
CST Part II Types: Exercise Sheet

ML Polymorphism

Exercise 1. Here are some type checking problems, in the sense of Slide 8. Prove the following typings
hold for the Mini-ML type system:

` �x(x :: nil) : 8↵ (↵! ↵ list)

` �x(casex of nil=> true |x1 :: x2 => false) : 8↵ (↵ list ! bool)

` �x1(�x2(x1)) : 8↵1,↵2 (↵1 ! (↵2 ! ↵1))

` let f = �x1(�x2(x1)) in f f : 8↵1,↵2,↵3 (↵1 ! (↵2 ! (↵3 ! ↵2))).

Exercise 2. Show that if { } ` M : � is provable, then M must be closed, i.e. have no free variables.
[Hint: use rule induction for the rules on Slides 19–21 to show that the provable typing judgements,
� ` M : ⌧ , all have the property that fv(M) ✓ dom(�).]

Exercise 3. Let � and �0 be Mini-ML type schemes. Show that the relation � � �0 defined on Slide 29
holds if and only if

8 ⌧ (�0 � ⌧ ) � � ⌧).

[Hint: use the following property of simultaneous substitution:

(⌧ [⌧1/↵1, . . . , ⌧n/↵n])[~⌧
0/~↵0] = ⌧ [⌧1[~⌧

0/~↵0]/↵1, . . . , ⌧n[~⌧
0/~↵0]/↵n]

which holds provided the type variables ~↵0 do not occur in ⌧ .]

Exercise 4. Try to augment the definition of pt on Slide 32 and in Figure 3 with clauses for nil, cons,
and case-expressions.

Exercise 5. Suppose M is a closed expression and that (S,�) is a principal solution for the typing
problem { } ` M : ? in the sense of Slide 29. Show that � must be a principal type scheme for M in the
sense of Slide 25.

Exercise 6. Show that if � ` M : � is provable and S 2 Sub is a type substitution, then S � ` M : S �
is also provable.

Polymorphic Reference Types

Exercise 7. Letting M denote the expression on Slide 35 and { } the empty state, show that hM, { }i !⇤

FAIL is provable in the transition system defined in Figure 4.

Exercise 8. Give an example of a Mini-ML let-expression which is typeable in the type system of
Section 2.1, but not in the type system of Section 3.2 for Midi-ML with the value-restricted rule (letv).

Polymorphic Lambda Calculus

Exercise 9. Give a proof inference tree for (8) in Example 7. Show that

8↵1 (↵1 !8↵2 (↵2))! bool list

is another possible polymorphic type for �f((f true) :: (f nil)).

Exercise 10. Show that if � ` M : ⌧ and � ` M : ⌧ 0 are both provable in the PLC type system, then

⌧ = ⌧ 0 (equality up to ↵-conversion). [Hint: show that H
def
= {(�,M, ⌧) | � ` M : ⌧ & 8 ⌧ 0 (� ` M :

⌧ 0 ) ⌧ = ⌧ 0)} is closed under the axioms and rules on Slide 47.]

Exercise 11. In PLC, defining the expression letx = M1 : ⌧ inM2 to be an abbreviation for (�x :
⌧ (M2))M1, show that the typing rule

� ` M1 : ⌧1 �, x : ⌧1 ` M2 : ⌧2
� ` (letx = M1 : ⌧1 inM2) : ⌧2

if x /2 dom(�)

is admissible—in the sense that the conclusion is provable if the hypotheses are.



Exercise 12. The erasure, erase(M), of a PLC expression M is the expression of the untyped lambda
calculus obtained by deleting all type information from M :

erase(x)
def
= x

erase(�x : ⌧ (M))
def
= �x (erase(M))

erase(M1 M2)
def
= erase(M1) erase(M2)

erase(⇤↵ (M))
def
= erase(M)

erase(M ⌧)
def
= erase(M).

(i) Find PLC expressions M1 and M2 satisfying erase(M1) = �x (x) = erase(M2) such that ` M1 :
8↵ (↵! ↵) and ` M2 : 8↵1 (↵1 !8↵2 (↵1)) are provable PLC typings.

(ii) We saw in Example 13 that there is a closed PLC expression M of type 8↵ (↵)!8↵ (↵) satisfying
erase(M) = � f (f f). Find some other closed, typeable PLC expressions with this property.

(iii) [For this part you will need to recall, from the CST Part IB Foundations of Functional Programming
course, some properties of beta reduction of expressions in the untyped lambda calculus.] A theorem
of Girard says that if ` M : ⌧ is provable in the PLC type system, then erase(M) is strongly
normalisable in the untyped lambda calculus, i.e. there are no infinite chains of beta-reductions
starting from erase(M). Assuming this result, exhibit an expression of the untyped lambda calculus
which is not equal to erase(M) for any closed, typeable PLC expression M .

Exercise 13. Prove the various typings and beta-reductions asserted in Example 18.

Exercise 14. Prove the various typings asserted in Example 19 and the beta-conversions on Slide 58.

Exercise 15. For the polymorphic product type ↵1 ⇤ ↵2 defined in the right-hand column of Figure 5,
show that there are PLC expressions Pair , fst , and snd satisfying:

{ } ` Pair : 8↵1,↵2 (↵1 ! ↵2 ! (↵1 ⇤ ↵2))

{ } ` fst : 8↵1,↵2 ((↵1 ⇤ ↵2)! ↵1)

{ } ` snd : 8↵1,↵2 ((↵1 ⇤ ↵2)! ↵2)

fst ↵1 ↵2(Pair ↵1 ↵2 x1 x2) =� x1

snd ↵1 ↵2(Pair ↵1 ↵2 x1 x2) =� x2.

Exercise 16. [hard] Suppose that ⌧ is a PLC type with a single free type variable, ↵. Suppose also
that T is a closed PLC expression satisfying

{ } ` T : 8↵1,↵2 ((↵1 ! ↵2)! (⌧ [↵1/↵]! ⌧ [↵2/↵])).

Define ◆ to be the closed PLC type

◆
def
= 8↵ ((⌧ ! ↵)! ↵).

Show how to define PLC expressions R and I satisfying

{ } ` R : 8↵ ((⌧ ! ↵)! ◆! ↵)

{ } ` I : ⌧ [◆/↵]! ◆

(R↵ f)(I x) !⇤ f (T ◆ ↵ (R↵ f)x).


	8DEEA69D-BC62-40C1-BB69-18394D23FF2B: On


