
Mini-ML - Type checking, typeability, and type inference

� Type-checking problem: given closed M, and �, is {} � M : �
derivable in the type system?

� Typeability problem: given closed M, is there any � for which
{} � M : � is derivable in the type system?

Two examples involving self-application

M

def

= let f = �x1(�x2(x1)) in f f

M

0 def= (�f (f f))�x1(�x2(x1))

Are M and M

0 typeable in the Mini-ML type
system?

Constraints generated while inferring a type for
let f = �x1(�x2(x1)) in f f

A = ftv(⌧2) (C0)

⌧2 = ⌧3 ! ⌧4 (C1)

⌧4 = ⌧5 ! ⌧6 (C2)

8 { } (⌧3) � ⌧6, i.e. ⌧3 = ⌧6 (C3)

⌧7 = ⌧8 ! ⌧1 (C4)

8A (⌧2) � ⌧7 (C5)

8A (⌧2) � ⌧8 (C6)

Principal type schemes for closed expressions

A closed type scheme 8A (⌧) is the principal type scheme of a
closed Mini-ML expression M if

(a) ` M : 8A (⌧)

(b) for any other closed type scheme 8A0 (⌧ 0),
if ` M : 8A0 (⌧ 0), then 8A (⌧) � ⌧ 0

Theorem (Hindley; Damas-Milner)

Theorem
If the closed Mini-ML expression M is typeable (i.e. ` M : �
holds for some type scheme �), then there is a principal type

scheme for M.

Indeed, there is an algorithm which, given any M as input,
decides whether or not it is typeable and returns a principal
type scheme if it is.

An ML expression with a principal type scheme
hundreds of pages long

let pair = �x(�y(�z(z x y))) in
let x1 = �y(pair y y) in
let x2 = �y(x1(x1 y)) in
let x3 = �y(x2(x2 y)) in
let x4 = �y(x3(x3 y)) in
let x5 = �y(x4(x4 y)) in
x5(�y(y))

(Taken from Mairson (1990).)

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
⌧1 and ⌧2 decides whether ⌧1 and ⌧2 are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with

(a) S(⌧1) = S(⌧2).

Moreover, if they are unifiable, mgu(⌧1, ⌧2) returns the most
general unifier—an S satisfying both (a) and

(b) for all S 0 2 Sub, if S 0(⌧1) = S 0(⌧2), then S 0 = TS for some
T 2 Sub

(any other substitution S 0 can be factored through
S , by specialising S with T)

By convention mgu(⌧1, ⌧2) = FAIL if (and only if) ⌧1 and ⌧2 are not

unifiable.

dominic
Logic & Proof - Sections 7.4-7.6

Principal type schemes for open expressions

A solution for the typing problem � ` M : ? is a pair (S ,�)

consisting of a type substitution S and a type scheme � satisfying

S � ` M : �

(where S � = {x1 : S �1, . . . , xn : S �n}, if � = {x1 : �1, . . . , xn : �n}).

Such a solution is principal if given any other, (S 0,�0), there is
some T 2 Sub with TS = S 0 and T (�) � �0.

[For type schemes � and �0, with �0 = 8A0 (⌧ 0) say, we define

� � �0 to mean A0 \ ftv(�) = {} and � � ⌧ 0.]

Properties of the Mini-ML typing relation

I If � ` M : �, then for any type substitution
S 2 Sub

S� ` M : S�

I If � ` M : � and � � �0, then � ` M : �0.

Specification for the principal typing algorithm, pt

pt operates on typing problems � ` M : ? (consisting of a typing
environment � and a Mini-ML expression M).

It returns either a pair (S , ⌧) consisting of a type substitution
S 2 Sub and a Mini-ML type ⌧ , or the exception FAIL.

I If � ` M : ? has a solution (cf. Slide 2), then pt(� ` M : ?)
returns (S , ⌧) for some S and ⌧ ;
moreover, setting A = (ftv(⌧)� ftv(S �)), then (S , 8A (⌧)) is
a principal solution for the problem � ` M : ?.

I If � ` M : ? has no solution, then pt(� ` M : ?) returns FAIL.

Some of the clauses in a definition of pt

Function abstractions: pt(� ` �x(M) : ?)
def
=

let ↵ = fresh in

let (S , ⌧) = pt(�, x : ↵ ` M : ?) in (S , S(↵)!⌧)

Function applications: pt(� ` M1M2 : ?)
def
=

let (S1, ⌧1) = pt(� ` M1 : ?) in
let (S2, ⌧2) = pt(S1 � ` M2 : ?) in
let ↵ = fresh in

let S3 = mgu(S2 ⌧1, ⌧2 ! ↵) in (S3S2S1, S3(↵))

dominic
not defined in the notes
assume this maps B to Int

	Introduction
	ML Polymorphism
	An ML type system
	Examples of type inference, by hand
	Principal type schemes
	A type inference algorithm

	Polymorphic Reference Types
	The problem
	Restoring type soundness

	Polymorphic Lambda Calculus
	From type schemes to polymorphic types
	The PLC type system
	PLC type inference
	Datatypes in PLC

	Further Topics
	Dependent types
	Curry-Howard correspondence

