
Last time on Types...

I
Modified ML with polymorphic types anywhere

I
Polymorphic �-calculus

I
⇤↵ (�x : ↵ (x)) : 8↵(↵ ! ↵)

I
Decideability of typing for PLC

Identity, Generalisation and Specialisation

� ` x : ⇡ if (x : ⇡) 2 � (id)

� ` M : ⇡
� ` M : 8↵ (⇡)

if ↵ /2 ftv(�) (gen)

� ` M : 8↵ (⇡)

� ` M : ⇡[⇡0/↵]
(spec)

Last time on Types...

I
Modified ML with polymorphic types anywhere

I
Polymorphic �-calculus

I
⇤↵ (�x : ↵ (x)) : 8↵(↵ ! ↵)

I
Decideability of typing for PLC

PLC type system

� ` x : ⌧ if (x : ⌧) 2 � (var)

�, x : ⌧1 ` M : ⌧2
� ` � x : ⌧1 (M) : ⌧1 ! ⌧2

if x /2 dom(�) (fn)

� ` M1 : ⌧1 ! ⌧2 � ` M2 : ⌧1
� ` M1M2 : ⌧2

(app)

� ` M : ⌧
� ` ⇤↵ (M) : 8↵ (⌧)

if ↵ /2 ftv(�) (gen)

� ` M : 8↵ (⌧1)

� ` M ⌧2 : ⌧1[⌧2/↵]
(spec)

Last time on Types...

I
Modified ML with polymorphic types anywhere

I
Polymorphic �-calculus

I
⇤↵ (�x : ↵ (x)) : 8↵(↵ ! ↵)

I
Decideability of typing for PLC

Today...

I
Results on reduction (semantics) of PLC

I
Encoding data types in PLC (part 1)

Beta-reduction of PLC expressions

M beta-reduces to M 0 in one step, M ! M 0 means M 0 can be
obtained from M (up to alpha-conversion, of course) by replacing
a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

(� x : ⌧ (M1))M2 ! M1[M2/x]

(⇤↵ (M)) ⌧ ! M[⌧/↵].

M !⇤ M 0 indicates a chain of finitely † many beta-reductions.

(

†
possibly zero—which just means M and M

0
are alpha-convertible).

M is in beta-normal form if it contains no redexes.

Properties of PLC beta-reduction on typeable expressions

Suppose � ` M : ⌧ is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M ! M 0, then � ` M 0 : ⌧ is also a
provable typing.

Church Rosser Property. If M !⇤ M1 and M !⇤ M2, then
there is M 0 with M1 !⇤ M 0 and M2 !⇤ M 0.

Strong Normalisation Property. There is no infinite chain
M ! M1 ! M2 ! . . . of beta-reductions starting from M.

Subject reduction requires substitution lemma... Extra

Subject Reduction. If M ! M

0
, then � ` M

0
: ⌧ is also a

provable typing.

For example for: (� x : � (M1))M2 ! M1[M2/x]

(app)

(abs)
�, x : � ` M1 : ⌧

� ` � x : � (M1) : � ! ⌧
� ` M2 : �

� ` (� x : � (M1))M2 : ⌧

���!
�, x : � ` M1 : ⌧ � ` M2 : �

� ` M1[M2/x] : ⌧

Lemma(substitution)

If �, x : � ` M1 : ⌧ and � ` M2 : � then � ` M1[M2/x] : ⌧ .

Proof By induction over the typing relation on M1.

Properties of PLC beta-reduction on typeable expressions

Suppose � ` M : ⌧ is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M ! M 0, then � ` M 0 : ⌧ is also a
provable typing.

Church Rosser Property. If M !⇤ M1 and M !⇤ M2, then
there is M 0 with M1 !⇤ M 0 and M2 !⇤ M 0.

Strong Normalisation Property. There is no infinite chain
M ! M1 ! M2 ! . . . of beta-reductions starting from M.

Theorem 16, p.43 Extra

Church-Rosser (CR) + Strong Normalisation (SN)

) exists unique beta-normal forms for typeable PLC expres-

sions

I
Existence: start from M and reduce any redexes... by

(SN) this must eventually stop

I
Uniqueness: by (CR), if M !⇤

M1 and M !⇤
M2 then

M1

⇤%%
M

⇤ ::

⇤$$

M

0

M2

⇤ 99

(where M1 !⇤
M

0
and M2 !⇤

M

0
are zero length �-reduction

chanins if M1 and M2 are in �-normal form).

Y-combinator Extra

Y = �f .((�x .f (x x)) (�x .f (x x)))

I
Satisfies fixed-point combinator equation Y f = f (Y f)

I
for some f , Y f does not have a beta-normal form

(see Remark 17, p.43, where f = id)

I
Y is not typeable in PLC

Exercise (2 min). Show that Y id has an infinite �-reduction
chain (i.e., no �-normal form)

PLC beta-conversion, =�

By definition, M =� M 0 holds if there is a finite chain

M � ·� · · · � ·�M 0

where each � is either ! or , i.e. a beta-reduction in one
direction or the other. (A chain of length zero is allowed—in which
case M and M 0 are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for
typeable PLC expressions, M =� M 0 holds if and only if there is
some beta-normal form N with

M !⇤ N ⇤ M 0

Data types in PLC (Section 4.4)

I
define a suitable PLC type for the data

I
define suitable PLC expressions for values & on the data

I
show PLC expressions have correct typings & behaviour

(use the semantics)

Polymorphic booleans

bool
def
= 8↵ (↵! (↵! ↵))

True
def
= ⇤↵ (� x1 : ↵, x2 : ↵ (x1))

False
def
= ⇤↵ (� x1 : ↵, x2 : ↵ (x2))

if
def
= ⇤↵ (� b : bool , x1 : ↵, x2 : ↵ (b ↵ x1 x2))

Exercise (5 min)

Given � ` M

1

: bool , � ` M

2

: ⌧ , � ` M

3

: ⌧

and

8
><

>:

M

1

!⇤
True

M

2

!⇤
N

2

M

3

!⇤
N

3

then if ⌧ M

1

M

2

M

3

!⇤
?

Exercise (5 min)

Given � ` M

1

: bool , � ` M

2

: ⌧ , � ` M

3

: ⌧

and

8
><

>:

M

1

!⇤
True

M

2

!⇤
N

2

M

3

!⇤
N

3

then if ⌧ M

1

M

2

M

3

!⇤
?

Polymorphic lists

↵ list
def
= 8↵0 (↵0 ! (↵! ↵0 ! ↵0)! ↵0)

Nil
def
= ⇤↵,↵0 (� x 0 : ↵0, f : ↵! ↵0 ! ↵0 (x 0))

Cons
def
= ⇤↵(�x : ↵, ` : ↵ list(⇤↵0(

�x 0 : ↵0, f : ↵! ↵0 ! ↵0(

f x (` ↵0 x 0 f)))))

