
Mini-ML - Type checking, typeability, and type inference

� Type-checking problem: given closed M, and �, is {} � M : �
derivable in the type system?

� Typeability problem: given closed M, is there any � for which
{} � M : � is derivable in the type system?



Two examples involving self-application

M

def

= let f = �x1(�x2(x1)) in f f

M

0 def= (�f (f f ))�x1(�x2(x1))

Are M and M

0 typeable in the Mini-ML type
system?





Constraints generated while inferring a type for
let f = �x1(�x2(x1)) in f f

A = ftv(⌧2) (C0)

⌧2 = ⌧3 ! ⌧4 (C1)

⌧4 = ⌧5 ! ⌧6 (C2)

8 { } (⌧3) � ⌧6, i.e. ⌧3 = ⌧6 (C3)

⌧7 = ⌧8 ! ⌧1 (C4)

8A (⌧2) � ⌧7 (C5)

8A (⌧2) � ⌧8 (C6)











Principal type schemes for closed expressions

A closed type scheme 8A (⌧) is the principal type scheme of a
closed Mini-ML expression M if

(a) ` M : 8A (⌧)

(b) for any other closed type scheme 8A0 (⌧ 0),
if ` M : 8A0 (⌧ 0), then 8A (⌧) � ⌧ 0



Theorem (Hindley; Damas-Milner)

Theorem
If the closed Mini-ML expression M is typeable (i.e. ` M : �
holds for some type scheme �), then there is a principal type

scheme for M.

Indeed, there is an algorithm which, given any M as input,
decides whether or not it is typeable and returns a principal
type scheme if it is.



An ML expression with a principal type scheme
hundreds of pages long

let pair = �x(�y(�z(z x y))) in
let x1 = �y(pair y y) in
let x2 = �y(x1(x1 y)) in
let x3 = �y(x2(x2 y)) in
let x4 = �y(x3(x3 y)) in
let x5 = �y(x4(x4 y)) in
x5(�y(y))

(Taken from Mairson (1990).)



Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
⌧1 and ⌧2 decides whether ⌧1 and ⌧2 are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with

(a) S(⌧1) = S(⌧2).

Moreover, if they are unifiable, mgu(⌧1, ⌧2) returns the most
general unifier—an S satisfying both (a) and

(b) for all S 0 2 Sub, if S 0(⌧1) = S 0(⌧2), then S 0 = TS for some
T 2 Sub

(any other substitution S 0 can be factored through
S , by specialising S with T )

By convention mgu(⌧1, ⌧2) = FAIL if (and only if) ⌧1 and ⌧2 are not

unifiable.
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Principal type schemes for open expressions

A solution for the typing problem � ` M : ? is a pair (S ,�)

consisting of a type substitution S and a type scheme � satisfying

S � ` M : �

(where S � = {x1 : S �1, . . . , xn : S �n}, if � = {x1 : �1, . . . , xn : �n}).

Such a solution is principal if given any other, (S 0,�0), there is
some T 2 Sub with TS = S 0 and T (�) � �0.

[For type schemes � and �0, with �0 = 8A0 (⌧ 0) say, we define

� � �0 to mean A0 \ ftv(�) = {} and � � ⌧ 0.]







Properties of the Mini-ML typing relation

I If � ` M : �, then for any type substitution
S 2 Sub

S� ` M : S�

I If � ` M : � and � � �0, then � ` M : �0.



Specification for the principal typing algorithm, pt

pt operates on typing problems � ` M : ? (consisting of a typing
environment � and a Mini-ML expression M).

It returns either a pair (S , ⌧) consisting of a type substitution
S 2 Sub and a Mini-ML type ⌧ , or the exception FAIL.

I If � ` M : ? has a solution (cf. Slide 2), then pt(� ` M : ?)
returns (S , ⌧) for some S and ⌧ ;
moreover, setting A = (ftv(⌧)� ftv(S �)), then (S , 8A (⌧)) is
a principal solution for the problem � ` M : ?.

I If � ` M : ? has no solution, then pt(� ` M : ?) returns FAIL.



Some of the clauses in a definition of pt

Function abstractions: pt(� ` �x(M) : ?)
def
=

let ↵ = fresh in

let (S , ⌧) = pt(�, x : ↵ ` M : ?) in (S , S(↵)!⌧)

Function applications: pt(� ` M1M2 : ?)
def
=

let (S1, ⌧1) = pt(� ` M1 : ?) in
let (S2, ⌧2) = pt(S1 � ` M2 : ?) in
let ↵ = fresh in

let S3 = mgu(S2 ⌧1, ⌧2 ! ↵) in (S3S2S1, S3(↵))
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