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» Aa(Ax:a(x)) Va(la — a)
» Decideability of typing for PLC



Today...

» Results on reduction (semantics) of PLC
» Encoding data types in PLC (part 1)



Beta-reduction of PLC expressions

M beta-reduces to M’ in one step, means M’ can be

obtained from M (up to alpha-conversion, of course) by replacing
a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

()\X . T(Ml)) M2 — Ml[MQ/X]
(ANa(M)) T — M[7/a].

M —* M’ indicates a chain of finitely T many beta-reductions.
(Jr possibly zero—which just means M and M’ are alpha-convertible).

M is in beta-normal form if it contains no redexes.



Properties of PLC beta-reduction on typeable expressions

Suppose ' = M : 7 is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M — M’ then T = M’ : 7 is also a
provable typing.



Subject reduction requires substitution lemma... Extra

Subject Reduction. If M — M’ then = M’ : 7 is also a
provable typing.

For example for: (Ax : o (My)) My — Mi[My/x]

Mx:cFMy:7
NrEAx:o(My):o—7 Fr=My:o
Fr-Ax:o0(M))My:7
Mx:oFM 7 N=-My:o
FE M [My/x] T

(abs)

(app)

Lemma(substitution)
fMx:oFMy:7and TH M, :othen T F Mi[My/x]: 7.

Proof By induction over the typing relation on Mj.



Properties of PLC beta-reduction on typeable expressions

Suppose ' = M : 7 is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M — M’ then T = M’ : 7 is also a
provable typing.

Church Rosser Property. If M —* M; and M —* M,, then
there is M’ with My —=* M’ and My —* M'.

Strong Normalisation Property. There is no infinite chain
M — My — My — ... of beta-reductions starting from M.



Theorem 16, p.43 Extra

Church-Rosser (CR) + Strong Normalisation (SN)
= exists unique beta-normal forms for typeable PLC expres-
sions

» Existence: start from M and reduce any redexes... by
(SN) this must eventually stop

» Uniqueness: by (CR), if M —* My and M —* M, then

/\
\/

(where My —* M’ and M, —* M’ are zero length S-reduction
chanins if My and M, are in B-normal form).



Y-combinator Extra

Y = M.(Ax.f(x x)) (Ax.f(x x)))

» Satisfies fixed-point combinator equation Y f = (Y f)

» for some f, Y f does not have a beta-normal form
(see Remark 17, p.43, where f = id)

» Y is not typeable in PLC

Exercise (2 min). Show that Y id has an infinite S-reduction
chain (i.e., no S-normal form)
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PLC beta-conversion, =g

By definition, | M = M’

holds if there is a finite chain

M—— i — M

where each — is either — or <, i.e. a beta-reduction in one
direction or the other. (A chain of length zero is allowed—in which
case M and M’ are equal, up to alpha-conversion, of course.)

Church Rosser 4+ Strong Normalisation properties imply that, for
typeable PLC expressions, M =3 M’ holds if and only if there is
some beta-normal form N with

M —=* N*«— M



Data types in PLC (Section 4.4)

» define a suitable PLC type for the data
» define suitable PLC expressions for values & on the data

» show PLC expressions have correct typings & behaviour
(use the semantics)



Polymorphic booleans

bool & v o (a = (a0 —a))
def

True = Nav(Ax1 @ a, x2 1 a(x1))
def

False = Na(Ax1 : a,x2 @ a(x2))

if déf/\a()\b : bool, x1 1 i, xp : v (barxi x2))



Exercise (5 min)

GivenlT = My : bool , TMy:7, THM;:71
M; —* True

and ¢ M, —* N,
Mz —* N3



Exercise (5 min)

GivenT My :bool , THMy:7, TFMs:r

M; —* True
and My —* N,
M3 —* N3

then if - My My, Mz —* 7
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Polymorphic lists

alist & va! (o) = (a—ad —ad)—d)

Nil € A, of AX :d f:ra—ad —d (X))
def . /
Cons = Na(Mx: o, €2 alist(Aa/'(
M oo fra—ad —d(
fx(la x'f)))))
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