
Last time on Types...

I
Principal type schemes

I
MGUs (most general unifiers)

I
Type inference algorithm (pt) [also called “Algorithm W”]

Principal type schemes for closed expressions

A closed type scheme � A (⌧) is the principal type scheme of a

closed Mini-ML expression M if

(a) ` M : � A (⌧)

(b) for any other closed type scheme � A0
(⌧ 0

),

if ` M : � A0
(⌧ 0

), then � A (⌧) � ⌧ 0

dominic
slide 25 (p. 18)

Theorem (Hindley; Damas-Milner)

Theorem

If the closed Mini-ML expression M is typeable (i.e. ` M : �
holds for some type scheme �), then there is a principal type
scheme for M.

Indeed, there is an algorithm which, given any M as input,

decides whether or not it is typeable and returns a principal

type scheme if it is.

dominic
slide 26 (p.19)

Last time on Types...

I
Principal type schemes

I
MGUs (most general unifiers)

I
Type inference algorithm (pt) [also called “Algorithm W”]

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types

�1 and �2 decides whether �1 and �2 are unifiable, i.e. whether

there exists a type-substitution S � Sub with

(a) S(�1) = S(�2).

Moreover, if they are unifiable, mgu(�1, �2) returns the most

general unifier—an S satisfying both (a) and

(b) for all S

0 � Sub, if S

0
(�1) = S

0
(�2), then S

0
= TS for some

T � Sub
(any other substitution S

0
can be factored through

S , by specialising S with T)

By convention mgu(�1, �2) = FAIL if (and only if) �1 and �2 are not

unifiable.

dominic
slide 28 (p. 20)

Last time on Types...

I
Principal type schemes

I
MGUs (most general unifiers)

I
Type inference algorithm (pt) [also called “Algorithm W”]

Some of the clauses in a definition of pt

Function abstractions: pt(� ` �x(M) : ?)

def
=

let � = fresh in
let (S , �) = pt(�, x : � ` M : ?) in (S , S(�)!�)

Function applications: pt(� ` M1 M2 : ?)

def
=

let (S1, �1) = pt(� ` M1 : ?) in
let (S2, �2) = pt(S1 � ` M2 : ?) in
let � = fresh in
let S3 = mgu(S2 �1, �2 ! �) in (S3S2S1, S3(�))

dominic
slide 32 (p.23)

A rough guide to constructing Algorithm W (pt)

pt(� ` e :?) = (S , ⌧)

I
Recursively apply on sub terms - see type rules

I
thread substitutions through

I
collect substitutions at the end

I
When types need to agree (see type rules), use mgu

I
When types are unknown, generate a fresh type variable

This time on Types...

I
Extend Mini-ML with references

I
Type soundness lost.

I
Fix type system; type soundness regained.

Formal type systems

I
Constitute the precise, mathematical characterisation of

informal type systems (such as occur in the manuals of most

typed languages.)

I
Basis for type soundness theorems: ‘any well-typed program

cannot produce run-time errors (of some specified kind)’.

I
Can decouple specification of typing aspects of a language

from algorithmic concerns: the formal type system can define

typing independently of particular implementations of

type-checking algorithms.

dominic

dominic
slide 5 (p.4)

ML types and expressions for mutable references

� ::= . . .
| unit unit type

| � ref reference type.

M ::= . . .
| () unit value

| refM reference creation

| !M dereference

| M := M assignment

Midi-ML’s extra typing rules

� ` () : unit (unit)

� ` M : �
� ` refM : � ref

(ref)

� ` M : � ref

� ` !M : �
(get)

� ` M1 : � ref � ` M2 : �
� ` M1 := M2 : unit

(set)

Example

The expression

let r = ref�x(x) in

let u = (r := �x 0
(ref !x 0

)) in

(!r)()

has type unit.

Midi-ML transition system

hM , si ! hM 0, s 0i
or hM , si ! FAIL

where fv(M) ✓ dom(s).

I
M, M 0

range over Midi-ML expressions

I
s, s 0

range over states

(finite functions mapping variables to values)

{x1 7! V1, . . . , xn 7! Vn}

dominic
extra

Midi-ML transitions involving references

h!x , si ! hs(x), si if x � dom(s)

h!V , si ! FAIL if V not a variable

hx := V

0, si ! h(), s[x 7! V

0
]i

hV := V

0, si ! FAIL if V not a variable

hrefV , si ! hx , s[x 7! V]i if x /� dom(s)

where V ranges over values:

V ::= x | �x(M) | () | true | false | nil | V :: V

Value-restricted typing rule for let-expressions

� ` M1 : �1 �, x : � A (�1) ` M2 : �2

� ` let x = M1 inM2 : �2
(†) (letv)

(†) provided x /� dom(�) and

A =

�
{ } if M1 is not a value

ftv(�1) � ftv(�) if M1 is a value

(Recall that values are given by

V ::= x | �x(M) | () | true | false | nil | V :: V .)

Type soundness for Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type

scheme � for which

` M : �

is provable in the value-restricted type system (axioms and rules on

Slides 7–8, 2 and 1), then evaluation of M does not fail, i.e. there

is no sequence of transitions of the form

hM, { }i ! · · · ! FAIL

for the transition system ! defined in Figure 4 (of the notes)

(where { } denotes the empty state).

note: with the (letv) rule, some Mini-ML expressions that were

typeable become untypeable in Midi-ML, e.g.,

let f = (�x(x))(�y(y)) in (f true) :: (f nil)

(but we can often avoid this using ⌘-expansion and �-reduction).

Next time on Types...

Polymorphic �-calculus

(polymorphic �-binding). Let’s us type:

�f ((f true) :: (f nil))

