CST Part II Types: Exercise Sheet

ML Polymorphism

Exercise 1. Here are some type checking problems, in the sense of Slide 8. Prove the following typings
hold for the Mini-ML type system:

FAz(x:nil) : Va (o — alist)

F Az(casex of nil=>true | 21 :: z3 => false) : Va («alist — bool)

F Az (Aza(z1)) : Vag, as (a1 = (a2 = aq))

Flet f=Axi(Aze(xy))inf f : Vag,as, as (a1 — (a2 = (ag — ag))).

Exercise 2. Show that if {} - M : o is provable, then M must be closed, i.e. have no free variables.
[Hint: use rule induction for the rules on Slides 19-21 to show that the provable typing judgements,
' M : 7, all have the property that fu(M) C dom(T).]

Exercise 3. Let o and ¢’ be Mini-ML type schemes. Show that the relation o > ¢’ defined on Slide 29
holds if and only if
Vr(o' =7 = o>1).

mt: use the following property of simultaneous substitution:
Hi he followi f simul bstituti
(tlm1 /01y, fan )T /&) = 7[m[7 )& ar, . .., Tl T /] tn]

which holds provided the type variables & do not occur in 7.

Exercise 4. Try to augment the definition of pt on Slide 32 and in Figure 3 with clauses for nil, cons,
and case-expressions.

Exercise 5. Suppose M is a closed expression and that (S,0) is a principal solution for the typing
problem { } - M : 7 in the sense of Slide 29. Show that o must be a principal type scheme for M in the
sense of Slide 25.

Exercise 6. Show that if ' = M : ¢ is provable and S € Sub is a type substitution, then ST - M : So
is also provable.
Polymorphic Reference Types

Exercise 7. Letting M denote the expression on Slide 35 and { } the empty state, show that (M, { }) —*
FAIL is provable in the transition system defined in Figure 4.

Exercise 8. Give an example of a Mini-ML let-expression which is typeable in the type system of
Section 2.1, but not in the type system of Section 3.2 for Midi-ML with the value-restricted rule (letv).
Polymorphic Lambda Calculus
Exercise 9. Give a proof inference tree for (8) in Example 7. Show that

Vay (g = Vag (az)) — bool list

is another possible polymorphic type for A\f((f true):: (fnil)).

Exercise 10. Show that if 'F M : 7 and I' = M : 7’ are both provable in the PLC type system, then
7 = 7' (equality up to a-conversion). [Hint: show that H et {O,M,7) | TFM:7 & V7'(TF M :
7' = 7 =17")} is closed under the axioms and rules on Slide 47.]

Exercise 11. In PLC, defining the expression letx = M; : 7in Ms to be an abbreviation for (Az :
7 (Ms)) My, show that the typing rule

PEMy:mm Too:mbMy:m
F"(letLL':MllTlinMg)ZTg

if © ¢ dom(I")

is admissible—in the sense that the conclusion is provable if the hypotheses are.



Exercise 12. The erasure, erase(M), of a PLC expression M is the expression of the untyped lambda
calculus obtained by deleting all type information from M:

Q.
e}
—

erase(x)

erase(Ax : 7 (M)) = Az (erase(M))
erase(My Ma)

erase(Aa (M)) = erase(M)

) %0 erase(M).

[N
N

o
n

e

= erase(M,) erase(Ma)

Q.
-

[N
n

erase(M T

(i) Find PLC expressions M; and M satisfying erase(M;) = Az (z) = erase(Ms) such that = M :
Va(a— o) and - My : Vag (ap = Vag (aq)) are provable PLC typings.

(ii) We saw in Example 13 that there is a closed PLC expression M of type Vo (o) =V a («) satisfying
erase(M) = X f (f f). Find some other closed, typeable PLC expressions with this property.

(iii) [For this part you will need to recall, from the CST Part IB Foundations of Functional Programming
course, some properties of beta reduction of expressions in the untyped lambda calculus.] A theorem
of Girard says that if = M : 7 is provable in the PLC type system, then erase(M) is strongly
normalisable in the untyped lambda calculus, i.e. there are no infinite chains of beta-reductions
starting fFom erase(M). Assuming this result, exhibit an expression of the untyped lambda calculus
which is not equal to erase(M) for any closed, typeable PLC expression M.

Exercise 13. Prove the various typings and beta-reductions asserted in Example 18.
Exercise 14. Prove the various typings asserted in Example 19 and the beta-conversions on Slide 58.

Exercise 15. For the polymorphic product type o * as defined in the right-hand column of Figure 5,
show that there are PLC expressions Pair, fst, and snd satisfying:

{}F Pair :Vai,as (e = as — (a1 * a2))
{}F fst:Vaq,as ((a1 *xaz) = aq)
{}Fsnd:Vaq,as ((a1 *xaz) = az)

fst ag aa(Pair ay o 1 T2) =g 21

snd ay ag(Pair aq o 1 T2) =g T2

Exercise 16. [hard] Suppose that 7 is a PLC type with a single free type variable, a. Suppose also
that T is a closed PLC expression satisfying

{}FT :Vaj,as ((ag = az) = (t[ar /o] = Tasg/a])).
Define ¢ to be the closed PLC type
def
t=Va((t—a) = a).
Show how to define PLC expressions R and I satisfying

{}FR:Va((t—=a)—=1—a)
{}FIT:7[t/a] =
(Raf)(Ix) =" f(Tia(Raf)x).



	8DEEA69D-BC62-40C1-BB69-18394D23FF2B: On


