
Last time on Types...

dominic
picture from http://learnyouahaskell.com

Last time on Types...

� Simply-typed �-calculus (recap)

� � e : �

� Parametric polymorphism

let f = �x(x) in (f true) :: (f nil)

� The beginnings of the Mini-ML type system...

let-polymorphism

Mini-ML types and type schemes

Types � ::= � type variable
| bool type of booleans
| � � � function type
| � list list type

where � ranges over a fixed, countably infinite set TyVar.

Type Schemes � ::= � A (�)

where A ranges over finite subsets of the set TyVar.

When A = {�1, . . . , �n}, we write � A (�) as

� �1, . . . , �n (�).

The ‘generalises’ relation between type schemes and types

We say a type scheme � = � �1, . . . , �n (� �) generalises a type � ,
and write � � � if � can be obtained from the type � � by
simultaneously substituting some types �i for the type variables �i

(i = 1, . . . , n):
� = � �[�1/�1, . . . , �n/�n].

(N.B. The relation is una�ected by the particular choice of names of

bound type variables in �.)

The converse relation is called specialisation: a type � is a
specialisation of a type scheme � if � � � .

Generalisations: some examples and non-examples

� ��.(� � �) � bool � bool with [bool/�]

� ��.(� � �) � � (int � bool)

� ��.(� � �) � [�] � [�] with [[�]/�]

� ��, �.(� � �) � (int � bool) with [int/�, bool/�]

� ��.(� � �) � � (int � bool)

� ��.(� � �) � (int � �) with [int/�]

Mini-ML typing judgement

takes the form � � M : � where

� the typing environment � is a finite function from variables to
type schemes.
(We write � = {x1 : �1, . . . , xn : �n} to indicate that � has
domain of definition dom(�) = {x1, . . . , xn} and maps each xi

to the type scheme �i for i = 1..n.)

� M is a Mini-ML expression

� � is a Mini-ML type.

Mini-ML expressions, M

::= x variable
| true boolean values
| false

| if M then M else M conditional
| �x(M) function abstraction
| M M function application
| let x = M inM local declaration
| nil nil list
| M :: M list cons
| caseM of nil=> M | x :: x => M case expression

Mini-ML type system, I

� � x : � if (x : �) � � and � � � (var �)

� � B : bool if B � {true, false} (bool)

� � M1 : bool � � M2 : � � � M3 : �
� � if M1 then M2 else M3 : �

(if)

Mini-ML type system, II

� � nil : � list (nil)

� � M1 : � � � M2 : � list
� � M1 :: M2 : � list

(cons)

� � M1 : �1 list
� � M2 : �2 �, x1 : �1, x2 : �1 list � M3 : �2

� � caseM1 of nil=> M2 | x1 :: x2 => M3 : �2

if x1, x2 /� dom(�)
� x1 �= x2

(case)

Mini-ML type system, III

�, x : �1 � M : �2

� � �x(M) : �1 � �2
if x /� dom(�) (fn)

� � M1 : �1 � �2 � � M2 : �1

� � M1 M2 : �2
(app)

� � M1 : � �, x : � A (�) � M2 : � �

� � let x = M1 inM2 : � �
if x /� dom(�)
� A = ftv(�) � ftv(�)

(let)

Assigning type schemes to Mini-ML expressions

Given a type scheme � = � A (�), write

� � M : �

if A = ftv(�) � ftv(�) and � � M : � is derivable from the axiom
and rules on Slides 65–67.

When � = { } we just write � M : � for { } � M : � and say that
the (necessarily closed—see Exercise 2) expression M is typeable in
Mini-ML with type scheme �.

Mini-ML - Type checking, typeability, and type inference

� Type-checking problem: given closed M, and �, is {} � M : �
derivable in the type system?

� Typeability problem: given closed M, is there any � for which
{} � M : � is derivable in the type system?

Two examples involving self-application

M
def
= let f = �x1(�x2(x1)) in f f

M � def
= (�f (f f)) �x1(�x2(x1))

Are M and M � typeable in the Mini-ML type
system?

dominic
Example using let polymorphism

(z is used polymorphically)

