot \alpha \cdot \alpha \cdot \alpha)$.

Polymorphic lists

$$\alpha \text{ list} \stackrel{\text{def}}{=} \forall \alpha' (\alpha' \to (\alpha \to \alpha' \to \alpha') \to \alpha')$$
$$\text{Nil} \stackrel{\text{def}}{=} \Lambda \alpha, \alpha' (\lambda x' : \alpha', f : \alpha \to \alpha' \to \alpha' (x'))$$
$$\text{Cons} \stackrel{\text{def}}{=} \Lambda \alpha (\lambda x : \alpha, \ell : \alpha \text{ list} (\Lambda \alpha'(\lambda x' : \alpha', f : \alpha \to \alpha' \to \alpha'))))$$

Bool = Va. g >g >g. False True a list= $\forall d' \cdot d' \rightarrow (d \rightarrow d' \rightarrow d') \rightarrow d'$ Nil (ons data « List = Nil (ons of « * («List) Nil : ~ List (ons: a * a List -> a List curry (ons: ~ ~ (~ List ~ ~ List) Nil: Va. alist f x (l x' x' f) f x' x' f \prec'