Last time on Types...

> Principal type schemes

Principal type schemes for closed expressions

slide 25 (p. 18)

A closed type scheme V A (7) is the principal type scheme of a
closed Mini-ML expression M if

(a) FM:YA(7)

(b) for any other closed type scheme V A’ (7/),
if - M:VA (7)), then VA(7) > 7/

dominic
slide 25 (p. 18)

Theorem (Hindley; Damas-Milner)
slide 26 (p.19)

Theorem
If the closed Mini-ML expression M is typeable (i.e. - M : o

holds for some type scheme), then there is a principal type
scheme for M.

dominic
slide 26 (p.19)

Last time on Types...

> Principal type schemes

» MGUs (most general unifiers)

Unification of ML types slide 28 (p. 20)

There is an algorithm mgu which when input two Mini-ML types
71 and 7 decides whether 71 and 7> are unifiable, i.e. whether
there exists a type-substitution S € Sub with

(a) S(m1) = 5(72).

Moreover, if they are unifiable, mgu(71,) returns the most
general unifier—an S satisfying both (a) and
(b) for all " € Sub, if S'(11) = §'(72), then S’ = TS for some
T € Sub
(any other substitution S’ can be factored through
S, by specialising S with T)

By convention mgu(ri,) = FAIL if (and only if) 71 and 7 are not
unifiable.

dominic
slide 28 (p. 20)

Last time on Types...

» Principal type schemes
» MGUs (most general unifiers)

» Type inference algorithm (pt) [also called “Algorithm W"]

Some of the clauses in a definition of pt

slide 32 (p.23)

Function abstractions: pt(I' = Ax(M) : ?) def

let o = fresh in

let (S,7)=pt(M,x:ak M:?)in (S, S(a)—7)
Function applications: pt(IF'+= My My : ?) def

let (S1,71) =pt(FT' My :?)in

let (S, m2) = pt(S1TH My :?)in

let o = fresh in

let S3 = mgu(Sy 71,7 — @) in (535251, S3(@))

dominic
slide 32 (p.23)

A rough guide to constructing Algorithm W (pt)

pt(l=e:7)=(S,7)

» Recursively apply on sub terms - see type rules

» thread substitutions through
» collect substitutions at the end

» When types need to agree (see type rules), use mgu
» When types are unknown, generate a fresh type variable

This time on Types...

» Extend Mini-ML with references
> Type soundness lost.

» Fix type system; type soundness regained.

Formal type systems slide 5 (p.4)

» Constitute the precise, mathematical characterisation of
informal type systems (such as occur in the manuals of most
typed languages.)

» Basis for type soundness theorems: ‘any well-typed program
cannot produce run-time errors (of some specified kind)'.

» Can decouple specification of typing aspects of a language
from algorithmic concerns: the formal type system can define
typing independently of particular implementations of
type-checking algorithms.

dominic

dominic
slide 5 (p.4)

ML types and expressions for mutable references

unit
T ref

0
ref M
'M
M:=M

unit type
reference type.

unit value
reference creation
dereference
assignment

Midi-ML's extra typing rules

() : unit (unit)

rM=M:r
ref M: Tref (vef)

[EM:Tref
F-IM:r (get)

Fr=My:7ref THEM:T
M= My := Ms : unit

Example

The expression

let r = ref Ax(x) in
letu = (r:= Ax'(ref Ix')) in

(*r)0)

has type unit.

| /1
(lr)@ @
-
O

O

Lo&U'
\mwm (L) v abthon) e e Mti-HL

& V/@/ Qa{«ao'()pa/)(

Midi-ML transition system

extra

(M,s) = (M',s)
or <M,S> — FAIL

where fv(M) C dom(s).

» M, M’ range over Midi-ML expressions
» s, s’ range over states
(finite functions mapping variables to values)

{X1+—> Vl,...,Xn+—> Vn}

dominic
extra

Midi-ML transitions involving references

(Ix,s) — (s(x),s) if x € dom(s)

(1V,s) — FAIL if V not a variable

(x = V/,5) = (), sl V)
(V:=V's) = FAIL if V not a variable

(ref V,s) — (x,s[x — V]) if x ¢ dom(s)
where V ranges over values:

Vi=x]|Ax(M) | ()| true | false |nil | V=V

Value-restricted typing rule for let-expressions

FI—I\/I1:7-1 r,XZVA(Tl)}—MQZTQ

N-letx = Myin M, : 7 (1) (letv)
(t) provided x ¢ dom(I') and
A— {} if My is not a value
| ftv(m) — ftv(T) if My is a value

(Recall that values are given by
Vi=x|Ax(M)] ()| true | false |nil | V 1 V.)

let r=ef Mc(x) in
%"k W= (r:=ax(ref %)) in > ‘{}‘> %
()0

A (el v
(I!Q:c)(u;— (r:=2(ef F2')) : {rl—b)\x(x)}> ¥

<N, e M0ttt Ix) > —

<O\x’ (4 \.:x'))() L 1re o (vef ‘.Jc')}> —

< b 1O {re X (ef ')} > —
FAIL

Type soundness for Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type

scheme o for which
FM:o

is provable in the value-restricted type system (axioms and rules on
Slides 7-8, 2 and 1), then evaluation of M does not fail, i.e. there
is no sequence of transitions of the form

(M, {}) —---— FAIL

for the transition system — defined in Figure 4 (of the notes)
(where { } denotes the empty state).

note: with the (letv) rule, some Mini-ML expressions that were
typeable become untypeable in Midi-ML, e.g.,

let f = (Ax(x))(Ay(y)) in(f true) :: (fnil)

(but we can often avoid this using n-expansion and /-reduction).

Next time on Types...

Polymorphic \-calculus

(polymorphic A-binding). Let's us type:
A ((f true) :: (fnil))

