Mini-ML - Type checking, typeability, and type inference

- Type-checking problem: given closed M, and σ, is {} ⊢ M : σ derivable in the type system?
- Typeability problem: given closed M, is there any σ for which $\{\} \vdash M : \sigma \text{ is derivable in the type system}\}$

A D M 4 目 M 4 日 M 4 1 H 4

Two examples involving self-application

$$egin{aligned} &M \stackrel{ ext{def}}{=} \mathtt{let}\,f = \lambda x_1(\lambda x_2(x_1)) \mathtt{in}\,f\,f \ &M' \stackrel{ ext{def}}{=} (\lambda f(f\,f))\,\lambda x_1(\lambda x_2(x_1)) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Are M and M' typeable in the Mini-ML type system?

Constraints generated while inferring a type for let $f = \lambda x_1(\lambda x_2(x_1))$ in f f

$$A = ftv(\tau_2) \tag{C0}$$

$$\tau_2 = \tau_3 \to \tau_4 \tag{C1}$$

$$\tau_4 = \tau_5 \to \tau_6$$

$$\forall \{ \} (\tau_3) \succ \tau_6, \text{ i.e. } \tau_3 = \tau_6 \tag{C3}$$

$$\tau_7 = \tau_8 \to \tau_1 \tag{C4}$$

$$\forall A(\tau_2) \succ \tau_7 \tag{C5} \forall A(\tau_2) \succ \tau_8 \tag{C6}$$

$$\forall A(\tau_2) \succ \tau_8$$
 (C

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(C2)

Constraint solving $T_2 \stackrel{(i)}{=} T_3 \rightarrow T_4 \stackrel{(i)}{=} T_3 \rightarrow (T_5 \rightarrow T_6) \stackrel{(i)}{=} T_6 \rightarrow (T_5 \rightarrow T_6)$ $T_6 = X_1$ } type variables $T_5 = X_2$ $A = H \vee (T_2) = \{ \mathscr{A}_1, \mathscr{A}_2 \}$ $\begin{array}{l} (\cdot \cdot z) = (\circ \cdot , \ \neg z) \\ \forall \sigma_1, \sigma_2, \sigma_1 \rightarrow (\sigma_2 \rightarrow \sigma_1) \\ \end{array} \right) \\ \end{array}$ アイ

 $T_{g} \rightarrow T_{i} = T_{j} \rightarrow (T_{io} \rightarrow T_{j})$ $T_{g} = T_{ii} \rightarrow (T_{io} \rightarrow T_{ij})$ (1)(c) $\begin{array}{c} \mathbf{s}^{\circ} \ by \end{array} \qquad \begin{array}{c} T_{\mathbf{r}} = T_{\mathbf{r}} \\ T_{\mathbf{r}} = (T_{\mathbf{r}} \rightarrow T_{\mathbf{r}}) \end{array}$ $= T_{10} \rightarrow (T_{11} \rightarrow (T_{12} \rightarrow T_{11}))$

Therefore $\{\} \vdash let f = \lambda x_1 \cdot (\lambda x_2 \cdot x_1) in ff$ $: \mathcal{T}_{10} \to (\mathcal{T}_{11} \to (\mathcal{T}_{12} \to \mathcal{T}_{11}))$ holds for any Tio, Tii, Tiz (they have no more constraints) $\frac{\partial}{\partial \sigma} \left\{ \begin{array}{l} \{ \} \vdash let f = \lambda x_{1} \cdot (\lambda x_{2} \cdot x_{1}) in ff \\ : \forall \sigma_{s}, \sigma_{4}, \sigma_{5} \cdot \sigma_{3} \rightarrow (\sigma_{4} \rightarrow (\sigma_{5} \rightarrow \sigma_{4})) \end{array} \right\}$

[p. 17]
The constraints generated from trying to type:

$$(\lambda f (f f)) (\lambda x_1 . (\lambda x_2 . x_1))$$

gives a constraint
 $(\overline{z}) = T_4 = T_6 = (\overline{z}) \xrightarrow{T_7} T_5$
 $f^{-1}(\overline{z}) \xrightarrow{T_7} T_5$

Principal type schemes for closed expressions

A closed type scheme $\forall A(\tau)$ is the principal type scheme of a closed Mini-ML expression M if

(a) $\vdash M : \forall A(\tau)$

(b) for any other closed type scheme $\forall A'(\tau')$, if $\vdash M : \forall A'(\tau')$, then $\forall A(\tau) \succ \tau'$ Theorem (Hindley; Damas-Milner)

Theorem

If the closed Mini-ML expression M is typeable (i.e. $\vdash M : \sigma$ holds for some type scheme σ), then there is a principal type scheme for M.

Indeed, there is an algorithm which, given any M as input, decides whether or not it is typeable and returns a principal type scheme if it is.

An ML expression with a principal type scheme hundreds of pages long

let pair =
$$\lambda x (\lambda y (\lambda z (z \times y)))$$
 in
let $x_1 = \lambda y (pair y y)$ in
let $x_2 = \lambda y (x_1(x_1 y))$ in
let $x_3 = \lambda y (x_2(x_2 y))$ in
let $x_4 = \lambda y (x_3(x_3 y))$ in
let $x_5 = \lambda y (x_4(x_4 y))$ in

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Taken from Mairson (1990).)

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are unifiable, i.e. whether there exists a type-substitution $S \in \text{Sub}$ with

(a)
$$S(\tau_1) = S(\tau_2)$$
.

Moreover, if they are unifiable, mgu(τ₁, τ₂) returns the most general unifier—an S satisfying both (a) and
(b) for all S' ∈ Sub, if S'(τ₁) = S'(τ₂), then S' = TS for some T ∈ Sub (any other substitution S' can be factored through S, by specialising S with T)

By convention $mgu(\tau_1, \tau_2) = FAIL$ if (and only if) τ_1 and τ_2 are not unifiable.

$$Mgu = \begin{bmatrix} I & I & I \\ I & I \\$$

Principal type schemes for open expressions

A solution for the typing problem $\Gamma \vdash M$:? is a pair (S, σ) consisting of a type substitution S and a type scheme σ satisfying

 $S \Gamma \vdash M : \sigma$

(where $S \Gamma = \{x_1 : S \sigma_1, \dots, x_n : S \sigma_n\}$, if $\Gamma = \{x_1 : \sigma_1, \dots, x_n : \sigma_n\}$).

Such a solution is principal if given any other, (S', σ') , there is some $T \in \text{Sub}$ with TS = S' and $T(\sigma) \succ \sigma'$.

[For type schemes σ and σ' , with $\sigma' = \forall A'(\tau')$ say, we define $\sigma \succ \sigma'$ to mean $A' \cap ftv(\sigma) = \{\}$ and $\sigma \succ \tau'$.]

Type inference. digorithm

 $pt(\emptyset + M:?) = T$ $p+(\Gamma+M:?)=(S,T)$ St. STHM:0 where $\sigma = \forall A. T$ A = ftv(r) - ftv(ST) $\left(S \left\{ x_{1} : \tau_{1} \dots x_{n} : \tau_{n} \right\} = \chi_{1} : S \tau_{1} \dots \chi_{n} : S \tau_{n} \right)$

Example typing problem: $x : \forall \alpha (\beta \rightarrow (\gamma \rightarrow \alpha)) \vdash x \text{ true } ?$ Has solutions

$$S_{1} = \{ \beta \mapsto bool \}, \sigma_{1} = \forall \alpha (\gamma \rightarrow \alpha) \in BOTH \\ \begin{array}{c} \text{PRINCIPAL} \\ \text{Summons} \\ S_{2} = \{ \beta \mapsto bool, \gamma \mapsto \alpha \}, \sigma_{2} = \forall \alpha' (\alpha \rightarrow \alpha') \in Sound \\ \end{array}$$

$$S_{3} = \{ \beta \mapsto bool, \gamma \mapsto \alpha \rangle, \sigma_{3} = \forall \alpha' (\alpha \rightarrow (\alpha' \rightarrow \alpha')) \\ S_{4} = \{ \beta \mapsto bool, \gamma \mapsto bool \}, \sigma_{4} = \forall \{ \} (bool \rightarrow bool) \\ \end{array}$$

Properties of the Mini-ML typing relation

• If $\Gamma \vdash M : \sigma$, then for any type substitution $S \in \text{Sub}$ $S\Gamma \vdash M : S\sigma$

• If $\Gamma \vdash M : \sigma$ and $\sigma \succ \sigma'$, then $\Gamma \vdash M : \sigma'$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Specification for the principal typing algorithm, pt

pt operates on typing problems $\Gamma \vdash M$: ? (consisting of a typing environment Γ and a Mini-ML expression M).

It returns either a pair (S, τ) consisting of a type substitution $S \in \text{Sub}$ and a Mini-ML type τ , or the exception *FAIL*.

If Γ ⊢ M : ? has a solution (cf. Slide 2), then pt(Γ ⊢ M : ?) returns (S, τ) for some S and τ; moreover, setting A = (ftv(τ) - ftv(S Γ)), then (S, ∀A(τ)) is a principal solution for the problem Γ ⊢ M : ?.

▶ If $\Gamma \vdash M$: ? has no solution, then $pt(\Gamma \vdash M$: ?) returns *FAIL*.

Some of the clauses in a definition of *pt*

Function abstractions: $pt(\Gamma \vdash \lambda x(M) : ?) \stackrel{\text{def}}{=}$ let α = fresh in let $(S, \tau) = pt(\Gamma, x : \alpha \vdash M : ?)$ in $(S, S(\alpha) \rightarrow \tau)$

Function applications:
$$pt(\Gamma \vdash M_1 M_2 : ?) \stackrel{\text{def}}{=}$$

let $(S_1, \tau_1) = pt(\Gamma \vdash M_1 : ?)$ in
let $(S_2, \tau_2) = pt(S_1 \Gamma \vdash M_2 : ?)$ in
let α = fresh in
let $S_3 = mgu(S_2 \tau_1, \tau_2 \rightarrow \alpha)$ in $(S_3 S_2 S_1, S_3(\alpha))$

Question

 $pt(\{\}, \lambda y.(\lambda x.x+0)y) = ?$ where forall type variables of $p \in ((x:q, \Gamma), x+0)$ $=([\propto \mapsto M], M)$

 $pt(\emptyset \vdash \lambda y \cdot ((\lambda x \cdot x + 0)y)) = ? | x + 2 | nt - 2 | n$ abs or = fresh $(s,T) = pt (y: \alpha + (\lambda x, x+o)y)$ ap $(S_1,T_1) = pt(y: q + \lambda x. x+o)$ not defined in the notes abs D = fresh assume this maps B to Int $(S,\tau) = p(x;\beta,y;\alpha + x+\alpha)$ = ([B++1+], 1+) $in \left(S, S(B) \rightarrow | nt\right)$ = (S, 1+ -> lat) $(S_{2},T_{2}) = pf(S_{1}(y;x) + y)$ VON let HØT = ~ in $(1d, \alpha)$ 5 12 8 = fresh $S_2 = mgv(S_2T_1, T_2 \rightarrow X)$ man (Int > Int, x > X) = [a Hold & Hold] in ([atthe, 8 Hold, & Hold, 538) = Int

·S= [~, 8, B Holat, Int] in $(S, S(a) \rightarrow lnt)$ (S, Int -> lat)