
Topics in Concurrency

Lecture Notes

Glynn Winskel

c©2013–2015 Glynn Winskel

January 19, 2015

1

Syllabus for Topics in Concurrency

Lecturer: Dr J. Hayman
No. of lectures: 12
Prerequisite courses: Semantics of Programming Languages

Aims

The aim of this course is to introduce fundamental concepts and techniques
in the theory of concurrent processes. It will provide languages, models, logics
and methods to formalise and reason about concurrent systems.

Lecture plan

• Simple parallelism and nondeterminism. Dijkstra’s guarded com-
mands. Communication by shared variables: A language of parallel com-
mands. [1 lecture]

• Communicating processes. Milner’s Calculus of Communicating Pro-
cesses (CCS). Pure CCS. Labelled-transition-system semantics. Bisimu-
lation and weak bisimulation equivalence. Equational consequences and
examples. [3 lectures]

• Specification and model-checking. The modal µ-calculus. Its math-
ematical foundations in Tarski’s fixed point theorem. Its relation with
Temporal Logic. Introduction to model checking. Bisimulation checking.
Examples. [3 lectures]

• Introduction to Petri nets. Petri nets, basic definitions and concepts.
Petri-net semantics of CCS. [1 lecture]

• Cryptographic protocols. Security protocols informally. SPL, a lan-
guage for security protocols. Its transition-system semantics. Its Petri-net
semantics. Properties of security protocols: secrecy, authentication. Ex-
amples with proofs of correctness. [2 lectures]

• Mobile computation. An introduction to process languages with pro-
cess passing and name generation.

I will detail the examinable topics at the end of the course.

Objectives

At the end of the course students should

• know the basic theory of concurrent processes: nondeterministic and paral-
lel commands, the process language CCS, its transition-system semantics,
bisimulation, the modal µ-calculus, the temporal logic CTL, Petri nets,
basic model checking, a process language for security protocols and its
semantics, process languages for mobile computation.

2

• be able to formalise and to some extent analyse concurrent processes:
establish bisimulation or its absence in simple cases, express and establish
simple properties of transition systems in the modal µ-calculus, argue
with respect to a process language semantics for secrecy or authentication
properties of a small security protocol, formalise mobile computation.

Reading guide

It’s recommended that you skip Chapter 1, apart from the sections on well-
founded induction and Tarski’s fixed-point theorem. (You may find the rest of
Chapter 1 useful for occasional reference for notation, or perhaps as a revision
of the relevant parts from “Discrete Mathematics.”)

Chapter 2 is important historically, though largely motivational. (This is
not to exclude absolutely the possibility of Tripos questions on closely related
topics.)

The bulk of the material is from chapter 3 on.
The notes contain many proofs, and you’re not expected to memorise these.

However the exam questions will assume familiarity with the various techniques
outlined in “Objectives” above and these may well require mathematical princi-
ples and results like well-founded induction, and its instantiations like structural
induction etc., and Tarski’s fixed-point theorem as background.

You are encouraged to do the exercises. Hard, or more peripheral exercises,
are marked with a “∗,” and can be ignored.

Relevant past Tripos questions:

Those available from the Computer Laboratory’s webpages under Topics in Con-
currency, from 2001 on, together with

Communicating Automata and Pi Calculus:
1996 Paper 7 Question 12 (amended version)
1997 Paper 7 Question 12
1998 Paper 8 Question 15
1999 Paper 7 Question 13

Concurrency:
1993 Paper 9 Question 12
1994 Paper 7 Question 14
1994 Paper 8 Question 14

3

Additional reading:

Clarke, E., Grumberg, O., and Peled, D., (1999) Model checking. MITPress.

Milner, R., (1989). Communication and Concurrency. Prentice Hall.

Milner, R., (1999). Communicating and mobile systems: the Pi-Calculus. CUP.

Reisig, W., (1985) Petri nets: an introduction. EATCS Monographs on Theo-
retical Computer Science, Springer-Verlag.

Contents

1 Mathematical Foundations 7
1.1 Logical notation . 7
1.2 Sets . 8

1.2.1 Sets and properties . 9
1.2.2 Some important sets . 9
1.2.3 Constructions on sets . 10
1.2.4 The axiom of foundation 12

1.3 Relations and functions . 12
1.3.1 Composing relations and functions 13
1.3.2 Direct and inverse image of a relation 15
1.3.3 Equivalence relations . 15
1.3.4 Relations as structure—partial orders 16

1.4 Well-founded induction . 16
1.5 Fixed points . 18

1.5.1 Tarski’s fixed point theorem 19
1.5.2 Continuous functions . 20
1.5.3 Fixed points in finite powersets 22

2 Nondeterministic and parallel commands 24
2.1 Introduction . 24
2.2 Guarded commands . 25

3 Communicating processes 30
3.1 Synchronous communication . 30
3.2 Milner’s CCS . 35
3.3 Pure CCS . 38

4 Logics for processes 44
4.1 A specification language . 44
4.2 The modal µ–calculus . 48
4.3 CTL and other logics . 52
4.4 Local model checking . 58

4

CONTENTS 5

5 Process equivalence 66
5.1 Strong bisimulation . 66
5.2 Strong bisimilarity as a maximum fixed point 68
5.3 Strong bisimilarity and logic . 68
5.4 Equational properties of bisimulation 70

5.4.1 Expansion theorems . 71
5.5 Weak bisimulation and observation congruence 73
5.6 On interleaving models . 74

6 Petri nets 75
6.1 Preliminaries on multisets . 75
6.2 General Petri nets . 76

6.2.1 The token game for general nets 77
6.3 Basic nets . 79

6.3.1 The token game for basic nets 80
6.4 Nets with persistent conditions 83

6.4.1 Token game for nets with persistent conditions 84
6.5 Other independence models . 84

7 Security protocols 85
7.1 Introduction . 85

7.1.1 Security properties . 87
7.2 SPL—a language for security protocols 87

7.2.1 The syntax of SPL . 87
7.2.2 NSL as a process . 90
7.2.3 A transition semantics . 92

7.3 A net from SPL . 93
7.4 Relating the net and transition semantics 95
7.5 The net of a process . 98
7.6 The events of NSL . 100
7.7 Security properties for NSL . 102

7.7.1 Principles . 102
7.7.2 Secrecy . 103
7.7.3 Authentication . 108

8 Mobile processes 112
8.1 Introduction . 112
8.2 A Higher-Order Process Language 113
8.3 Transition Semantics . 115

8.3.1 Abbreviations . 116
8.4 Bisimulation . 117
8.5 Linearity . 120
8.6 Examples . 122

8.6.1 CCS . 122
8.6.2 CCS with value passing 123
8.6.3 Higher-Order CCS . 123

CONTENTS 6

8.6.4 Mobile Ambients with Public Names 124
8.6.5 Message Passing . 126

8.7 Name generation . 127

Chapter 1

Mathematical Foundations

This chapter is meant largely as a review and for future reference. We will
however be making heavy use of well-founded induction and the fixed point
theorems for monotonic and continuous functions on powersets will be important
for model checking.

1.1 Logical notation

We shall use some informal logical notation in order to stop our mathematical
statements getting out of hand. For statements (or assertions) A and B, we
shall commonly use abbreviations like:

• A & B for (A and B), the conjunction of A and B,

• A⇒ B for (A implies B), which means (if A then B),

• A ⇐⇒ B to mean (A iff B), which abbreviates (A if and only if B), and
expresses the logical equivalence of A and B.

We shall also make statements by forming disjunctions (A or B), with the self-
evident meaning, and negations (not A), sometimes written ¬A, which is true
iff A is false. There is a tradition to write for instance 7 6< 5 instead of ¬(7 < 5),
which reflects what we generally say: “7 is not less than 5” rather than “not 7
is less than 5.”

The statements may contain variables (or unknowns, or place-holders), as in

(x ≤ 3) & (y ≤ 7)

which is true when the variables x and y over integers stand for integers less than
or equal to 3 and 7 respectively, and false otherwise. A statement like P (x, y),
which involves variables x, y, is called a predicate (or property, or relation,
or condition) and it only becomes true or false when the pair x, y stand for
particular things.

7

CHAPTER 1. MATHEMATICAL FOUNDATIONS 8

We use logical quantifiers ∃, read “there exists”, and ∀, read “ for all”. Then
you can read assertions like

∃x. P (x)

as abbreviating “for some x, P (x)” or “there exists x such that P (x)”, and

∀x. P (x)

as abbreviating “ for all x, P (x)” or “for any x, P (x)”. The statement

∃x, y, · · · , z. P (x, y, · · · , z)

abbreviates
∃x∃y · · · ∃z. P (x, y, · · · , z),

and
∀x, y, · · · , z. P (x, y, · · · , z)

abbreviates
∀x∀y · · · ∀z. P (x, y, · · · , z).

Later, we often wish to specify a set X over which a quantifier ranges. Then
one writes ∀x ∈ X. P (x) instead of ∀x. x ∈ X ⇒ P (x), and ∃x ∈ X. P (x)
instead of ∃x. x ∈ X & P (x).

There is another useful notation associated with quantifiers. Occasionally
one wants to say not just that there exists some x satisfying a property P (x)
but also that x is the unique object satisfying P (x). It is traditional to write

∃!x. P (x)

as an abbreviation for

(∃x. P (x)) & (∀y, z. P (y) & P (z)⇒ y = z)

which means that there is some x satisfying the property P and also that if any
y, z both satisfy the property P they are equal. This expresses that there exists
a unique x satisfying P (x).

1.2 Sets

Intuitively, a set is an (unordered) collection of objects, called its elements or
members. We write a ∈ X when a is an element of the set X. Sometimes we
write e.g. {a, b, c, · · ·} for the set of elements a, b, c, · · ·.
A set X is said to be a subset of a set Y , written X ⊆ Y , iff every element of X
is an element of Y , i.e.

X ⊆ Y ⇐⇒ ∀z ∈ X. z ∈ Y.

A set is determined solely by its elements in the sense that two sets are equal
iff they have the same elements. So, sets X and Y are equal, written X = Y , iff
every element of A is a element of B and vice versa. This furnishes a method
for showing two sets X and Y are equal and, of course, is equivalent to showing
X ⊆ Y and Y ⊆ X.

CHAPTER 1. MATHEMATICAL FOUNDATIONS 9

1.2.1 Sets and properties

Sometimes a set is determined by a property, in the sense that the set has as
elements precisely those which satisfy the property. Then we write

X = {x | P (x)},

meaning the set X has as elements precisely all those x for which P (x) is true.
When set theory was being invented it was thought, first of all, that any

property P (x) determined a set

{x | P (x)}.

It came as a shock when Bertrand Russell realised that assuming the existence
of certain sets described in this way gave rise to contradictions.

Russell’s paradox is really the demonstration that a contradiction arises from
the liberal way of constructing sets above. It proceeds as follows: consider the
property

x /∈ x
a way of writing “x is not an element of x”. If we assume that properties
determine sets, just as described, we can form the set

R = {x | x /∈ x}.

Either R ∈ R or not. If so, i.e. R ∈ R, then in order for R to qualify as an
element of R, from the definition of R, we deduce R /∈ R. So we end up asserting
both something and is negation—a contradiction. If, on the other hand, R /∈ R
then from the definition of R we see R ∈ R—a contradiction again. Either
R ∈ R or R /∈ R lands us in trouble.

We need to have some way which stops us from considering things like R
as a sets. In general terms, the solution is to discipline the way in which sets
are constructed, so that starting from certain given sets, new sets can only be
formed when they are constructed by using particular, safe ways from old sets.
We shall not be formal about it, but state those sets we assume to exist right
from the start and methods we allow for constructing new sets. Provided these
are followed we avoid trouble like Russell’s paradox and at the same time have
a rich enough world of sets to support most mathematics.

1.2.2 Some important sets

We take the existence of the empty set for granted, along with certain sets of
basic elements.
Write ∅ for the null, or empty set, and
ω for the set of natural numbers 0, 1, 2, · · ·.

We shall also take sets of symbols like

{“a”, “b”, “c”, “d”, “e”, · · · , “z”}

for granted, although we could, alternatively have represented them as particular
numbers, for example. The equality relation on a set of symbols is that given
by syntactic identity; two symbols are equal iff they are the same.

CHAPTER 1. MATHEMATICAL FOUNDATIONS 10

1.2.3 Constructions on sets

We shall take for granted certain operations on sets which enable us to construct
sets from given sets.

Comprehension:

If X is a set and P (x) is a property, we can form the set

{x ∈ X | P (x)}

which is another way of writing

{x | x ∈ X & P (x)}.

This is the subset of X consisting of all elements x of X which satisfy P (x).
Sometimes we’ll use a further abbreviation. Suppose e(x1, . . . , xn) is some

expression which for particular elements x1 ∈ X1, · · ·xn ∈ Xn yields a particular
element and P (x1, . . . , xn) is a property of such x1, . . . , xn. We use

{e(x1, . . . , xn) | x1 ∈ X1 & · · ·& xn ∈ Xn & P (x1, . . . , xn)}

to abbreviate

{y | ∃x1 ∈ X1, · · · , xn ∈ Xn. y = e(x1, . . . , xn)& P (x1, . . . , xn)}.

For example,
{2m+ 1 | m ∈ ω & m > 1}

is the set of odd numbers greater than 3.

Powerset:

We can form a set consisting of the set of all subsets of a set, the so-called
powerset:

Pow(X) = {Y | Y ⊆ X}.

Indexed sets:

Suppose I is a set and that for any i ∈ I there is a unique object xi, maybe a
set itself. Then

{xi | i ∈ I}

is a set. The elements xi are said to be indexed by the elements i ∈ I.

Union:

The set consisting of the union of two sets has as elements those elements which
are either elements of one or the other set. It is written and described by:

X ∪ Y = {a | a ∈ X or a ∈ Y }.

CHAPTER 1. MATHEMATICAL FOUNDATIONS 11

Big union:

Let X be a set of sets. Their union⋃
X = {a | ∃x ∈ X. a ∈ x}

is a set. When X = {xi | i ∈ I} for some indexing set I we often write
⋃
X as⋃

i∈I xi.

Intersection:

Elements are in the intersection X ∩ Y , of two sets X and Y , iff they are in
both sets, i.e.

X ∩ Y = {a | a ∈ X & a ∈ Y }.

Big intersection:

Let X be a nonempty set of sets. Then⋂
X = {a | ∀x ∈ X. a ∈ x}

is a set called its intersection. When X = {xi | i ∈ I} for a nonempty indexing
set I we often write

⋂
X as

⋂
i∈I xi.

Product:

Given two elements a, b we can form a set (a, b) which is their ordered pair.
To be definite we can take the ordered pair (a, b) to be the set {{a}, {a, b}}—
this is one particular way of coding the idea of ordered pair as a set. As one
would hope, two ordered pairs, represented in this way, are equal iff their first
components are equal and their second components are equal too, i.e.

(a, b) = (a′, b′) ⇐⇒ a = a′ & b = b′.

In proving properties of ordered pairs this property should be sufficient irre-
spective of the way in which we have represented ordered pairs as sets.

For sets X and Y , their product is the set

X × Y = {(a, b) | a ∈ X & b ∈ Y },

the set of ordered pairs of elements with the first from X and the second from
Y .

A triple (a, b, c) is the set (a, (b, c)), and the product X ×Y ×Z is the set of
triples {(x, y, z) | x ∈ X & y ∈ Y & z ∈ Z}. More generally X1×X2×· · ·×Xn

consists of the set of n-tuples (x1, x2, . . . , xn) = (x1, (x2, (x3, · · ·))).

CHAPTER 1. MATHEMATICAL FOUNDATIONS 12

Disjoint union:

Frequently we want to join sets together but, in a way which, unlike union, does
not identify the same element when it comes from different sets. We do this by
making copies of the elements so that when they are copies from different sets
they are forced to be distinct.

X0]X1] · · ·]Xn = ({0} ×X0) ∪ ({1} ×X1) ∪ · · · ∪ ({n} ×Xn).

In particular, for X]Y the copies ({0}×X) and ({1}×Y) have to be disjoint,
in the sense that

({0} ×X) ∩ ({1} × Y) = ∅,

because any common element would be a pair with first element both equal to
0 and 1, clearly impossible.

Set difference:

We can subtract one set Y from another X, an operation which removes all
elements from X which are also in Y .

X \ Y = {x | x ∈ X & x /∈ Y }.

1.2.4 The axiom of foundation

A set is built-up starting from basic sets by using the constructions above. We
remark that a property of sets, called the axiom of foundation, follows from our
informal understanding of sets and how we can construct them. Consider an
element b1 of a set b0. It is either a basic element, like an integer or a symbol,
or a set. If b1 is a set then it must have been constructed from sets which
have themselves been constructed earlier. Intuitively, we expect any chain of
memberships

· · · bn ∈ · · · ∈ b1 ∈ b0
to end in some bn which is some basic element or the empty set. The statement
that any such descending chain of memberships must be finite is called the
axiom of foundation, and is an assumption generally made in set theory. Notice
the axiom implies that no set X can be a member of itself as, if this were so,
we’d get the infinite descending chain

· · ·X ∈ · · · ∈ X ∈ X,

—a contradiction.

1.3 Relations and functions

A binary relation between X and Y is an element of Pow(X × Y), and so a
subset of pairs in the relation. When R is a relation R ⊆ X × Y we shall often
write xRy for (x, y) ∈ R.

CHAPTER 1. MATHEMATICAL FOUNDATIONS 13

A partial function from X to Y is a relation f ⊆ X × Y for which

∀x, y, y′. (x, y) ∈ f & (x, y′) ∈ f ⇒ y = y′.

We use the notation f(x) = y when there is a y such that (x, y) ∈ f and then
say f(x) is defined, and otherwise say f(x) is undefined. Sometimes we write
f : x 7→ y, or just x 7→ y when f is understood, for y = f(x). Occasionally we
write just fx, without the brackets, for f(x).

A (total) function from X to Y is a partial function from X to Y such that
for all x ∈ X there is some y ∈ Y such that f(x) = y. Although total functions
are a special kind of partial function it is traditional to understand something
described as simply a function to be a total function, so we always say explicitly
when a function is partial.

Note that relations and functions are also sets.
To stress the fact that we are thinking of a partial function f from X to Y

as taking an element of X and yielding an element of Y we generally write it
as f : X ⇀ Y . To indicate that a function f from X to Y is total we write
f : X → Y .

We write (X ⇀ Y) for the set of all partial functions from X to Y , and
(X → Y) for the set of all total functions.

Exercise 1.1 * Why are we justified in calling (X ⇀ Y) and (X → Y) sets
when X,Y are sets? 2

1.3.1 Composing relations and functions

We compose relations, and so partial and total functions, R between X and Y
and S between Y and Z by defining their composition, a relation between X
and Z, by

S ◦R =def {(x, z) ∈ X × Z | ∃y ∈ Y. (x, y) ∈ R & (y, z) ∈ S}.

Thus for functions f : X → Y and g : Y → Z their composition is the function
g ◦ f : X → Z. Each set X is associated with an identity function IdX where
IdX = {(x, x) | x ∈ X}.

Exercise 1.2 * Let R ⊆ X × Y , S ⊆ Y × Z and T ⊆ Z × W . Convince
yourself that T ◦ (S ◦R) = (T ◦S) ◦R (i.e. composition is associative) and that
R ◦ IdX = IdY ◦ R = R (i.e. identity functions act like identities with respect
to composition). 2

A function f : X → Y has an inverse g : Y → X iff g(f(x)) = x for all
x ∈ X, and f(g(y)) = y for all y ∈ Y . Then the sets X and Y are said to be in
1-1 correspondence. (Note a function with an inverse has to be total.)

Any set in 1-1 correspondence with a subset of natural numbers ω is said to
be countable.

CHAPTER 1. MATHEMATICAL FOUNDATIONS 14

Exercise 1.3 * Let X and Y be sets. Show there is a 1-1 correspondence
between the set of functions (X → Pow(Y)) and the set of relations Pow(X ×
Y). 2

Cantor’s diagonal argument
Late last century, Georg Cantor, one of the pioneers in set theory, invented

a method of argument, the gist of which reappears frequently in the theory of
computation. Cantor used a diagonal argument to show that X and Pow(X)
are never in 1-1 correspondence for any set X. This fact is intuitively clear for
finite sets but also holds for infinite sets. He argued by reductio ad absurdum,
i.e., by showing that supposing otherwise led to a contradiction:

Suppose a set X is in 1-1 correspondence with its powerset Pow(X). Let
θ : X → Pow(X) be the 1-1 correspondence. Form the set

Y = {x ∈ X | x /∈ θ(x)}

which is clearly a subset of X and therefore in correspondence with an element
y ∈ X. That is θ(y) = Y . Either y ∈ Y or y /∈ Y . But both possibilities are
absurd. For, if y ∈ Y then y ∈ θ(y) so y /∈ Y , while, if y /∈ Y then y /∈ θ(y) so
y ∈ Y . We conclude that our first supposition must be false, so there is no set
in 1-1 correspondence with its powerset.

Cantor’s argument is reminiscient of Russell’s paradox. But whereas the
contradiction in Russell’s paradox arises out of a fundamental, mistaken as-
sumption about how to construct sets, the contradiction in Cantor’s argument
comes from denying the fact one wishes to prove.

To see why it is called a diagonal argument, imagine that the set X, which
we suppose is in 1-1 correspondence with Pow(X), can be enumerated as
x0, x1, x2, · · · , xn, · · ·. Imagine we draw a table to represent the 1-1 correspon-
dence θ along the following lines. In the ith row and jth column is placed 1 if
xi ∈ θ(xj) and 0 otherwise. The table below, for instance, represents a situation
where x0 /∈ θ(x0), x1 ∈ θ(x0) and xi ∈ θ(xj).

θ(x0) θ(x1) θ(x2) · · · θ(xj) · · ·
x0 0 1 1 · · · 1 · · ·
x1 1 1 1 · · · 0 · · ·
x2 0 0 1 · · · 0 · · ·
...

...
...

...
...

xi 0 1 0 · · · 1 · · ·
...

...
...

...
...

The set Y which plays a key role in Cantor’s argument is defined by running
down the diagonal of the table interchanging 0’s and 1’s in the sense that xn is
put in the set iff the nth entry along the diagonal is a 0.

Exercise 1.4 * Show for any sets X and Y , with Y containing at least two
elements, that there cannot be a 1-1 correspondence between X and the set of
functions (X → Y). 2

CHAPTER 1. MATHEMATICAL FOUNDATIONS 15

1.3.2 Direct and inverse image of a relation

We extend relations, and thus partial and total functions, R : X×Y to functions
on subsets by taking

RA = {y ∈ Y | ∃x ∈ A. (x, y) ∈ R}

for A ⊆ X. The set RA is called the direct image of A under R. We define

R−1B = {x ∈ X | ∃y ∈ B. (x, y) ∈ R}

for B ⊆ Y . The set R−1B is called the inverse image of B under R. Of course,
the same notions of direct and inverse image also apply in the special case where
the relation is a function.

1.3.3 Equivalence relations

An equivalence relation is a relation R ⊆ X ×X on a set X which is

• reflexive: ∀x ∈ X. xRx,

• symmetric: ∀x, y ∈ X. xRy ⇒ yRx and

• transitive: ∀x, y, z ∈ X. xRy & yRz ⇒ xRz.

If R is an equivalence relation on X then the (R-)equivalence class of an
element x ∈ X is the subset {x}R =def {y ∈ X | yRx}.

Exercise 1.5 * Let R be an equivalence relation on a set X. Show if {x}R ∩
{y}R 6= ∅ then {x}R = {y}R, for any elements x, y ∈ X. 2

Exercise 1.6 * Let xRy be a relation on a set of sets X which holds iff the
sets x and y in X are in 1-1 correspondence. Show that R is an equivalence
relation. 2

Let R be a relation on a set X. Define R0 = IdX , the identity relation on
the set X, and R1 = R and, assuming Rn is defined, define

Rn+1 = R ◦Rn.

So, Rn is the relation R◦· · ·◦R, obtained by taking n compositions of R. Define
the transitive closure of R to be the relation

R+ =
⋃
n∈ω

Rn+1.

Define the transitive, reflexive closure of a relation R on X to be the relation

R∗ =
⋃
n∈ω

Rn,

so R∗ = IdX ∪R+.
Let R be a relation on a set X. Write Rop for the opposite, or converse,

relation Rop = {(y, x) | (x, y) ∈ R}.

Exercise 1.7 * Show (R ∪Rop)∗ is an equivalence relation. Show R∗ ∪ (Rop)∗

need not be an equivalence relation. 2

CHAPTER 1. MATHEMATICAL FOUNDATIONS 16

1.3.4 Relations as structure—partial orders

Definition: A partial order (p.o.) is a set P on which there is a binary relation
v, so described by (P,v), which is:

(i) reflexive: ∀p ∈ P. p v p
(ii) transitive: ∀p, q, r ∈ P. p v q & q v r ⇒ p v r
(iii) antisymmetric: ∀p, q ∈ P. p v q & q v p⇒ p = q.

If we relax the definition of partial order and do not insist on (iii) antisym-
metry, and only retain (i) reflexivity and (ii) transitivity, we have defined a
preorder on a set.

Example: Let S be a set. Its powerset with the subset relation, (Pow(S),⊆),
is a partial order.

Often the partial order supports extra structure. For example, in a partial
order (P,v), the least upper bound (lub, or supremum, or join) of a subset X ⊆ P
of a partial order is an element

⊔
X ∈ P such that for all p ∈ P ,

(∀x ∈ X.x v p)⇒
⊔
X v p .

An element p such that (∀x ∈ X.x v p) is called an upper bound. In a dual way,
the greatest lower bound (glb, infimum or meet) of a subset X ⊆ P is an element

X ∈ P such that for all p ∈ P ,

(∀x ∈ X.p v x)⇒ p v X ,

and an element p such that (∀x ∈ X.p v x) is called a lower bound. In the
example of a partial order (Pow(S),⊆), lubs are given by unions and glbs by
intersections. A general partial order need not have all lubs and glbs. When it
does it is called a complete lattice.

Exercise 1.8 Show that if a partial order has all lubs, then it necessarily also
has all glbs and vice versa. 2

1.4 Well-founded induction

Mathematical and structural induction are special cases of a general and power-
ful proof principle called well-founded induction. In essence structural induction
works because breaking down an expression into subexpressions cannot go on
forever, eventually it must lead to atomic expressions which cannot be broken
down any further. If a property fails to hold of any expression then it must
fail on some minimal expression which when it is broken down yields subexpres-
sions, all of which satisfy the property. This observation justifies the principle of
structural induction: to show a property holds of all expressions it is sufficient
to show that a property holds of an arbitrary expression if it holds of all its
subexpressions. Similarly with the natural numbers, if a property fails to hold

CHAPTER 1. MATHEMATICAL FOUNDATIONS 17

of all natural numbers then there has to be a smallest natural number at which
it fails. The essential feature shared by both the subexpression relation and
the predecessor relation on natural numbers is that do not give rise to infinite
descending chains. This is the feature required of a relation if it is to support
well-founded induction.

Definition: A well-founded relation is a binary relation ≺ on a set A such that
there are no infinite descending chains · · · ≺ ai ≺ · · · ≺ a1 ≺ a0. When a ≺ b
we say a is a predecessor of b.

Note a well-founded relation is necessarily irreflexive i.e., for no a do we
have a ≺ a, as otherwise there would be the infinite decending chain · · · ≺ a ≺
· · · ≺ a ≺ a. We shall generally write � for the reflexive closure of the relation
≺, i.e.

a � b ⇐⇒ a = b or a ≺ b.

Sometimes one sees an alternative definition of well-founded relation, in
terms of minimal elements.

Proposition 1.9 Let ≺ be a binary relation on a set A. The relation ≺ is
well-founded iff any nonempty subset Q of A has a minimal element, i.e. an
element m such that

m ∈ Q & ∀b ≺ m. b /∈ Q.

Proof:
“if”: Suppose every nonempty subset of A has a minimal element. If · · · ≺ ai ≺
· · · ≺ a1 ≺ a0 were an infinite descending chain then the set Q = {ai | i ∈ ω}
would be nonempty without a minimal element, a contradiction. Hence ≺ is
well-founded.
“only if”: To see this, suppose Q is a nonempty subset of A. Construct a chain of
elements as follows. Take a0 to be any element of Q. Inductively, assume a chain
of elements an ≺ · · · ≺ a0 has been constructed inside Q. Either there is some
b ≺ an such that b ∈ Q or there is not. If not stop the construction. Otherwise
take an+1 = b. As ≺ is well-founded the chain · · · ≺ ai ≺ · · · ≺ a1 ≺ a0 cannot
be infinite. Hence it is finite, of the form an ≺ · · · ≺ a0 with ∀b ≺ an. b /∈ Q.
Take the required minimal element m to be an. 2

Exercise 1.10 Let ≺ be a well-founded relation on a set B. Prove

1. its transitive closure ≺+ is also well-founded,

2. its reflexive, transitive closure ≺∗ is a partial order.

2

The principle of well-founded induction.
Let ≺ be a well founded relation on a set A. Let P be a property. Then

∀a ∈ A. P (a) iff
∀a ∈ A. ([∀b ≺ a. P (b)]⇒ P (a)).

CHAPTER 1. MATHEMATICAL FOUNDATIONS 18

The principle says that to prove a property holds of all elements of a well-
founded set it suffices to show that if the property holds of all predecessors of
an arbitrary element a then the property holds of a.

We now prove the principle. The proof rests on the observation that any
nonempty subset Q of a set A with a well-founded relation ≺ has a minimal ele-
ment. Clearly if P (a) holds for all elements of A then ∀a ∈ A. ([∀b ≺ a. P (b)]⇒
P (a)). To show the converse, we assume ∀a ∈ A. ([∀b ≺ a. P (b)] ⇒ P (a)) and
produce a contradiction by supposing ¬P (a) for some a ∈ A. Then, as we have
observed, there must be a minimal element m of the set {a ∈ A | ¬P (a)}. But
then ¬P (m) and yet ∀b ≺ m. P (b), which contradicts the assumption.

Example: If we take the relation ≺ to be the predecessor relation

n ≺ m iff m = n+ 1

on the non-negative integers the principle of well-founded induction specialises
to mathematical induction. 2

Example: If we take ≺ to be the “strictly less than” relation < on the non-
negative integers, the principle specialises to course-of-values induction. 2

Example: If we take ≺ to be the relation between expressions such that a ≺
b holds iff a is an immediate subexpression of b we obtain the principle of
structural induction as a special case of well-founded induction. 2

Proposition 1.9 provides an alternative to proofs by well-founded induction.
Suppose A is a well-founded set. Instead of using well-founded induction to
show every element of A satisfies a property P , we can consider the subset of A
for which the property P fails, i.e. the subset F of counterexamples. By Propo-
sition 1.9, to show F is ∅ it is sufficient to show that F cannot have a minimal
element. This is done by obtaining a contradiction from the assumption that
there is a minimal element in F . Whether to use this approach or the prin-
ciple of well-founded induction is largely a matter of taste, though sometimes,
depending on the problem, one approach can be more direct than the other.

Exercise 1.11 For suitable well-founded relation on strings, use the “no coun-
terexample” approach described above to show there is no string u which satisfies
au = ub for two distinct symbols a and b. 2

Well-founded induction is the most important principle in proving the ter-
mination of programs. Uncertainties about termination arise because of loops
or recursions in a program. If it can be shown that execution of a loop or re-
cursion in a program decreases the value in a well-founded set then execution
must eventually terminate.

1.5 Fixed points

Let S be a set. Then its powerset Pow(S) forms a partial order in which the
order is that of inclusion ⊆. We examine conditions under which functions
ϕ : Pow(S)→ Pow(S) have canonical fixed points.

CHAPTER 1. MATHEMATICAL FOUNDATIONS 19

1.5.1 Tarski’s fixed point theorem

We provide a proof of Tarski’s fixed point theorem, specialised to powersets.
This concerns fixed points of functions ϕ : Pow(S)→ Pow(S) which are mono-
tonic, i.e. such that

S ⊆ S′ ⇒ ϕ(S) ⊆ ϕ(S′) ,

for S, S′ ∈ Pow(S). Such monotonic functions have least (=minimum) and
greatest (=maximum) fixed points.

Theorem 1.12 (Tarski’s theorem for minimum fixed points)
Let Pow(S) be a powerset. Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
Define

m =
⋂
{S ⊆ S | ϕ(S) ⊆ S}.

Then m is a fixed point of ϕ and the least prefixed point of ϕ, i.e. if ϕ(S) ⊆ S
then m ⊆ S. (When ϕ(S) ⊆ S the set S is called a prefixed point of ϕ.)

Proof: Write X = {S ⊆ S | ϕ(S) ⊆ S}. As above, define m =
⋂
X. Let

S ∈ X. Certainly m ⊆ S. Hence ϕ(m) ⊆ ϕ(S) by the monotonicity of ϕ.
But ϕ(S) ⊆ S because S ∈ X. So ϕ(m) ⊆ S for any S ∈ X. It follows that
ϕ(m) ⊆

⋂
X = m. This makes m a prefixed point and, from its definition, it

is clearly the least one. As ϕ(m) ⊆ m we obtain ϕ(ϕ(m)) ⊆ ϕ(m) from the
monotonicity of ϕ. This ensures ϕ(m) ∈ X which entails m ⊆ ϕ(m). Thus
ϕ(m) = m. We conclude that m is indeed a fixed point and is the least prefixed
point of ϕ. 2

The proof of Tarski’s theorem for minimum fixed points only makes use of
the partial-order properties of the ⊆ relation on Pow(S) and in particular that
there is an intersection operation

⋂
. (In fact, Tarski’s theorem applies equally

well to complete lattice with an abstract partial order and greatest lower bound.)
Replacing the roles of the order ⊆ and intersection

⋂
by the converse relation

⊇ and union
⋃

we obtain a proof of the dual result for maximum fixed points.

Theorem 1.13 (Tarski’s theorem for maximum fixed points)
Let Pow(S) be a powerset. Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
Define

M =
⋃
{S ⊆ S | S ⊆ ϕ(S)}.

Then M is a fixed point of ϕ and the greatest postfixed point of ϕ, i.e. if
S ⊆ ϕ(S) then S ⊆ M . (When S ⊆ ϕ(S) the set S is called a postfixed point
of ϕ.)

Notation: The minimum fixed point is traditionally written

µX.ϕ(X) ,

and the maximum fixed point as

νX.ϕ(X) .

CHAPTER 1. MATHEMATICAL FOUNDATIONS 20

Tarski’s theorem for minimum fixed points provides another way to under-
stand sets inductively defined by rules.

A set of rule instances R consists of elements which are pairs (X/y) where
X is a set and y is an element. A pair (X/y) is called a rule instance with
premises X and conclusion y.

We are more used to seeing rule instances (X/y) as

y
if X = ∅, and as

x1, · · · , xn
y

if X = {x1, · · · , xn},

though here we aren’t insisting on the set of premises X being finite.
Assuming that all the elements in the premises and conclusion lie within a

set S, we can turn R into a monotonic function ϕR : Pow(S) → Pow(S): For
S ∈ Pow(S), define

ϕR(S) = {y | ∃X ⊆ S. (X/y) ∈ R} .

The least fixed point of ϕR coincides with the set inductively defined by the
rules R.

Sets defined as maximum fixed points are often called coinductively defined
sets.

Exercise 1.14 Let N be the set of positive natural numbers. Let ϕ : Pow(N)→
Pow(N) be the function on its powerset given by:

ϕ(U) = {3n/2 | n ∈ U & n is even} ∪ {n | n ∈ U & n is odd} .

(i) Show ϕ is monotonic with respect to ⊆.

(ii) Suppose that U ⊆ ϕ(U), i.e. U is a postfixed point of ϕ. Show that

n ∈ U & n is even⇒ 2n/3 ∈ U .

Deduce that all members of U are odd. [Hint: Assume there is an even
member of U , so a least even member of U , to derive a contradiction.]

(iii) Deduce that the maximum fixed point of ϕ is the set of all odd numbers.

(iv) Characterise the prefixed points of ϕ. What is the minimum fixed point
of ϕ?

2

1.5.2 Continuous functions

Suppose ϕ : Pow(S) → Pow(S) is monotonic. Then, starting from the empty
set we can find a chain of approximations to the least fixed point. As the zeroth
approximation take ∅ and as the first approximation ϕ(∅). Clearly,

∅ ⊆ ϕ(∅) ,

CHAPTER 1. MATHEMATICAL FOUNDATIONS 21

and so, by monotonicity of ϕ,

ϕ(∅) ⊆ ϕ2(∅) ,

and so on, inductively, to yield an infinite chain

∅ ⊆ ϕ(∅) ⊆ ϕ2(∅) ⊆ · · · ⊆ ϕn(∅) ⊆ ϕn+1(∅) ⊆ · · · .

An easy induction establishes that

ϕn(∅) ⊆ µX.ϕ(X) ,

for all n ∈ ω, and it might be thought that the least fixed point was equal to
the union ⋃

n∈ω
ϕn(∅) .

But this is not true in general, and the union may be strictly below the least
fixed point. However, when ϕ is

⋃
-continuous the least fixed point can be

obtained in this simple way.

Definition: Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
Say ϕ is

⋃
-continuous iff for all increasing chains

X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · ·

in Pow(S) we have ⋃
n∈ω

ϕ(Xn) = ϕ(
⋃
n∈ω

Xn).

Say ϕ is
⋂

-continuous iff for all decreasing chains

X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ · · ·

in Pow(S) we have ⋂
n∈ω

ϕ(Xn) = ϕ(
⋂
n∈ω

Xn).

Theorem 1.15 Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
If ϕ be

⋃
-continuous, then

µX.ϕ(X) =
⋃
n∈ω

ϕn(∅).

If ϕ be
⋂

-continuous, then

νX.ϕ(X) =
⋂
n∈ω

ϕn(S).

CHAPTER 1. MATHEMATICAL FOUNDATIONS 22

Proof: Assume ϕ is
⋃

-continuous. Write

fix ϕ =
⋃
n∈ω

ϕn(∅) .

Then,

ϕ(fix ϕ) =ϕ(
⋃
n∈ω

ϕn(∅))

=
⋃
n∈ω

ϕn+1(∅) by continuity,

=(
⋃
n∈ω

ϕn+1(∅)) ∪ {∅}

=
⋃
n∈ω

ϕn(∅)

=fix ϕ .

Thus fix ϕ is a fixed point. Suppose X is a prefixed point, i.e. ϕ(X) ⊆ X.
Certainly ∅ ⊆ X. By monotonicity ϕ(∅) ⊆ ϕ(X). But X is prefixed point, so
ϕ(∅) ⊆ X , and by induction ϕn(∅) ⊆ X. Thus, fix ϕ =

⋃
n∈ω ϕ

n(∅) ⊆ X.
As fixed points are certainly prefixed points, fix ϕ is the least fixed point

µX.ϕ(X).
Analogously, we prove that the characterisation of maximum fixed points of⋂

-continuous functions. 2

Exercise 1.16 Show that if a set of rules R is finitary, in each rule X/y the set
of premises X is finite, then, the function ϕR is

⋃
-continuous.

Exhibit a set of rules (necessarily not finitary) such that ϕR is not
⋃

-
continuous.

1.5.3 Fixed points in finite powersets

In the case where S is a finite set, any increasing chain

X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · ·

or any decreasing chain

X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ · · ·

in Pow(S) must be stationary, i.e. eventually constant; the number of strict
increases/decreases along a chain can be at most the size of S.

Consequently, when S is finite, any monotonic function ϕ : Pow(S) →
Pow(S) must be both

⋃
- and

⋂
-continuous.

Not only do we inherit from continuity the characterisations of least and
greatest fixed points as limits of chains of approximations, but moreover we
know, when the set S has size k, that we reach the fixed points by the k-th
approximation.

CHAPTER 1. MATHEMATICAL FOUNDATIONS 23

Proposition 1.17 Let S be a finite set of size k and ϕ : Pow(S)→ Pow(S) a
monotonic function. Then,

µX.ϕ(X) =
⋃
n∈w ϕn(∅) = ϕk(∅)

νX.ϕ(X) =
⋂
n∈w ϕn(S) = ϕk(S) .

Chapter 2

Nondeterministic and
parallel commands

This chapter is an introduction to nondeterministic and parallel (or concurrent)
programs and systems and their semantics. It introduces communication via
shared variables and Dijkstra’s language of guarded commands and paves the
way for languages of communicating processes in the next chapter.

2.1 Introduction

A simple way to introduce some basic issues in parallel programming languages
is to extend the simple imperative language of while-programs by an operation
of parallel composition.

c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c | c0 ‖ c1

where a ranges over arithmetic expressions, and b over boolean expressions.
For commands c0, c1 their parallel composition c0 ‖ c1 executes like c0 and

c1 together, with no particular preference being given to either one. What
happens, if, for instance, both c0 and c1 are in a position to assign to the
same variable? One (and by that it is meant either one) will carry out its
assignment, possibly followed by the other. It’s plain that the assignment carried
out by one can affect the state acted on later by the other. This means we
cannot hope to accurately model the execution of commands in parallel using
a relation between command configurations and final states. We must instead
use a relation representing single uninterruptible steps in the execution relation
and so allow for one command affecting the state of another with which it is set
in parallel.

There is a choice as to what is regarded as a single uninterruptible step.
This is determined by the rules written down for the execution of commands

24

CHAPTER 2. NONDETERMINISTIC AND PARALLEL COMMANDS 25

and, in turn, on the evaluation of expressions. But assuming that the evaluation
rules have been done we can explain the execution of parallel commands by the
following rules. (The set of states Σ consists of functions σ from locations to
numbers.)

〈c0, σ〉 →1 σ
′

〈c0 ‖ c1, σ〉 →1 〈c1, σ′〉
〈c0, σ〉 →1 〈c′0, σ′〉

〈c0 ‖ c1, σ〉 →1 〈c′0 ‖ c1, σ′〉

〈c1, σ〉 →1 σ
′

〈c0 ‖ c1, σ〉 →1 〈c0, σ′〉
〈c1, σ〉 →1 〈c′1, σ′〉

〈c0 ‖ c1, σ〉 →1 〈c0 ‖ c′1, σ′〉

Look at the first two rules. They show how a single step in the execution
of a command c0 gives rise to a single step in the execution of c0 ‖ c1—these
are two rules corresponding to the single step in the execution of c0 completing
the execution of c0 or not. There are symmetric rules for the right-hand-side
component of a parallel composition. If the two component commands c0 and c1
of a parallel composition have locations in common they are likely to influence
each others’ execution. They can be thought of as communicating by shared
locations. Our parallel composition gives an example of what is often called
communication by shared variables.

The symmetry in the rules for parallel composition introduces an unpre-
dictability into the behaviour of commands. Consider for example the execution
of the program (X := 0 ‖ X := 1) from the initial state. This will terminate
but with what value at X? More generally a program of the form

(X := 0 ‖ X := 1); if X = 0 then c0 else c1

will execute either as c0 or c1, and we don’t know which.
This unpredictability is called nondeterminism. The programs we have used

to illustrate nondeterminism are artificial, perhaps giving the impression that
it can be avoided. However it is a fact of life. People and computer systems do
work in parallel leading to examples of nondeterministic behaviour, not so far
removed from the silly programs we’ve just seen.

We note that an understanding of parallelism requires an understanding of
nondeterminism, and that the interruptability of parallel commands means that
we can’t model a parallel command simply as a function from configurations
to sets of possible end states. The interruptability of parallel commands also
complicates considerably the Hoare logic for parallel commands.

Exercise 2.1 Complete the rules for the execution of parallel commands.

2.2 Guarded commands

Paradoxically a disciplined use of nondeterminism can lead to a more straight-
forward presentation of algorithms. This is because the achievement of a goal

CHAPTER 2. NONDETERMINISTIC AND PARALLEL COMMANDS 26

may not depend on which of several tasks is performed. In everyday life we
might instruct someone to either do this or that and not care which. Dijkstra’s
language of guarded commands uses a nondeterministic construction to help free
the programmer from overspecifying a method of solution. Dijkstra’s language
has arithmetic and boolean expressions a ∈ Aexp and b ∈ Bexp as well as two
new syntactic sets that of commands (ranged over by c) and guarded commands
(ranged over by gc). Their abstract syntax is given by these rules:

c ::= skip | abort | X := a | c0; c1 | if gc fi | do gc od

gc ::= b→ c | gc0[]gc1

The constructor used to form guarded commands gc0[]gc1 is called alternative
(or “fatbar”). The guarded command typically has the form

(b1 → c1)[] . . . [](bn → cn).

In this context the boolean expressions are called guards – the execution of the
command body ci depends on the corresponding guard bi evaluating to true.
If no guard evaluates to true at a state the guarded command is said to fail,
in which case the guarded command does not yield a final state. Otherwise
the guarded command executes nondeterministically as one of the commands
ci whose associated guard bi evaluates to true. The command syntax includes
skip, a command which leaves the state unchanged, assignment and sequential
composition. The new command abort does not yield a final state from any
initial state. The command if gc fi executes as the guarded command gc, if gc
does not fail, and otherwise acts like abort. The command do gc od executes
repeatedly as the guarded command gc, while gc continues not to fail, and
terminates when gc fails; it acts like skip if the guarded command fails initially.

We now capture these informal explanations in rules for the execution of
commands and guarded commands. We assume evaluation relations for Aexp
and Bexp. With an eye to the future section on an extension of the language
to handle parallelism we describe one step in the execution of commands and
guarded commands. A command configuration has the form 〈c, σ〉 or σ for
commands c and states σ.

Initial configurations for guarded commands are pairs 〈gc, σ〉, for guarded
commands gc and states σ, as is to be expected, but one step in their execution
can lead to a command configuration or to a new kind of configuration called
fail. Here are the rules for execution:

CHAPTER 2. NONDETERMINISTIC AND PARALLEL COMMANDS 27

Rules for commands:

〈skip, σ〉 → σ

〈a, σ〉 → n

〈X := a, σ〉 → σ[n/X]

〈c0, σ〉 → σ′

〈c0; c1, σ〉 → 〈c1, σ′〉
〈c0, σ〉 → 〈c′0, σ′〉

〈c0; c1, σ〉 → 〈c′0; c1, σ
′〉

〈gc, σ〉 → 〈c, σ′〉
〈if gc fi, σ〉 → 〈c, σ′〉

〈gc, σ〉 → fail

〈 do gc od, σ〉 → σ

〈gc, σ〉 → 〈c, σ′〉
〈 do gc od, σ〉 → 〈c; do gc od, σ′〉

Rules for guarded commands:

〈b, σ〉 → true

〈b→ c, σ〉 → 〈c, σ〉

〈gc0, σ〉 → 〈c, σ′〉
〈gc0[]gc1, σ〉 → 〈c, σ′〉

〈gc1, σ〉 → 〈c, σ′〉
〈gc0[]gc1, σ〉 → 〈c, σ′〉

〈b, σ〉 → false

〈b→ c, σ〉 → fail

〈gc0, σ〉 → fail 〈gc1, σ〉 → fail

〈gc0[]gc1, σ〉 → fail

The rule for alternatives gc0[]gc1 introduces nondeterminism—such a guarded
command can execute like gc0 or like gc1. Notice the absence of rules for abort
and for commands if gc fi in the case where the guarded command gc fails.
In such situations the commands do not execute to produce a final state. An-
other possibility, not straying too far from Dijkstra’s intentions in [4], would
be to introduce a new command configuration abortion to make this improper
termination explicit.1

As an example, here is a command which assigns the maximum value of two

1The reader may find one thing curious. As the syntax stands there is an unnecessary
generality in the rules. From the rules for guarded commands it can be seen that in transitions
〈gc, σ〉 → 〈c, σ′〉 which can be derived the state is unchanged, i.e. σ = σ′. And thus in all
rules whose premises are a transition 〈gc, σ〉 → 〈c, σ′〉 we could replace σ′ by σ. Of course
we lose nothing by this generality, but more importantly, the extra generality will be needed
when later we extend the set of guards to allow them to have side effects.

CHAPTER 2. NONDETERMINISTIC AND PARALLEL COMMANDS 28

locations X and Y to a location MAX:

if

X ≥ Y →MAX := X

[]

Y ≥ X →MAX := Y

fi

The symmetry between X and Y would be lost in a more traditional imperative
program.

Euclid’s algorithm for the greatest common divisor of two numbers is par-
ticularly striking in the language of guarded commands:

do

X > Y → X := X − Y
[]

Y > X → Y := Y −X
od

Compare this with the more clumsy program that would result through use of a
conditional in language without [], a clumsiness which is due to the asymmetry
between the two branches of a conditional. See Dijkstra’s book [4] for more
examples of programs in his language of guarded commands.

Exercise 2.2 Explain informally why Euclid’s algorithm terminates. 2

Exercise 2.3 Give an operational semantics for the language of guarded com-
mands but where the rules determine transitions of the form 〈c, σ〉 → σ′ and
〈gc, σ〉 → σ′ between configurations and final states. 2

Exercise 2.4 Explain why this program terminates:

do (2|X → X := (3×X)/2)[](3|X → X := (5×X)/3) od

where e.g. 3|X means 3 divides X, and (5×X)/3 means 5×X divided by 3.
2

Exercise 2.5 A partial correctness assertion {A}c{B}, where c is a command
or guarded command and A and B are assertions about states, is said to be
valid if for any state at which A is true the execution of c, if it terminates, does
so in a final state at which B is true. Write down sound proof rules for the
partial correctness assertions of Dijktra’s language. 2

Exercise 2.6 * Let the syntax of regular commands c be given as follows:

c := skip | X := e | b? | c; c | c+ c | c∗

CHAPTER 2. NONDETERMINISTIC AND PARALLEL COMMANDS 29

where X ranges over a set of locations, e is an integer expression and b is a
boolean expression. States σ are taken to be functions from the set of locations
to integers. It is assumed that the meaning of integer and boolean expressions
are specified by semantic functions so I[[e]]σ is the integer which integer expres-
sion e evaluates to in state σ and B[[b]]σ is the boolean value given by b in state
σ. The meaning of a regular command c is given by a relation of the form

〈c, σ〉 → σ′

which expresses that the execution of c in state σ can lead to final state σ′. The
relation is determined by the following rules:

〈skip, σ〉 → σ
I[[e]]σ = n

〈X := e, σ〉 → σ[n/X]

B[[b]]σ = true

〈b?, σ〉 → σ

〈c0, σ〉 → σ′′ 〈c1, σ′′〉 → σ′

〈c0; c1, σ〉 → σ′

〈c0, σ〉 → σ′

〈c0 + c1, σ〉 → σ′
〈c1, σ〉 → σ′

〈c0 + c1, σ〉 → σ′

〈c∗, σ〉 → σ
〈c, σ〉 → σ′′ 〈c∗, σ′′〉 → σ′

〈c∗, σ〉 → σ′

(i) Write down a regular command which has the same effect as the while loop

while b do c,

where b is a boolean expression and c is a regular command. Your command C
should have the same effect as the while loop in the sense that

〈C, σ〉 → σ′ iff 〈while b do c, σ〉 → σ′.

(This assumes the obvious rules for while loops.)
(ii) For two regular commands c0 and c1 write c0 = c1 when 〈c0, σ〉 → σ′ iff
〈c1, σ〉 → σ′ for all states σ and σ′. Prove from the rules that

c∗ = skip+ c; c∗

for any regular command c.
(iii) Write down a denotational semantics of regular commands; the denotation
of a regular command c should equal the relation

{(σ, σ′)|〈c, σ〉 → σ′}.

Describe briefly the strategy you would use to prove that this is indeed true of
your semantics.
(iv) Suggest proof rules for partial correctness assertions of regular commands
of the form b?, c0 + c1 and c∗. 2

Chapter 3

Communicating processes

This chapter introduces programming languages where communication is solely
through the synchronised exchange of values. The first language, building on
Dijkstra’s guarded commands, is closely related to Occam and Hoare’s CSP
(Communicating Sequential Processes). The remainder of the chapter concen-
trates on Milner’s CCS (Calculus of Communicating Systems), and shows how
CCS with value passing can be understood in terms of a more basic, simple
language, Pure CCS.

3.1 Synchronous communication

In the latter half of the seventies Hoare and Milner independently suggested the
same novel communication primitive. It was clear that systems of processors,
each with its own store, would become increasingly important. A communica-
tion primitive was sought which was independent of the medium used to com-
municate, the idea being that the medium, whether it be shared locations or
something else, could itself be modelled as a process. Hoare and Milner settled
on atomic actions of synchronisation, with the possible exchange of values, as
the central primitive of communication.

Their formulations are slightly different. Here we will assume that a process
communicates with other processes via channels. We will allow channels to be
hidden so that communication along a particular channel can be made local
to two or more processes. A process may be prepared to input or output at a
channel. However it can only succeed in doing so if there is a companion process
in its environment which performs the complementary action of output or input.
There is no automatic buffering; an input or output communication is delayed
until the other process is ready with the corresponding output or input. When
successful the value output is then copied from the outputting to the inputting
process.

We now present the syntax of a language of communicating processes. In
addition to a set of locations X ∈ Loc, boolean expressions b ∈ Bexp and

30

CHAPTER 3. COMMUNICATING PROCESSES 31

arithmetic expressions a ∈ Aexp, we assume:

Channel names α, β, γ, . . . ∈ Chan
Input expressions α?X where X ∈ Loc
Output expressions α!a where a ∈ Aexp

Commands:

c ::= skip | abort | X := a | α?X | α!a | c0; c1 | if gc fi | do gc od | c0 ‖ c1 | c \ α

Guarded commands:

gc ::= b→ c | b ∧ α?X → c | b ∧ α!a→ c | gc0[]gc1

Not all commands and guarded commands are well-formed. A parallel com-
position c0 ‖ c1 is only well-formed in case the commands c0 and c1 do not
contain a common location. In general a command is well-formed if all its sub-
commands of the form c0 ‖ c1 are well-formed. A restriction c \ α hides the
channel α, so that only communications internal to c can occur on it. 1

How are we to formalise the intended behaviour of this language of com-
municating processes? As earlier, states will be functions from locations to the
values they contain, and a command configuration will have the form 〈c, σ〉 or
σ for a command c and state σ. We will try to formalise the idea of one step in
the execution. Consider a particular command configuration of the form

〈α?X; c, σ〉.

This represents a command which is first prepared to receive a synchronised
communication of a value for X along the channel α. Whether it does or not is,
of course, contingent on whether or not the command is in parallel with another
prepared to do a complementary action of outputting a value to the channel α.
Its semantics should express this contingency on the environment. This we do
in a way familiar from automata theory. We label the transitions. For the set
of labels we take

{α?n | α ∈ Chan & n ∈ Num} ∪ {α!n | α ∈ Chan & n ∈ Num}

Now, in particular, we expect our semantics to yield the labelled transition

〈α?X; c0, σ〉
α?n−→ 〈c0, σ[n/X]〉.

1In recent treatments of process algebra one often sees new α.c, or να.c, instead of the
restriction c\α. In new α.c the “new” operation is understood as a binder, binding α, treated
as a variable, to a new, private channel name. Because the channel is private it cannot
participate in any communication with the outside world, so new α.c has the same effect as
restricting the channel α away. (In a more liberal regime where channel names can also be
passed as values, as in the Pi-Calculus, the private name might be communicated, so allowing
future communication along that channel; then a process new α.c may well behave differently
than simple restriction.)

CHAPTER 3. COMMUNICATING PROCESSES 32

This expresses the fact that the command α?X; c0 can receive a value n at the
channel α and store it in location X, and so modify the state. The labels of the
form α!n represent the ability to output a value n at channel α. We expect the
transition

〈α!e; c1, σ〉
α!n−→ 〈c1, σ〉

provided 〈e, σ〉 → n. Once we have these we would expect a possibility of
communication when the two commands are set in parallel:

〈(α?X; c0) ‖ (α!e; c1), σ〉 → 〈c0 ‖ c1, σ[n/X]〉

This time we don’t label the transition because the communication capability of
the two commands has been used up through an internal communication, with
no contingency on the environment. We expect other transitions too. After all,
there may be other processes in the environment prepared to send and receive
values via the channel α. So as to not exclude those possibilities we had better
also include transitions

〈(α?X; c0) ‖ (α!e; c1), σ〉 α?n−→ 〈c0 ‖ (α!e; c1), σ[n/X]〉

and
〈(α?X; c0) ‖ (α!e; c1), σ〉 α!n−→ 〈(α?X; c0) ‖ c1, σ〉.

The former captures the possibility that the first component receives a value
from the environment and not from the second component. In the latter the
second component sends a value received by the environment, not by the first
component.

Now we present the full semantics systematically using rules. We assume
given the form of arithmetic and boolean expressions and their evaluation rules.

Guarded commands will be treated in a similar way to before, but allowing
for communication in the guards. As earlier guarded commands can sometimes
fail at a state.

To control the number of rules we shall adopt some conventions. To treat
both labelled and unlabelled transitions in a uniform manner we shall use λ
to range over labels like α?n and α!n as well as the empty label. The other
convention aims to treat both kinds of command configurations 〈c, σ〉 and σ in
the same way. We regard the configuration σ as configuration 〈∗, σ〉 where ∗ is
thought of as the empty command. As such ∗ satisfies the laws

∗; c ≡ c; ∗ ≡ ∗ ‖ c ≡ c ‖ ∗ ≡ c and ∗; ∗ ≡ ∗ ‖ ∗ ≡ (∗ \ α) ≡ ∗

which express, for instance, that ∗ ‖ c stands for the piece of syntax c. (Here
and elsewhere we use ≡ to mean equality of syntax.)

CHAPTER 3. COMMUNICATING PROCESSES 33

Rules for commands

〈skip, σ〉 → σ
〈a, σ〉 → n

〈X := a, σ〉 → σ[n/X]

〈α?X,σ〉 α?n→ σ[n/X]
〈a, σ〉 → n

〈α!a, σ〉 α!n→ σ

〈c0, σ〉
λ→ 〈c′0, σ′〉

〈c0; c1, σ〉
λ→ 〈c′0; c1, σ

′〉

〈gc, σ〉 λ→ 〈c, σ′〉

〈if gc fi, σ〉 λ→ 〈c, σ′〉

〈gc, σ〉 λ→ 〈c, σ′〉

〈 do gc od, σ〉 λ→ 〈c; do gc od, σ′〉

〈gc, σ〉 → fail

〈 do gc od, σ〉 → σ

〈c0, σ〉
λ→ 〈c′0, σ′〉

〈c0 ‖ c1, σ〉
λ→ 〈c′0 ‖ c1, σ′〉

〈c1, σ〉
λ→ 〈c′1, σ′〉

〈c0 ‖ c1, σ〉
λ→ 〈c0 ‖ c′1, σ′〉

〈c0, σ〉
α?n→ 〈c′0, σ′〉 〈c1, σ〉

α!n→ 〈c′1, σ〉
〈c0 ‖ c1, σ〉 → 〈c′0 ‖ c′1, σ′〉

〈c0, σ〉
α!n→ 〈c′0, σ〉 〈c1, σ〉

α?n→ 〈c′1, σ′〉
〈c0 ‖ c1, σ〉 → 〈c′0 ‖ c′1, σ′〉

〈c, σ〉 λ→ 〈c′, σ′〉

〈c \ α, σ〉 λ→ 〈c′ \ α, σ′〉
provided neither λ ≡ α?n nor λ ≡ α!n

CHAPTER 3. COMMUNICATING PROCESSES 34

Rules for guarded commands

〈b, σ〉 → true

〈b→ c, σ〉 → 〈c, σ〉
〈b, σ〉 → false

〈b→ c, σ〉 → fail

〈b, σ〉 → false

〈b ∧ α?X → c, σ〉 → fail

〈b, σ〉 → false

〈b ∧ α!a→ c, σ〉 → fail

〈gc0, σ〉 → fail 〈gc1, σ〉 → fail

〈gc0[]gc1, σ〉 → fail

〈b, σ〉 → true

〈b ∧ α?X → c, σ〉 α?n→ 〈c, σ[n/X]〉

〈b, σ〉 → true 〈a, σ〉 → n

〈b ∧ α!a→ c, σ〉 α!n→ 〈c, σ〉

〈gc0, σ〉
λ→ 〈c, σ′〉

〈gc0[]gc1, σ〉
λ→ 〈c, σ′〉

〈gc1, σ〉
λ→ 〈c, σ′〉

〈gc0[]gc1, σ〉
λ→ 〈c, σ′〉

Example: The following illustrate various features of the language and the
processes it can describe (several more can be found in Hoare’s paper [7]):
A process which repeatedly receives a value from the α channel and transmits
it on channel β:

do (true ∧ α?X → β!X) od

A buffer with capacity 2 receiving on α and transmitting on γ:

(do (true ∧ α?X → β!X) od ‖ do (true ∧ β?Y → γ!Y) od) \ β

Notice the use of restriction to make the β channel hidden so that all commu-
nications along it have to be internal.

One use of the alternative construction is to allow a process to “listen” to two
channels simultaneously and read from one should a process in the environment
wish to output there; in the case where it can receive values at either channel a
nondeterministic choice is made between them:

if (true ∧ α?X → c0)[](true ∧ β?Y → c1) fi

Imagine this process in an environment offering values at the channels. Then it
will not deadlock (i.e., reach a state of improper termination) if neither c0 nor
c1 can. On the other hand, the following process can deadlock:

if (true→ (α?X; c0))[](true→ (β?Y ; c1)) fi

It autonomously chooses between being prepared to receive at the α or β chan-
nel. If, for example, it elects the right-hand branch and its environment is only

CHAPTER 3. COMMUNICATING PROCESSES 35

able to output on the α channel there is deadlock. Deadlock can however arise
in more subtle ways. The point of Dijkstra’s example of the so-called “dining
philosophers” is that deadlock can be caused by a complicated chain of circum-
stances often difficult to forsee (see e.g. [7]). 2

The programming language we have just considered is closely related to
Occam, the programming language of the transputer. It does not include all the
features of Occam however, and for instance does not include the prialt operator
which behaves like the alternative construction [] except for giving priority to
the execution of the guarded command on the left. On the other hand, it
also allows outputs α!e in guards not allowed in Occam for efficiency reasons.
Our language is also but a step away from Hoare’s language of Communicating
Sequential Processes (CSP) [7]. Essentially the only difference is that in CSP
process names are used in place of names for channels; in CSP, P?X is an
instruction to receive a value from process P and put it in location X, while
P !5 means output value 5 to process P .

3.2 Milner’s CCS

Robin Milner’s work on a Calculus of Communicating Systems (CCS) has had
an impact on the foundations of the study of parallelism. It is almost true
that the language for his calculus, generally called CCS, can be derived by
removing the imperative features from the language of the last section, the use
of parameterised processes obviating the use of states. In fact, locations can be
represented themselves as CCS processes.

A CCS process communicates with its environment via channels connected
to its ports, in the same manner as we have seen. A process p which is prepared
to input at the α and β channels and output at the channels α and γ can be
visualised as

&%
'$q qqq

α?

α!

β? γ!

with its ports labelled appropriately. The parallel composition of p with a
process q, a process able to input at α and output at β and δ can itself be
thought of as a process p ‖ q with ports α?, α!, β?, β!, γ!, δ!.

The operation of restriction hides a specified set of ports. For example
restricting away the ports specified by the set of labels {α, γ} from the process p
results in a process p\{α, γ} only capable of performing inputs from the channel
β; it looks like:

&%
'$qβ?

Often it is useful to generate several copies of the same process but for a
renaming of channels. A relabelling function is a function on channel names.

CHAPTER 3. COMMUNICATING PROCESSES 36

After relabelling by the function f with f(α) = γ, f(β) = δ and f(γ) = γ the
process p becomes p[f] with this interface with its environment:

&%
'$q qq

γ?

δ? γ!

In addition to communications α?n, α!n at channels α we have an extra
action τ which can do the duty of the earlier skip, as well as standing for
actions of internal communication. Because we remove general assignments we
will not need the states σ of earlier and can use variables x, y, . . . in place of
locations. To name processes we have process identifiers P,Q, . . . in our syntax,
in particular so we can define their behaviour recursively. Assume a syntax for
arithmetic expressions a and boolean expressions b, with variables instead of
locations. The syntax of processes p, p0, p1, . . . is:

p ::= nil |
(τ → p) | (α!a→ p) | (α?x→ p) | (b→ p)

p0 + p1 | p0 ‖ p1 |
p\L | p[f] |
P (a1, · · · , ak)

where a and b range over arithmetic and boolean expressions respectively, x is a
variable over values, L is a subset of channel names, f is a relabelling function,
and P stands for a process with parameters a1, · · · , ak—we write simply P when
the list of parameters is empty.

Formally at least, α?x → p is like a lambda abstraction on x, and any
occurrences of the variable x in p will be bound by the α?x provided they are
not present in subterms of the form β?x→ q. Variables which are not so bound
will be said to be free. Process identifiers P are associated with definitions,
written as

P (x1, · · · , xk)
def
= p

where all the free variables of p appear in the list x1, · · · , xk of distinct variables.
The behaviour of a process will be defined with respect to such definitions for
all the process identifiers it contains. Notice that definitions can be recursive in
that p may mention P . Indeed there can be simultaneous recursive definitions,
for example if

P (x1, · · · , xk)
def
= p

Q(y1, · · · , yl)
def
= q

where p and q mention both P and Q.
In giving the operational semantics we shall only specify the transitions asso-

ciated with processes which have no free variables. By making this assumption,

CHAPTER 3. COMMUNICATING PROCESSES 37

we can dispense with the use of environments for variables in the operational
semantics, and describe the evaluation of expressions without variables by re-
lations a → n and b → t. Beyond this, the operational semantics contains few
surprises. We use λ to range over actions α?n, α!n, and τ .

nil process: has no rules.
Guarded processes:

(τ → p)
τ→ p

a→ n

(α!a→ p)
α!n−→ p (α?x→ p)

α?n−→ p[n/x]

b→ true p
λ−→ p′

(b→ p)
λ−→ p′

(By p[n/x] we mean p with n substituted for the variable x. A more general
substitution p[a1/x1, · · · , ak/xk], stands for a process term p in which arithmetic
expressions ai have replaced variables xi.)
Sum:

p0
λ−→ p′0

p0 + p1
λ−→ p′0

p1
λ−→ p′1

p0 + p1
λ−→ p′1

Composition:

p0
λ→ p′0

p0 ‖ p1
λ−→ p′0 ‖ p1

p0
α?n−→ p′0 p1

α!n−→ p′1

p0 ‖ p1
τ−→ p′0 ‖ p′1

p1
λ→ p′1

p0 ‖ p1
λ−→ p0 ‖ p′1

p0
α!n−→ p′0 p1

α?n−→ p′1

p0 ‖ p1
τ−→ p′0 ‖ p′1

Restriction:

p
λ−→ p′

p\L λ−→ p′\L
,

where if λ ≡ α?n or λ ≡ α!n then α 6∈ L
Relabelling:

p
λ−→ p′

p[f]
f(λ)−→ p′[f]

Identifiers:

p[a1/x1, · · · , ak/xk]
λ−→ p′

P (a1, · · · , ak)
λ−→ p′

CHAPTER 3. COMMUNICATING PROCESSES 38

where P (x1, · · · , xk)
def
= p.

We expand on our claim that it is sufficient to consider processes without
free variables and so dispense with environments in the operational semantics.
Consider the process

(α?x→ (α!x→ nil)).

It receives a value n and outputs it at the channel α, as can be derived from
the rules. From the rules we obtain directly that

(α?x→ (α!x→ nil))
α?n−→ (α!x→ nil)[n/x]

which is
(α?x→ (α!x→ nil))

α?n−→ (α!n→ nil).

Then
(α!n→ nil)

α!n−→ nil.

As can be seen here, when it comes to deriving the transitions of the subprocesses
(α!x → nil) the free variable x has previously been bound to a particular
number n.

3.3 Pure CCS

Underlying Milner’s work is a more basic calculus, which we will call pure CCS.
Roughly it comes about by eliminating variables from CCS.

We have assumed that the values communicated during synchronisations are
numbers. We could, of course, instead have chosen expressions which denote
values of some other type. But for the need to modify expressions, the develop-
ment would have been the same. Suppose, for the moment, that the values lie
in a finite set

V = {n1, . . . , nk}.

Extend CCS to allow input actions α?n where α is a channel and n ∈ V . A
process

(α?n→ p)

first inputs the specific value n from channel α and then proceeds as process p;
its behaviour can be described by the rule:

(α?n→ p)
α?n−→ p

It is not hard to see that under these assumptions the transitions of α?x → p
are the same as those of

(α?n1 → p[n1/x]) + . . .+ (α?nk → p[nk/x]).

The two processes behave in the same way. In this fashion we can eliminate
variables from process terms. Numbers however form an infinite set and when

CHAPTER 3. COMMUNICATING PROCESSES 39

the set of values is infinite, we cannot replace a term α?x → p by a finite
summation. However, this problem is quickly remedied by introducing arbitrary
sums into the syntax of processes. For a set of process terms {pi | i ∈ I} indexed
by a set I, assume we can form a term∑

i∈I
pi.

Then even when the values lie in the infinite set of numbers we can write∑
m∈Num

(α?m→ p[m/x])

instead of (α?x→ p).

With the presence of variables x, there has existed a distinction between
input and output of values. Once we eliminate variables the distinction is purely
formal; input actions are written α?n as compared with α!n for output actions.
Indeed in pure CCS the role of values can be subsumed under that of port
names. It will be, for example, as if input of value n at port α described by α?n
is regarded as a pure synchronisation, without the exchange of any value, at a
“port” α?n.

In pure CCS actions can carry three kinds of name. There are actions `
(corresponding to actions α?n or α!n), complementary actions ¯̀ (corresponding
to α?n being complementary to α!n, and vice versa) and internal actions τ .

With our understanding of complementary actions it is natural to take ` to be
the same as `, which highlights the symmetry we will now have between input
and output.

In the syntax of pure CCS we let λ range over actions of the form `, ¯̀

and τ where ` belongs to a given set of action labels. Terms for processes
p, p0, p1, pi, . . . of pure CCS take this form:

p ::= nil | λ.p |
∑
i∈I

pi | (p0 ‖ p1) | p\L | p[f] | P

The term λ.p is simply a more convenient way of writing the guarded process
(λ → p). The new general sum

∑
i∈I pi of indexed processes {pi | i ∈ I} has

been introduced. We will write p0 + p1 in the case where I = {0, 1}. Above,
L is to range over subsets of labels. We extend the complementation operation
to such a set, taking L̄ =def {¯̀ | ` ∈ L}. The symbol f stands for a relabelling
function on actions. A relabelling function should obey the conditions that
f(¯̀) = f(`) and f(τ) = τ . Again, P ranges over identifiers for processes. These
are accompanied by definitions, typically of the form

P
def
= p.

As before, they can support recursive and simultaneous recursive definitions.
The rules for the operational semantics of CCS are strikingly simple:

CHAPTER 3. COMMUNICATING PROCESSES 40

nil has no rules.
Guarded processes:

λ.p
λ−→ p

Sums:

pj
λ−→ q∑

i∈I pi
λ−→ q

j ∈ I

Composition:

p0
λ−→ p′0

p0 ‖ p1
λ−→ p′0 ‖ p1

p1
λ−→ p′1

p0 ‖ p1
λ−→ p0 ‖ p′1

p0
l−→ p′0 p1

l̄−→ p′1

p0 ‖ p1
τ−→ p′0 ‖ p′1

Restriction:

p
λ−→ q

p\L λ−→ q\L
λ /∈ L ∪ L̄

Relabelling:

p
λ−→ q

p[f]
f(λ)−→ q[f]

Identifiers:

p
λ−→ q

P
λ−→ q

where P
def
= p.

We have motivated pure CCS as a basic language for processes into which
the other languages we have seen can be translated. We now show, in the form
of a table, how closed terms t of CCS can be translated to terms t̂ of pure CCS
in a way which preserves their behaviour.

CHAPTER 3. COMMUNICATING PROCESSES 41

(τ → p) τ.p̂

(α!a→ p) αm.p̂ where a denotes the value m

(α?x→ p)
∑
m∈Num(αm.p̂[m/x])

(b→ p) p̂ if b denotes true
nil if b denotes false

p0 + p1 p̂0 + p̂1

p0 ‖ p1 p̂0 ‖ p̂1

p\L p̂\{αm | α ∈ L & m ∈ Num}

P (a1, · · · , ak) Pm1,···,mk
where a1, · · · , ak evaluate to m1, · · · ,mk.

To accompany a definition P (x1, · · · , xk)
def
= p in CCS, where p has free variables

x1, . . . , xk, we have a collection of definitions in the pure calculus

Pm1,...,mk

def
= ̂p[m1/x1, . . . ,mk/xk]

indexed by m1, . . . ,mk ∈ Num.

Exercise 3.1 Justify the table above by showing that

p
λ→ q iff p̂

λ̂→ q̂

for closed process terms p, q, where

α̂?n = αn, α̂!n = αn.

2

Recursive definition:

In applications it is useful to use process identifiers and defining equations.
However sometimes in the study of CCS it is more convenient to replace the use
of defining equations by the explicit recursive definition of processes. Instead of

defining equations such as P
def
= p, we then use recursive definitions like

rec(P = p).

CHAPTER 3. COMMUNICATING PROCESSES 42

The transitions of these additional terms are given by the rule:

p[rec(P = p)/P]
λ−→ q

rec(P = p)
λ−→ q

More generally we can have simultaneous recursive definitions of the form

recj(Pi = pi)i∈I , also written recj(~P = ~p) ,

where j ∈ I, some indexing set, which informally stands for the j-th component
of the family of processes defined recursively by equations Pi = pi, for i ∈ I.

pj [rec(~P = ~p)/~P]
λ−→ q

recj(~P = ~p)
λ−→ q

where rec(~P = ~p) stands for the family (reck(~P = ~p))k∈I .

Exercise 3.2 Use the operational semantics to derive the transition system
reachable from the process term rec(P = a.b.P). 2

Exercise 3.3 * Let another language for processes have the following syntax:

p := 0 | a | p; p | p+ p | p× p | P | rec(P = p)

where a is an action symbol drawn from a set Σ and P ranges over process
variables used in recursively defined processes rec(P = p). Processes perform
sequences of actions, precisely which being specified by an execution relation
p → s between closed process terms and finite sequences s ∈ Σ∗; when p → s
the process p can perform the sequence of actions s in a complete execution.
Note the sequence s may be the empty sequence ε and we use st to represent the
concatenation of strings s and t. The execution relation is given by the rules:

0→ ε a→ a
p→ s q → t

p; q → st

p→ s

p+ q → s

q → s

p+ q → s

p→ s q → s

p× q → s

p[rec(P = p)/P]→ s

rec(P = p)→ s

The notation p[q/P] is used to mean the term resulting from substituting q for
all free occurrences of P in p.

Alternatively, we can give a denotational semantics to processes. Taking
environments ρ to be functions from variables V ar to subsets of sequences P (Σ∗)

CHAPTER 3. COMMUNICATING PROCESSES 43

ordered by inclusion, we define:

[[0]]ρ = {ε} [[a]]ρ = {a}
[[p; q]]ρ = {st | s ∈ [[p]]ρ and t ∈ [[q]]ρ}
[[p+ q]]ρ = [[p]]ρ ∪ [[q]]ρ [[p× q]]ρ = [[p]]ρ ∩ [[q]]ρ

[[X]]ρ = ρ(X)

[[rec(P = p)]]ρ = the least solution S of S = [[p]]ρ[S/P]

The notation ρ[S/P] represents the environment ρ updated to take value S on
P .
(i) Assuming a and b are action symbols, write down a closed process term with
denotation the language {a, b}∗ in any environment.
(ii) Prove by structural induction that

[[p[q/P]]]ρ = [[p]]ρ[[[q]]ρ/P]

for all process terms p and q, with q closed, and environments ρ.
(iii) Hence prove if p→ s then s ∈ [[p]]ρ, where p is a closed process term, s ∈ Σ∗

and ρ is any environment. Indicate clearly any induction principles you use. 2

Chapter 4

Logics for processes

A specification language, the modal µ-calculus, consisting of a simple modal
logic with recursion is motivated. Its relation with the temporal logic CTL
is studied. An algorithm is derived for checking whether or not a finite-state
process satisfies a specification. This begins a study of model-checking, an
increasingly important area in verification.

4.1 A specification language

We turn to methods of reasoning about parallel processes. Historically, the
earliest methods followed the line of Hoare logics. Instead Milner’s development
of CCS has been based on a notion of equivalence between processes with respect
to which there are equational laws. These laws are sound in the sense that
if any two processes are proved equal using the laws then, indeed, they are
equivalent. They are also complete for finite-state processes. This means that if
any two finite-state processes are equivalent then they can be proved so using the
laws. The equational laws can be seen as constituting an algebra of processes.
Different languages for processes and different equivalences lead to different
process algebras.

Milner’s equivalence is based on a notion of bisimulation between processes.
Early on, in exploring the properties of bisimulation, Milner and Hennessy dis-
covered a logical characterisation of this central equivalence. Two processes are
bisimilar iff they satisfy precisely the same assertions in a little modal logic,
that has come to be called Hennessy-Milner logic. The finitary version of this
logic has a simple, if perhaps odd-looking syntax:

A ::= T | F | A0 ∧A1 | A0 ∨A1 | ¬A | 〈λ〉A

The final assertion 〈λ〉A is a modal assertion (pronounced “diamond λ A”)
which involves an action name λ. It will be satisfied by any process which can
do a λ action to become a process satisfying A. To be specific, we will allow λ
to be any action of pure CCS. The other ways of forming assertions are more

44

CHAPTER 4. LOGICS FOR PROCESSES 45

usual. We use T for true, F for false and build more complicated assertions using
conjunctions (∧), disjunctions (∨) and negations (¬). Thus (¬〈a〉T) ∧ (¬〈b〉T)
is satisfied by any process which can do neither an a nor a b action. We can
define a dual modality in the logic. Take

[λ]A,

(pronounced “box λ A”), to abbreviate ¬〈λ〉¬A. Such an assertion is satisfied
by any process which cannot do a λ action to become one failing to satisfy A.
In other words, [λ]A is satisfied by a process which whenever it does a λ action
becomes one satisfying A. In particular, this assertion is satisfied by any process
which cannot do any λ action at all. Notice [c]F is satisfied by those processes
which refuse to do a c action. In writing assertions we will assume that the
modal operators 〈a〉 and [a] bind more strongly than the boolean operations, so
e.g. ([c]F ∧ [d]F) is the same assertion as (([c]F)∧ ([d]F)). As another example,

〈a〉〈b〉([c]F ∧ [d]F)

is satisfied by any process which can do an a action followed by a b to become
one which refuses to do either a c or a d action.

While Hennessy-Milner logic does serve to give a characterisation of bisimu-
lation equivalence (see the exercise ending this section), central to Milner’s ap-
proach, the finitary language above has obvious shortcomings as a language for
writing down specifications of processes; a single assertion can only specify the
behaviour of a process to a finite depth, and cannot express, for example, that
a process can always perform an action throughout its possibly infinite course
of behaviour. To draw out the improvements we can make we consider how one
might express particular properties, of undeniable importance in analysing the
behaviour of parallel processes.

Let us try to write down an assertion which is true precisely of those processes
which can deadlock. A process might be said to be capable of deadlock if it can
reach a state of improper termination. There are several possible interpretations
of what this means, for example, depending on whether “improper termination”
refers to the whole or part of the process. For simplicity let’s assume the former
and make the notion of “improper termination” precise. Assume we can describe
those processes which are properly terminated with an assertion terminal. A
reasonable definition of the characteristic function of this property would be the
following, by structural induction on the presentation of pure CCS with explicit
recursion:

CHAPTER 4. LOGICS FOR PROCESSES 46

terminal(nil) = true

terminal(λ.p) = false

terminal(
∑
i∈I

pi) =
{

true if terminal(pi) = true for all i ∈ I,
false otherwise

terminal(p0 ‖ p1) = terminal(p0) ∧T terminal(p1)

terminal(p\L) = terminal(p)

terminal(p[f]) = terminal(p)

terminal(P) = false

terminal(rec(P = p)) = terminal(p)

This already highlights one way in which it is sensible to extend our logic, viz.
by adding constant assertions to pick out special processes like the properly
terminated ones. Now, reasonably, we can say a process represents an improper
termination iff it is not properly terminated and moreover cannot do any actions.
How are we to express this as an assertion? Certainly, for the particular action
a, the assertion [a]F is true precisely of those processes which cannot do a.
Similarly, the assertion

[a1]F ∧ · · · ∧ [ak]F

is satisfied by those which cannot do any action from the set {a1, · · · , ak}. But
without restricting ourselves to processes whose actions lie within a known finite
set, we cannot write down an assertion true just of those processes which can
(or cannot) do an arbitrary action. This prompts another extension to the
assertions. A new assertion of the form

〈.〉A

is true of precisely those processes which can do any action to become a process
satisfying A. Dually we define the assertion

[.]A ≡def ¬〈.〉¬A

which is true precisely of those processes which become processes satisfying A
whenever they perform an action. The assertion [.]F is satisfied by the processes
which cannot do any action. Now the property of immediate deadlock can be
written as

Dead ≡def ([.]F ∧ ¬terminal) .

The assertion Dead captures the notion of improper termination. A process
can deadlock if by performing a sequence of actions it can reach a process
satisfying Dead. It’s tempting to express the possibility of deadlock as an
infinite disjunction:

Dead ∨ 〈.〉Dead ∨ 〈.〉〈.〉Dead ∨ 〈.〉〈.〉〈.〉Dead ∨ · · · ∨ (〈.〉 · · · 〈.〉Dead) ∨ · · ·

CHAPTER 4. LOGICS FOR PROCESSES 47

But, of course, this is not really an assertion because in forming assertions only
finite disjunctions are permitted. Because there are processes which deadlock
after arbitrarily many steps we cannot hope to reduce this to a finite disjunction,
and so a real assertion. We want assertions which we can write down!

We need another primitive in our language of assertions. Rather than intro-
ducing extra primitives on an ad hoc basis as we encounter further properties
we’d like to express, we choose one strong new method of defining assertions
powerful enough to define the possibility of deadlock and many other properties.
The infinite disjunction is reminiscient of the least upper bounds of chains one
sees in characterising least fixed points of continuous functions, and indeed our
extension to the language of assertions will be to allow the recursive definition
of properties. The possibility of deadlock will be expressed by the least fixed
point

µX.(Dead ∨ 〈.〉X)

which intuitively unwinds to the infinite “assertion”

Dead ∨ 〈.〉(Dead ∨ 〈.〉(Dead ∨ 〈.〉(· · ·

A little more generally, we can write

possibly(B) ≡def µX.(B ∨ 〈.〉X)

true of those processes which can reach a process satisfying B through perform-
ing a sequence of actions. Other constructions on properties can be expressed
too. We might well be interested in whether or not a process eventually becomes
one satisfying assertion B no matter what sequence of actions it performs. This
can be expressed by

eventually(B) ≡def µX.(B ∨ (〈.〉T ∧ [.]X)).

As this example indicates, it is not always clear how to capture properties as
assertions. Even when we provide the mathematical justification for recursively
defined properties in the next section, it will often be a nontrivial task to show
that a particular assertion with recursion expresses a desired property. However
this can be done once and for all for a batch of useful properties. Because they
are all defined using the same recursive mechanism, it is here that the effort in
establishing proof methods and tools can be focussed.

In fact, maximum (rather than minimum) fixed points will play the more
dominant role in our subsequent work. With negation, one is definable in terms
of the other. An assertion defined using maximum fixed points can be thought
of as an infinite conjunction. The maximum fixed point νX.(B ∧ [.]X) unwinds
to

B ∧ [.](B ∧ [.](B ∧ [.](B ∧ · · ·
and is satisfied by those processes which, no matter what actions they perform,
always satisfy B. In a similar way we can express that an assertion B is satisfied
all the way along an infinite sequence of computation from a process:

νX.(B ∧ [.]X) .

CHAPTER 4. LOGICS FOR PROCESSES 48

Exercise 4.1 What is expressed by the following assertions?

(i) µX.(〈a〉T ∨ [.]X)

(ii) νY.(〈a〉T ∨ (〈.〉T ∧ [.]Y))

(Argue informally, by unwinding definitions. Later, will show how to prove that
an assertion expresses a property, at least for finite-state processes.) 2

4.2 The modal µ–calculus

We now provide the formal treatment of the specification language motivated
in the previous Section 4.1. The language is called the modal µ-calculus [10].

Let P denote the set of processes in pure CCS. Assertions determine prop-
erties of processes. A property is either true or false of a process and so can
be identified with the subset of processes P which satisfy it. In fact, we will
understand assertions simply as a notation for describing subsets of processes.
Assertions are built up using:

• constants: Any subset of processes S ⊆ P is regarded as a constant asser-
tion taken to be true of a process it contains and false otherwise. (We can
also use finite descriptions of them like terminal and Dead earlier. In our
treatment we will identify such descriptions with the subset of processes
satisfying them.)

• logical connectives: The special constants T, F stand for true and false
respectively. If A and B are assertions then so are ¬A (“not A”), A ∧ B
(“A and B”), A ∨B (“A or B”)

• modalities: If a is an action symbol and A is an assertion then 〈a〉A is an
assertion. If A is an assertion then so is 〈.〉A. (The box modalities [a]A
and [.]A are abbreviations for ¬〈a〉¬A and ¬〈.〉¬A, respectively.)

• maximum fixed points: If A is an assertion in which the variable X oc-
curs positively (i.e. under an even number of negation symbols for every
ocurrence) then νX.A (the maximum fixed point of A) is an assertion.
(The minimum fixed point µX.A can be understood as an abbreviation
for ¬νX.¬A[¬X/X].)

In reasoning about assertions we shall often make use of their size. Precisely,
the size of an assertion is defined by structural induction:

size(S) = size(T) = size(F) = 0 where S is a constant

size(¬A) = size(〈a〉A) = size(νX.A) = 1 + size(A)

size(A ∧B) = size(A ∨B) = 1 + size(A) + size(B).

Assertions are a notation for describing subsets of processes. So for example,
A∧B should be satisfied by precisely those processes which satisfy A and satisfy

CHAPTER 4. LOGICS FOR PROCESSES 49

B, and thus can be taken to be the intersection A ∩B. Let’s say what subsets
of processes all the assertions stand for. In the following, an assertion on the
left stands for the set on the right:

S = S where S ⊆ P
T = P
F = ∅
A ∧B = A ∩B
A ∨B = A ∪B
¬A = P \A
〈a〉A = {p ∈ P | ∃q.p a→ q and q ∈ A}
〈.〉A = {p ∈ P | ∃a, q.p a→ q and q ∈ A}
νX.A =

⋃
{S ⊆ P | S ⊆ A[S/X]}

Note, this is a good definition because the set associated with an assertion
is defined in terms of sets associated with assertions of strictly smaller size.
Most clauses of the definition are obvious; for example, ¬A should be satisfied
by all processes which do not satisfy A, explaining why it is taken to be the
complement of A; the modality 〈a〉A is satisfied by any process p capable of
performing an a–transition leading to a process satisfying A. If X occurs only
positively in A, it follows that the function

S 7−→ A[S/X].

is monotonic on subsets of P ordered by ⊆. Tarski’s fixed-point Theorem (see
the Appendix) characterises the maximum fixed point of this function as⋃

{S ⊆ P | S ⊆ A[S/X]}

is the union of all postfixed points of the function S 7→ A[S/X]. Above we see
the use of an assertion A[S/X] which has a form similar to A but with each
occurrence of X replaced by the subset S of processes.

Proposition 4.2 The minimum fixed point µX.A, where

µX.A =
⋂
{S ⊆ P | A[S/X] ⊆ S} ,

is equal to ¬νX.¬A[¬X/X].

Proof: The operation of negation provides a 1-1 correspondence between pre-
fixed points of the function S 7→ A[S/X] and postfixed points of the function
S 7→ ¬A[¬S/X]:

Write A(S) as an abbreviation for A[S/X]. Negation stands for complemen-
tation on subsets of processes. Consequently, U ⊆ V ⇐⇒ ¬V ⊆ ¬U and
¬(¬U) = U , for subsets U , V . Hence,

A(S) ⊆ S iff ¬S ⊆ ¬A(¬(¬S)) .

CHAPTER 4. LOGICS FOR PROCESSES 50

Thus the operation of negation gives a 1-1 correspondence between

Pre(A) = {S | A(S) ⊆ S} ,

the set of prefixed points of S 7→ A(S), and

Post(A) = {U | U ⊆ ¬A(¬U)} ,

the set of postfixed points of U 7→ ¬A(¬U). Notice that the 1-1 correspondence
reverses the subset relation:

S′ ⊆ S , where S, S′ ∈ Pre(A), iff ¬S′ ⊇ ¬S , where ¬S,¬S′ ∈ Post(A) .

It follows that the least fixed prefixed point of S 7→ A(S) corresponds to the
greatest postfixed point of U 7→ ¬A(¬U); in other words, that ¬µX.A =
νX.¬A[¬X/X]. 2

Exercise 4.3 Regarding assertions as sets, show that

〈a〉F = F , 〈a〉(A ∨B) = 〈a〉A ∨ 〈a〉B , and

[a]T = T , [a](A ∧B) = [a] ∧ [a]B .

Show that, although 〈a〉(A∧B) ⊆ 〈a〉A∧ 〈a〉B, the converse inclusion need not
hold. 2

Exercise 4.4 Show [a]A = {p ∈ P | ∀q ∈ P. p a−→ q ⇒ q ∈ A}. By consider-
ing e.g.a process Σn∈ωa.pn where the pn, n ∈ ω, are distinct, show that the
function S 7→ [a]S is not continuous with respect to inclusion (it is monotonic).

2

We can now specify what it means for a process p to satisfy an assertion
A. We define the satisfaction assertion p |= A to be true if p ∈ A, and false
otherwise.

We have based the semantics of the modal µ-calculus on a particular tran-
sition system, that for pure CCS; the states of the transition system consist of
pure CCS terms and form the set P and its transitions are given by the rules
for the operational semantics. It should be clear by inspecting the clauses in-
terpreting assertions of the modal µ-calculus as subsets of P, that the same
semantic definitions would make sense with respect to any transition system for
which the transition actions match those of the modalities. Any such transition
system can be used to interpret the modal µ-calculus. We shall especially con-
cerned with finite-state transition systems, those for the set of states is finite. In
the transition system for pure CCS, process terms do double duty: they stand
for states of the transition system, but they also stand for transition systems
themselves, viz. the transition system obtained as that forwards reachable from
the process term—it is this localised transition system which represents the be-
haviour of the process. When the states forwards reachable from a process form
a finite set we say the process is finite state. Although we shall often present

CHAPTER 4. LOGICS FOR PROCESSES 51

results for finite-state processes, so working with particular transition systems
built on pure CCS, it should be born in mind that the general results apply to
any finite-state transition system interpreting the modal µ-calculus.

It is possible to check automatically whether or not a finite-state process p
satisfies an assertion A. (One of the Concurrency-Workbench/TAV commands
checks whether or not a process p satisfies an assertion A; it will not necessarily
terminate for infinite-state processes though in principle, given enough time and
space, it will for finite-state processes.) To see why this is feasible let p be a
finite-state process. This means that the set of processes reachable from it

Pp =def {q ∈ P | p
.→∗ q}

is finite, where we use p
.→ q to mean p

a→ q for some action a. In deciding
whether or not p satisfies an assertion we need only consider properties of the
reachable processes Pp. We imitate what we did before but in the transition
system based on Pp instead of P. Again, the definition is by induction on the
size of assertions. Define:

S |p = S ∩ Pp where S ⊆ P
T |p = Pp
F |p = ∅
A ∧B |p = A |p ∩ B |p
A ∨B |p = A |p ∪ A |p
¬A |p = Pp \ (A |p)
〈a〉A |p = {r ∈ Pp | ∃q ∈ Pp.r

a→ q and q ∈ A |p}
〈.〉A |p = {r ∈ Pp | ∃a, q ∈ Pp.r

a→ q and q ∈ A |p}
νX.A |p =

⋃
{S ⊆ Pp | S ⊆ A[S/X] |p}

As we would expect there is a simple relationship between the “global” and
“local” meanings of assertions, expressed in the following lemma.

Lemma 4.5 For all assertions A and processes p,

A |p= A ∩ Pp.

Proof: We first observe that:

A[S/X]|p = A[S ∩ Pp/X]|p.

This observation is easily shown by induction on the size of assertions A.
A further induction on the size of assertions yields the result. We consider

the one slightly awkward case, that of maximum fixed points. We would like to
show

νX.A|p = (νX.A) ∩ Pp
assuming the property expressed by the lemma holds inductively for assertion
A. Recall

νX.A =
⋃
{S ⊆ P | S ⊆ A[S/X]} and

νX.A|p =
⋃
{S′ ⊆ Pp | S′ ⊆ A[S′/X]|p}.

CHAPTER 4. LOGICS FOR PROCESSES 52

Suppose S ⊆ P and S ⊆ A[S/X]. Then

S ∩ Pp ⊆ A[S/X] ∩ Pp
= A[S/X]|p by induction

= A[S ∩ Pp/X]|p by the observation.

Thus S∩Pp is a postfixed point of S′ 7→ A[S′/X]|p, so S∩Pp ⊆ νX.A|p. Hence
νX.A ∩ Pp ⊆ νX.A|p.

To show the converse, suppose S′ ⊆ Pp and S′ ⊆ A[S′/X]|p. Then, by
induction, S′ ⊆ A[S′/X] ∩ Pp. Thus certainly S′ ⊆ A[S′/X], making S′ a
postfixed point of S 7→ A[S/X] which ensures S′ ⊆ νX.A. It follows that
νX.A|p ⊆ νX.A.

Whence we conclude νX.A|p = (νX.A) ∩ Pp, as was required. 2

One advantage in restricting to Pp is that, being a finite set of size n say,
we know

νX.A |p=
⋂

0≤i≤n

Ai[T/X] |p

= An[T/X] ∩ Pp
where A◦ = T , Ai+1 = A[Ai/X]. This follows from the earlier results in Sec-
tion 1.5 characterising the maximum fixed point of a

⋂
-continuous function on

a powerset: The function S 7→ A[S/X]|p is monotonic and so continuous on the
the finite finite powerset (Pow(Pp),⊇).

In this way maximum fixed points can be eliminated from an assertion A
for which we wish to check p |= A. Supposing the result had the form 〈a〉B
we would then check if there was a process q with p

a→ q and q |= B. If,
on the other hand, it had the form of a conjunction B ∧ C we would check
p |= B and p |= C. And no matter what the shape of the assertion, once
maximum fixed points have been eliminated, we can reduce checking a process
satisfies an assertion to checking processes satisfy strictly smaller assertions until
ultimately we must settle whether or not processes satisfy constant assertions.
Provided the constant assertions represent decidable properties, in this way we
will eventually obtain an answer to our original question, whether or not p |= A.
It is a costly method however; the elimination of maximum fixed points is only
afforded through a possible blow-up in the size of the assertion. Nevertheless a
similar idea, with clever optimisations, can form the basis of an efficient model-
checking method, investigated by Emerson and Lei in [5].

We will soon provide another method, called “local model checking” by
Stirling and Walker, which is more sensitive to the structure of the assertion
being considered, and does not always involve finding the full, maximum-fixed-
point set νX.A |p.

4.3 CTL and other logics

Many important specification logics can be encoded within the modal µ-calculus.
As an illustration we show how to encode CTL (“Computation Tree Logic”).

CHAPTER 4. LOGICS FOR PROCESSES 53

This logic is widely used in model checking and is often introduced as a fragment
of the more liberal logic CTL∗, a logic obtained by combining certain state
assertions and path assertions. A state assertion is similar to those we have
seen in that it is either true or false of a state (or process). A path assertion is
true or false of a path, where a path is understood to be a maximal sequence of
states possible in the run of a process.1

CTL-assertions take the form:

A := At | A0 ∧A1 | A0 ∨A1 | ¬A | EX A | EG A | E[A0 U A1]

where At ranges over constant assertions.
Action names play no direct role in CTL, so we interpret CTL-assertions in

a transition system with a single action called simply “·”. (In particular, we

can interpret CTL in the transition system P using the transition relation
·→.)

To each constant assertion is preassigned a set of states at which it is true. A
path π in the transition system from a state π0 is a maximal sequence of states
(π0, π1, π2, · · ·) such that πi

·→ πi+1 for all i; maximality means the path cannot
be extended, so is either infinite or finite and with a final state sn incapable of
performing any action. Notice that the interpretation below involves quantifiers
over paths and states in paths. In the broader logic CTL∗ the modalities EX ,
EG and E[− U −] are explained as compound modalities involving a modality
on paths (E) and modalities on states within a path (X, G and U)—thus the
two-letter names for the CTL modalities.

Interpretation of CTL:

• A constant assertion At is associated with a set of states at which it is
true, so we take s |= At iff s is amongst those states.

• The boolean operations A0∧A1, A0∨A1 and ¬A are interpreted literally:

s |= A0 ∧A1 iff s |= A0 and s |= A1;

s |= A0 ∨A1 iff s |= A0 or s |= A1;

s |= ¬A iff it is not the case that s |= A.

• s |= EX A iff for some path π from s we have, π1 |= A. In other words,
there Exists a path, starting at state s, whose neXt state satisfies A.

• s |= EG A iff for some path π from s, we have πi |= A, for all i. There
Exists a path along which A holds Globally.

• s |= E[A0 U A1] iff for some path π from s, there is j such that πj |= A1

and πi |= A0 for all i < j. There Exists a path on which A0 Until
A1—note that A1 must hold at some point on the path.

1Most often CTL∗ and CTL are interpreted with respect to infinite paths in transition-
system models where states are never terminal, i.e. can always perform an transition. Maximal
paths include such infinite paths but also paths ending in a terminal state. This added
generality, more in keeping with the models used here, only requires a slight modification in
the usual translation of the CTL-assertion EG A into the modal µ-calculus.

CHAPTER 4. LOGICS FOR PROCESSES 54

We can translate CTL into the modal µ-calculus. Define the translation
function Tr by the following structural induction on CTL-assertions:

Tr(At) = At, standing for the set of states at which At holds,

Tr(A0 ∧A1) = Tr(A0) ∧ Tr(A1) , T r(A0 ∨A1) = Tr(A0) ∨ Tr(A1) ,

T r(¬A) = ¬Tr(A) ,

T r(EX A) ≡ 〈.〉Tr(A) ,

T r(EG A) ≡ νY.Tr(A) ∧ ([·]F ∨ 〈.〉Y) ,

T r(E[A U B]) ≡ µZ.Tr(B) ∨ (Tr(A) ∧ 〈.〉Z) .

That the translation is correct hinges on Propositions 4.6, 4.8 below.

Proposition 4.6 In a finite-state transition system, s |= νY.A ∧ ([·]F ∨ 〈.〉Y)
iff there is some path π from s, such that πi |= A, for all i.

Proof: Let ϕ(Y) = A ∧ ([·]F ∨ 〈.〉Y) for Y a subset of states. Then, there is a
decreasing chain

T ⊇ ϕ(T) ⊇ · · · ⊇ ϕn(T) ⊇ · · ·

such that
νY.A ∧ ([·]F ∨ 〈.〉Y) =

⋂
n∈ω

ϕn(T) .

Write s
·→ to indicate that s can perform an action, and s 6 ·→ that it cannot.

We show by induction on n ≥ 1 that:

For all states s, we have s |= ϕn(T) iff

(1) either ∃m ≤ n, s1, · · · , sm.

s = s1
·→ · · · ·→ sm 6

·→ and

s1 |= A and · · · and sm |= A

(i.e., there is a finite (maximal) path from s of length ≤ n along
which A always holds),

(2) or ∃s1, · · · , sn.

s = s1
·→ · · · ·→ sn

·→ and

s1 |= A and · · · and sm |= A

(i.e., there is a partial path from s of length n along which A
always holds).

At the basis of the induction, when n = 1, ϕ(T) = A ∧ ([·]F ∨ 〈·〉T) = A
which is satisfied by a state s precisely when (1) or (2) above hold with n = 1.

CHAPTER 4. LOGICS FOR PROCESSES 55

For the induction step:

s |= ϕn+1(T) iff s |= A ∧ ([·]F ∧ 〈.〉ϕn(T))

iff s |= A and (s |= [·]F or s |= 〈.〉ϕn(T))

iff s |= A and (s |= [·]F or ∃s1. s
·
s1 and s1 |= ϕn(T))

iff (s |= A and s |= [·]F) or (s |= A and ∃s1. s
·
s1 and s1 |= ϕn(T))

iff there is a maximal path, length ≤ n+ 1, or

a partial path, length n+ 1, from s, along which A holds.

Finally, as the transition system is finite-state, with say k states, the max-
imum fixed point of ϕ is ϕk(T), so ϕ(ϕk(T)) = ϕk(T), i.e., ϕk+1(T) = ϕk(T).
Thus

s |= νY.A ∧ ([·]F ∨ 〈.〉Y) iff s |= ϕk+1(T) .

Hence, if there are no finite maximal paths from s along which A always holds,
then from the meaning of ϕk+1(T), there must be states s1, · · · , sk+1 for which

s = s1
·→ · · · ·→ sk+1 and

s1 |= A and · · · and sk+1 |= A .

But such a partial path must loop, and hence there is an infinite (so maximal)
path along which A always holds. 2

Exercise 4.7 Prove that the restriction to finite-state transition systems is
unnecessary in Proposition 4.6.

(i) Suppose there is some path π from s, such that πi |= A, for all i. Show
that the set {π0, π1, π2, · · ·} is a postfixed point of the function Y 7→
A ∧ ([·]F ∨ 〈.〉Y). Deduce s = π0 satisfies νY.A ∧ ([·]F ∨ 〈.〉Y).

(ii) Now show the converse. Suppose that s |= νY.A ∧ ([·]F ∨ 〈.〉Y). Suppose
that there is no finite maximal path from s along which A always holds.
By unwinding the recursive assertion, show how to construct by induction
an infinite path from s along which A always holds.

2

Proposition 4.8 In a transition system, s |= µZ.B ∨ (A ∧ 〈.〉Z) iff there is
some path π from s, such that πj |= B and πi |= A for all i < j.

Proof: Let ϕ(Z) = B ∨ (A ∧ 〈.〉Z), for Z a subset of states. The function ϕ is⋃
-continuous (Exercise!). (In a finite-state transition system, the continuity of

ϕ would be automatic.) So, there is a increasing chain

∅ ⊆ ϕ(∅) ⊆ · · · ⊆ ϕn(∅) ⊆ · · ·

such that
µZ.B ∨ (A ∧ 〈.〉Z) =

⋃
n∈ω

ϕn(∅) .

It is sufficient to show by induction on n ≥ 1 that:

CHAPTER 4. LOGICS FOR PROCESSES 56

For all states s, we have s |= ϕn(∅) iff there are m ≤ n and states
s1, · · · , sm such that

s = s1
·→ · · · ·→ sm and

s1 |= A and · · · and sm−1 |= A and sm |= B ;

in other words, there is a (partial) path from s such that B holds
within n steps and along which A holds until B.

At the basis of the induction, ϕ1(∅) = B, so satisfying the induction hypoth-
esis at n = 1.

For the induction step:

s |= ϕn+1(∅) iff s |= B ∨ (A ∧ 〈.〉ϕn(∅)

iff s |= B or (s |= A and ∃s1. s
·→ s1 and s1 |= ϕn(∅)

iff s |= B or

(s |= A and ∃m ≤ n, s1, · · · , sm.

s
·→ s1

·→ · · · s ·→ sm−1
·→ sm and

s1 |= A and · · · and sm−1 |= A and sm |= B) ,

forming a path of length ≤ n+ 1for which A holds until B .

2

Exercise 4.9 Show the function ϕ taking Z, a subset of states of a transition
system, to the subset B ∨ (A ∧ 〈.〉Z) is

⋃
-continuous. 2

The translation of CTL-assertions into the modal µ-calculus is correct:

Proposition 4.10 For a state s in a finite-state transition system, and CTL-
assertion A, s |= A iff s |= Tr(A).

Proof: By a simple structural induction on CTL-assertions, using Proposi-
tions 4.6, 4.8 for the EG A and E[A U B] cases. 2

In the remaining exercises of this section we assume the processes are finite-
state and consider other properties expressible in the modal µ-calculus.

Exercise 4.11 (i) Let p be a finite-state process. Prove p satisfies νX.(〈a〉X)
iff p can perform an infinite chain of a-transitions.

What does µX.(〈a〉X) mean? Prove it.
In the remainder of this exercise assume the processes under consideration

are finite-state (so that (i) is applicable). Recall a process p is finite-state iff the
set Pp is finite, i.e. only finitely many processes are reachable from p.

(ii) Prove the assertion νX.(A ∧ [.]X) is satisfied by those processes p which
always satisfy an assertion A, i.e. q satisfies A, for all q ∈ Pp.

CHAPTER 4. LOGICS FOR PROCESSES 57

(iii) How would you express in the modal µ-calculus the property true of pre-
cisely those processes which eventually arrive at a state satisfying an as-
sertion A? Prove your claim.
(See the earlier text or Exercise 4.13 for a hint.)

2

Exercise 4.12

(i) A complex modal operator, often found in temporal logic, is the so-called
until operator. Formulated in terms of transition systems for processes the
until operator will have the following interpretation:

A process p satisfies A until B (where A and B are assertions)
iff for all sequences of transitions

p = p0
·→ p1

·→ . . .
·→ pn

it holds that

∀i(0 ≤ i ≤ n). pi |= A

or ∃i(0 ≤ i ≤ n). (pi |= B & ∀j(0 ≤ j ≤ i). pj |= A).

Formulate the until operator as a maximum fixed point assertion.
(See Exercise 4.13 for a hint.)

(ii) What does the following assertion (expressing so-called “strong-until”)
mean?

µX.(B ∨ (A ∧ 〈.〉T ∧ [.]X))

2

Exercise 4.13 What do the following assertions mean? They involve assertions
A and B.

(i) inv(A) ≡ νX.(A ∧ [.]X)

(ii) ev(A) ≡ µX.(A ∨ (〈.〉T ∧ [.]X))

(iii) un(A,B) ≡ νX.(B ∨ (A ∧ [.]X))

2

Exercise 4.14 * For this exercise it will be useful to extend the modal µ-
calculus with a modal operator 〈−a〉A, where a is an action, with

p |= 〈−a〉A iff p
b→ q and q |= A, for some q and action b 6= a.

A process p is said to be unfair with respect to an action a iff there is an
infinite chain of transitions

p = p0
a0→ p1

a1→ · · · an−1→ pn
an→ · · ·

such that

CHAPTER 4. LOGICS FOR PROCESSES 58

(a) ∃q. pi
a→ q, for all i ≥ 0, and

(b) ai 6= a, for all i ≥ 0.

Informally, there is an infinite chain of transitions in which a can always occur
but never does.

(i) Express the property of a process being unfair as an assertion in the modal
µ-calculus, and prove that any finite-state process p satisfies this assertion
iff p is unfair with respect to a.

(ii) A process p is said to be weakly unfair with respect to an action a iff there
is an infinite chain of transitions in which a can occur infinitely often but
never does. Write down an assertion in the modal µ-calculus to express
this property.

2

4.4 Local model checking

We are interested in whether or not a finite-state process p satisfies a recursive
modal assertion A, i.e in deciding the truth or falsity of p |= A. We shall give
an algorithm for reducing such a satisfaction assertion to true or false. A key
lemma, the Reduction Lemma, follows from Tarski’s fixed point theorem.

Lemma 4.15 (Reduction Lemma)
Let ϕ be a monotonic function on a powerset Pow(S). For S ⊆ S

S ⊆ νX.ϕ(X) ⇔ S ⊆ ϕ(νX.(S ∪ ϕ(X))).

Proof:
“⇒” Assume S ⊆ νX.ϕ(X). Then

S ∪ ϕ(νX.ϕ(X)) = S ∪ νX.ϕ(X) = νX.ϕ(X).

Therefore νX.ϕ(X) is a postfixed point of X 7→ S ∪ ϕ(X). As νX.(S ∪ ϕ(X))
is the greatest such postfixed point,

νX.ϕ(X) ⊆ νX.(S ∪ ϕ(X)).

By monotonicity,

νX.ϕ(X) = ϕ(νX.ϕ(X) ⊆ ϕ(νX.(S ∪ ϕ(X))).

But S ⊆ νX.ϕ(X) so S ⊆ ϕ(νX(S ∪ ϕ(X))), as required.
“⇐” Assume S ⊆ ϕ(νX.(S ∪ ϕ(X)). As νX.(S ∪ ϕ(X)) is a fixed point of
X 7→ S ∪ ϕ(X),

νX.(S ∪ ϕ(X)) = S ∪ ϕ(νX.(S ∪ ϕ(X))).

CHAPTER 4. LOGICS FOR PROCESSES 59

Hence, by the assumption

νX.(S ∪ ϕ(X)) = ϕ(νX.(S ∪ ϕ(X)),

i.e. νX.(S ∪ ϕ(X)) is a fixed point, and so a postfixed point of ϕ. Therefore

νX.(S ∪ ϕ(X)) ⊆ νX.ϕ(X)

as νX.ϕ(X) is the greatest postfixed point. Clearly S ⊆ νX.(S ∪ ϕ(X)) so
S ⊆ νX.ϕ(X), as required. 2

We are especially concerned with this lemma in the case where S is a sin-
gleton set {p}. In this case the lemma specialises to

p ∈ νX.ϕ(X)⇔ p ∈ ϕ(νX.({p} ∪ ϕ(X))).

The equivalence says a process p satisfies a recursively defined property iff the
process satisfies a certain kind of unfolding of the recursively defined property.
The unfolding is unusual because into the body of the recursion we substitute
not just the original recursive definition but instead a recursive definition in
which the body is enlarged to contain p. As we shall see, there is a precise
sense in which this small modification, p ∈ ϕ(νX.({p} ∪ ϕ(X))), is easier to
establish than p ∈ νX.ϕ(X), thus providing a method for deciding the truth of
recursively defined assertions at a process.

We allow processes to appear in assertions by extending their syntax to
include a more general form of recursive assertion, ones in which finite sets of
processes can tag binding occurrences of variables:
If A is an assertion in which the variable X occurs positively and p1, · · · , pn
are processes, then νX{p1, · · · , pn}A is an assertion; it is to be understood as
denoting the same property as νX.({p1, · · · , pn} ∨A).
(The latter assertion is sensible because assertions can contain sets of processes
as constants.)
We allow the set of processes {p1, · · · , pn} to be empty; in this case νX{ }A
amounts simply to νX.A. In fact, from now on, when we write νX.A it is to be
understood as an abbreviation for νX{ }A.

Exercise 4.16 Show (p |= νX{p1, · · · , pn}A) = true if p ∈ {p1, · · · , pn}. 2

With the help of these additional assertions we can present an algorithm for
establishing whether a judgement p |= A is true or false. We assume there are
the usual boolean operations on truth values. Write ¬T for the operation of
negation on truth values; thus ¬T (true) = false and ¬T (false) = true. Write
∧T for the operation of binary conjunction on T ; thus t0 ∧T t1 is true if both
t0 and t1 are true and false otherwise. Write ∨T for the operation of binary
disjunction; thus t0 ∨T t1 is true if either t0 or t1 is true and false otherwise.
More generally, we will use

t1 ∨T t2 ∨T · · · ∨T tn

CHAPTER 4. LOGICS FOR PROCESSES 60

for the disjunction of the n truth values t1, · · · , tn; this is true if one or more
of the truth values is true, and false otherwise. An empty disjunction will be
understood as false.

With the help of the Reduction Lemma we can see that the following equa-
tions hold:

(p |= S) = true if p ∈ S
(p |= S) = false if p /∈ S
(p |= T) = true

(p |= F) = false

(p |= ¬B) = ¬T (p |= B)

(p |= A0 ∧A1) = (p |= A0) ∧T (p |= A1)

(p |= A0 ∨A1) = (p |= A0) ∨T (p |= A1)

(p |= 〈a〉B) = (q1 |= B) ∨T · · · ∨T (qn |= B)

where {q1, · · · , qn} = {q|p a→ q}
(p |= 〈.〉B) = (q1 |= B) ∨T · · · ∨T (qn |= B)

where {q1, · · · , qn} = {q|∃a.p a→ q}
(p |= νX{→r }B) = true if p ∈ {→r }
(p |= νX{→r }B) = (p |= B[νX{p,→r }B/X]) if p 6∈ {→r }

(In the cases where p has no derivatives, the disjunctions indexed by its deriva-
tives are taken to be false.)
All but possibly the last two equations are obvious. The last equation is a spe-
cial case of the Reduction Lemma, whereas the last but one follows by recalling
the meaning of a “tagged” maximum fixed point (its proof is required by the
exercise above).

The equations suggest reduction rules in which the left-hand-sides are re-
placed by the corresponding right-hand-sides, though at present we have no
guarantee that this reduction does not go on forever. More precisely, the re-
duction rules should operate on boolean expressions built up using the boolean
operations ∧,∨,¬ from basic satisfaction expressions, the syntax of which has
the form p ` A, for a process term p and an assertion A. The boolean expressions
take the form:

b ::= p ` A | true | false | b0 ∧ b1 | b0 ∨ b1 | ¬b

The syntax p ` A is to be distinguished from the truth value p |= A.
To make the reduction precise we need to specify how to evaluate the boolean

operations that can appear between satisfaction expressions as the reduction
proceeds. Rather than commit ourselves to one particular method, to cover the
range of different methods of evaluation of such boolean expressions we merely
stipulate that the rules have the following properties:

For negations:

(b→∗ t⇔ ¬b→∗ ¬T t), for any truth value t.

CHAPTER 4. LOGICS FOR PROCESSES 61

For conjunctions:
If b0 →∗ t0 and b1 →∗ t1 and t0, t1 ∈ T then

(b0 ∧ b1)→∗ t⇔ (t0 ∧T t1) = t, for any truth value t.

For disjunctions:
If b0 →∗ t0 and b1 →∗ t1 and t0, t1 ∈ T then

(b0 ∨ b1)→∗ t⇔ (t0 ∨T t1) = t, for any truth value t.

More generally, a disjunction b1∨ b2∨· · ·∨ bn should reduce to true if, when all
of b1, · · · , bn reduce to values, one of them is true and false if all of the values
are false. As mentioned, an empty disjunction is understood as false.

Certainly, any sensible rules for the evaluation of boolean expressions will
have the properties above, whether the evaluation proceeds in a left-to-right,
right-to-left or parallel fashion. With the method of evaluation of boolean ex-
pressions assumed, the heart of the algorithm can now be presented in the form
of reduction rules:

(p ` S) → true if p ∈ S
(p ` S) → false if p /∈ S
(p ` T) → true

(p ` F) → false

(p ` ¬B) → ¬(p ` B)

(p ` A0 ∧A1) → (p ` A0) ∧ (p ` A1)

(p ` A0 ∨A1) → (p ` A0) ∨ (p ` A1)

(p ` 〈a〉B) → (q1 ` B) ∨ · · · ∨ (qn ` B)

where {q1, · · · , qn} = {q|p a→ q}
(p ` 〈.〉B) → (q1 ` B) ∨ · · · ∨ (qn ` B)

where {q1, · · · , qn} = {q|∃a.p a→ q}
(p ` νX{→r }B) → true if p ∈ {→r }
(p ` νX{→r }B) → (p ` B[νX{p,→r }B/X]) if p 6∈ {→r }

(Again, in the cases where p has no derivatives, the disjunctions indexed by its
derivatives are taken to be false.)
The idea is that finding the truth value of the satisfaction assertion on the left
is reduced to finding that of the expression on the right. In all rules but the
last, it is clear that some progress is being made in passing from the left- to
the right-hand-side; for these rules either the right-hand-side is a truth value,
or concerns the satisfaction of strictly smaller assertions than that on the left.
On the other hand, the last rule makes it at least thinkable that reduction may
not terminate. In fact, we will prove it does terminate, with the correct answer.
Roughly, the reason is that we are checking the satisfaction of assertions by

CHAPTER 4. LOGICS FOR PROCESSES 62

finite-state processes which will mean that we cannot go on extending the sets
tagging the recursions forever.

Under the assumptions to do with the evaluation of boolean expressions
the reduction rules are sound and complete in the sense of the theorem below.
(Notice that the theorem implies the reduction terminates.)

Theorem 4.17 Let p ∈ P be a finite-state process and A be a closed assertion.
For any truth value t ∈ T ,

(p ` A)→∗ t iff (p |= A) = t.

Proof: Assume that p is a finite-state process. Say an assertion is a p-assertion
if for all the recursive assertions νX{r1, · · · , rk}B within it r1, · · · , rk ∈ Pp, i.e.
all the processes mentioned in the assertion are reachable by transitions from p.
The proof proceeds by well-founded induction on p-assertions with the relation

A′ ≺ A iff A′ is a proper subassertion of A

or A,A′ have the form

A ≡ νX{→r }B and A′ ≡ νX{p,→r }B with p 6∈ {→r } .

As Pp is a finite set, the relation ≺ is well-founded.
We are interested in showing the property

Q(A)⇔def ∀q ∈ Pp ∀t ∈ T. [(q ` A)→∗ t⇔ (q |= A) = t]

holds for all closed p-assertions A. The proof however requires us to extend the
property Q to p-assertions A with free variables FV (A), which we do in the
following way:
For p-assertions A, define

Q+(A)⇔def ∀θ, a substitution from FV(A) to closed p-assertions.

[(∀X ∈ FV (A). Q(θ(X)))⇒ Q(A[θ])].

Notice that when A is closed Q+(A) is logically equivalent to Q(A). Here θ
abbreviates a substitution like B1/X1, · · · , Bk/Xk and an expression such as
θ(Xj) the corresponding assertion Bj .

We show Q+(A) holds for all p-assertions A by well-founded induction on
≺. To this end, let A be an p-assertion such that Q+(A′) for all p-assertions
A′ ≺ A. We are required to show it follows that Q+(A). So letting θ be a
substitution from FV (A) to closed p-assertions with ∀X ∈ FV (A). Q(θ(X)),
we are required to show Q(A[θ]) for all the possible forms of A. We select a few
cases:

A ≡ A0∧A1: In this case A[θ] ≡ A0[θ]∧A1[θ]. Let q ∈ Pp. Let (q |= A0[θ]) = t0
and (q |= A1[θ]) = t1. As A0 ≺ A and A1 ≺ A we have Q+(A0) and Q+(A1).
Thus Q(A0[θ]) and Q(A1[θ]), so (q ` A0[θ])→∗ t0 and (q ` A1[θ])→∗ t1. Now,
for t ∈ T ,

CHAPTER 4. LOGICS FOR PROCESSES 63

(q ` A0[θ] ∧A1[θ])→∗ t ⇔ ((q ` A0[θ]) ∧ (q ` A1[θ]))→∗ t
⇔ t0 ∧T t1 = t

by the property assumed of evaln. of conjns.
⇔ (q |= A0[θ]) ∧T (q |= A1[θ]) = t
⇔ (q |= A0[θ] ∧A1[θ]) = t

Hence Q(A[θ]) in this case.

A ≡ X: In this case, when A is a variable, Q(A[θ]) holds trivially by the
assumption on θ.

A ≡ νX{→r }B: In this case A[θ] ≡ νX{→r }(B[θ])—recall θ is not defined on X

because it is not a free variable of A. Let q ∈ Pp. Either q ∈ {→r } or not. If

q ∈ {→r } then it is easy to see

(q ` νX{→r }(B[θ]))→∗ t⇔ t = true, for any t ∈ T,

and that (q |= νX{→r }(B[θ])) = true. Hence Q(A[θ]) when q ∈ {→r } in this case.

Otherwise q 6∈ {→r }. Then νX{q,→r }B ≺ A, so Q(νX{q,→r }(B[θ])). Define a
substitution θ′ from Y ∈ FV (B) to closed p-assertions by taking

θ′(Y) =

{
θ(Y) if Y 6≡ X
νX{q,→r }(B[θ]) if Y ≡ X

Certainly Q(θ′(Y)), for all Y ∈ FV (B). As B ≺ A we have Q+(B). Hence

Q(B[θ′]). But B[θ′] ≡ (B[θ])[νX{q,→r }(B[θ])/X]. Thus from the reduction
rules,

(q ` νX{→r }(B[θ]))→∗ t ⇔ (q ` (B[θ])[νX{q,→r }(B[θ])/X])→∗ t
⇔ (q ` B[θ′])→∗ t
⇔ (q |= B[θ′]) = t as Q(B[θ′])

⇔ (q |= (B[θ])[νX{q,→r }(B[θ])/X]) = t

⇔ (q |= νX{→r }(B[θ])) = t by the Reduction Lemma.

Hence, whether q ∈ {→r } or not, Q(A[θ]) in this case.

For all the other possible forms of A it can be shown (Exercise!) thatQ(A[θ]).
Using well-founded induction we conclude Q+(A) for all p-assertions A. In
particular Q(A) for all closed assertions A, which establishes the theorem. 2

Example: Consider the two element transition system given in CCS by

P
def
= a.Q

Q
def
= a.P

—it consists of two transitions P
a→ Q and Q

a→ P . We show how the rewriting
algorithm establishes the obviously true fact that P is able to do arbitrarily

CHAPTER 4. LOGICS FOR PROCESSES 64

many a’s, formally that P |= νX.〈a〉X. Recalling that νX.〈a〉X stands for
νX{ }〈a〉X, following the reductions of the model-checking algorithm we obtain:

P ` νX{ }〈a〉X → P ` 〈a〉X[νX{P}〈a〉X/X]

i.e.P ` 〈a〉νX{P}〈a〉X
→ Q ` νX{P}〈a〉X
→ Q ` 〈a〉X[νX{Q,P}〈a〉X/X]

i.e.Q ` 〈a〉νX{Q,P}〈a〉X
→ P ` νX{Q,P}〈a〉X
→ true.

2

Hence provided the constants of the assertion language are restricted to
decidable properties the reduction rules give a method for deciding whether or
not a process satisfies an assertion. We have concentrated on the correctness
rather than the efficiency of an algorithm for local model checking. As it stands
the algorithm can be very inefficient in the worst case because it does not exploit
the potential for sharing data sufficiently (the same is true of several current
implementations).

Exercise 4.18
(i) For the CCS process P defined by

P
def
= a.P

show p ` νX.〈a〉T ∧ [a]X reduces to true under the algorithm above.
(ii) For the CCS definition

P
def
= a.Q

Q
def
= a.P + a.nil

show P ` µX.[a]F ∨ 〈a〉X reduces to true. 2

Exercise 4.19 * (A project) Program a method to extract a transition system
table for a finite-state process from the operational semantics in e.g. SML
or Prolog. Program the model checking algorithm. Use it to investigate the
following simple protocol. 2

Exercise 4.20 * A simple communication protocol (from [17]) is described in
CCS by:

CHAPTER 4. LOGICS FOR PROCESSES 65

Sender = a.Sender’

Sender’ = b.(d.Sender + c.Sender’)

Medium = b.(c.Medium + e.Medium)

Receiver = e.f.d.Receiver

Protocol = (Sender ‖ Medium ‖ Receiver)\ {b, c, d, e}

Use the tool developed in Exercise 4.19 (or the Concurrency Workbench or TAV
system) to show the following:
The process Protocol does not satisfy Inv([a](ev〈f〉T)).
Protocol does satisfy Inv([f](ev〈a〉T)).
(Here Inv(A) ≡ νX.(A∧ [.]X) and ev(A) ≡ µX.(A∨ (〈.〉T ∧ [.]X)), with Inv(A)
satisfied by precisely those processes which always satisfy A, and ev(A) satisfied
by precisely those processes which eventually satisfy A.) 2

Chapter 5

Process equivalence

The important process equivalence of strong bisimilarity is introduced, and re-
lated to Hennessy-Milner logic and the modal µ-calculus. Its equational laws are
derived and its use in reasoning about processes indicated. Weak bisimilarity,
to take account of the invisibility of τ -actions, is treated very briefly.

5.1 Strong bisimulation

In the absence of a canonical way to represent the behaviour of processes, equiv-
alences on processes saying when processes have the same behaviour become
important. Originally defined, by Milner and Park, between simple labelled
transition systems as here, it is proving to have much broader currency, not just
to much more general languages for concurrent processes, but also in reasoning
about recursively-defined datatypes where there is no reference to concurrency.

Definition: A (strong) bisimulation is a binary relation R between CCS pro-
cesses with the following property: If pRq then

(i)∀λ, p′. p λ−→ p′ ⇒ ∃q′.q λ−→ q′ & p′Rq′ , and

(ii)∀λ, q′. q λ−→ q′ ⇒ ∃p′.p λ−→ p′ & p′Rq′ .

Write p ∼ q, and say p and q are (strongly) bisimilar (or strongly bisimulation
equivalent), iff there is a strong bisimulation R for which pRq.

For convenience we define bisimulation between CCS processes, making use
of the transition system given by the operational semantics. But, as should be
clear, the definition applies to any labelled transition system.

From the definition of bisimulation we see that to show two processes are
bisimilar it suffices to exhibit a bisimulation relating them.

Techniques for building bisimulations:

Proposition 5.1 Assume that R,S and Ri, for i ∈ I, are strong bisimulations.
Then so are

66

CHAPTER 5. PROCESS EQUIVALENCE 67

(i) IdP , the identity relation.

(ii) Rop, the opposite relation.

(iii) R ◦ S, the composition, and

(iv)
⋃
i∈I Ri, the union.

Proof: Exercise! 2

Exercise 5.2 Show the proposition above. 2

It follows that:

Proposition 5.3 Strong bisimilarity ∼ is an equivalence relation.

Proof: That ∼ is reflexive follows from the identity relation being a bisimu-
lation. The symmetry of ∼ is a consequence of the converse of a bisimulation
relation being a bisimulation, while its transitivity comes from the relation com-
position of bisimulations being a bisimulation. 2

Example: (1) Bisimulation abstracts from looping:�'
� i i - - -

?
• • • . . .

b b b∼ •

b

(2) Bisimulation abstracts from inessential branching:

i i
6

6

�
�
��

6

Z
Z

ZZ}

�

S
S
So

• •

•

••••

• •

a a
a

b
bbb

∼

(3) But:

i i
6

�
�
��

Z
Z

ZZ}

S
S
So

�

@
@@I

�
��7

• •

•

•

• •

a a
a

b

6∼

c
cb

• • •

In the second process, after an a-action the process is prepared to do both a b-
and a c-action (which may depend on the environment). The first process, how-
ever, is committed to either a b- or a c-action after an initial a-action (and might
deadlock should the environment only be prepared to do one of the actions).
Note, in particular, that bisimulation equivalence is not language equivalence
(where two processes are language equivalent iff they gives rise to the same
strings of actions).

CHAPTER 5. PROCESS EQUIVALENCE 68

5.2 Strong bisimilarity as a maximum fixed point

Given a relation R between CCS processes, define the relation ϕ(R) to be such
that:

p ϕ(R) q iff

(i) ∀a, p′. p a−→ p′ ⇒ ∃q′.q a−→ q′ & p′Rq′ , and

(ii) ∀a, q′. q a−→ q′ ⇒ ∃p′.p a−→ p′ & p′Rq′ .

It is easily seen that ϕ is monotonic, i.e. if R ⊆ S, then ϕ(R) ⊆ ϕ(S). We
see that a binary relation R between processes is a strong bisimulation iff

R ⊆ ϕ(R) .

In other words, R is a bisimulation iff R is a postfixed point of ϕ regarded as
function on Pow(P × P). Note that the relation ∼ can be described by

∼=
⋃
{R | R is a strong bisimulation} .

But, by Tarski’s fixed point theorem, this relation is precisely νR.ϕ(R), the
maximum fixed point of ϕ. The relation ∼ is itself a bisimulation and moreover
the largest bisimulation.

Exercise 5.4 (Bisimulation testing) Because strong bisimulation can be ex-
pressed as a maximum fixed point, the testing of bisimulation between two
finite-state processes can be automated along the same lines as local model
checking. Suggest how, and write a program, in e.g. SML or Prolog, to do it.

2

5.3 Strong bisimilarity and logic

It turns out that the equivalence of strong bisimilarity is induced by Hennessy-
Milner logic. This logic includes a possibly infinite conjunction, and its asser-
tions A are given by

A ::=
∧
i∈I

Ai | ¬A | 〈a〉A

where I is a set, possibly empty, indexing a collection of asertions Ai, and a
ranges over actions. The notion of a process p satisfying an assertion A is
formalised in the relation p |= A defined by structural induction on A:

p |=
∧
i∈I

Ai iff p |= Ai for all i ∈ I,

p |= ¬A iff not p |= A,

p |= 〈a〉A iff p
a−→ q & q |= A for some q.

CHAPTER 5. PROCESS EQUIVALENCE 69

(An empty conjunction fulfils the role of true as it holds vacuously of all pro-
cesses.)

Because minimum and maximum fixed points can be understood as (possibly
infinite) disjunctions and conjunctions, Hennessy-Milner logic is as expressive
as the modal µ-calculus.

Now we define p � q iff (p |= A)⇔ (q |= A) for all assertions A of Hennessy-
Milner logic.

We show that � coincides with strong bisimulation, i.e. �=∼. So, for finite-
state processes the equivalence � and strong bisimulation coincide with the
equivalence induced by the modal µ-calculus.

Theorem 5.5 �=∼.

Proof: A routine structural induction on A shows that

∀p, q. p ∼ q ⇒ (p |= A⇔ q |= A).

This shows � ⊇ ∼.
From the definition of ∼, in order to show the converse inclusion, �⊆∼,

it suffices to show that � is a strong bisimulation. This part is best proved
by assuming that � is not a bisimulation, and deriving a contradiction. So,
suppose � is not a bisimulation. This could only be through (i) or (ii) failing
in the definition of strong bisimulation. By symmetry it is sufficient to consider
one case, (i). So assume there are processes p, q with p � q for which p

α→ p′

and yet,
∀r. q α→ r ⇒ (p′, r) /∈ � .

From the definition of �, for any r such that q
α→ r there must be an assertion

Br such that
p′ |= Br and r 6|= Br

—because (p′, r) /∈ � the processes p′, r must be distinguished by an assertion
holding for one and not the other; using negation, if necessary, we can always
find such a Br. Now, take

A ≡ 〈α〉(
∧
r∈I

Br)

where
I = {r | q α→ r} .

Then
p |= A and q 6|= A,

contradicting (p, q) ∈�. Hence � is a strong bisimulation. 2

Corollary 5.6 Bisimilar states satisfy the same modal µ-calculus assertions
and the same CTL assertions.

Exercise 5.7 Provide the structural induction establishing � ⊇ ∼ omitted
from the proof of the theorem above. 2

CHAPTER 5. PROCESS EQUIVALENCE 70

5.4 Equational properties of bisimulation

A major purpose of process equivalences like bisimulation is to support equa-
tional reasoning about processes where congruence properties such as the fol-
lowing are useful.

Proposition 5.8 Sum and parallel are commutative and associative with re-
spect to strong bisimilarity.

Assume p ∼ q. Then,

(1) λ.p ∼ λ.q

(2) p+ r ∼ q + r

(3) p ‖ r ∼ q ‖ r

(3) p \ L ∼ q \ L

(4) p[f] ∼ q[f]

Proof: All the claims rest on producing an appropriate bisimulation, for exam-
ple to show the commutativity of ‖ the bisimulation is

{((p ‖ q), (q ‖ p)) | p, q ∈ P} .

We’ll only do (3) in detail.
(3) Define

R = {(p ‖ s, q ‖ s) | p ∼ q & s ∈ P} .

To show R is a bisimulation suppose (p ‖ s)R(q ‖ s) and that p ‖ s α−→ t. There
are three cases:
Case p

α−→ p′ and t ≡ p′ ‖ s.
Then, as p ∼ q, we obtain q

α−→ q′, so q ‖ s α−→ q′ ‖ s with (p′ ‖ s)R(q′ ‖ s).
Case s

α−→ s′ and t ≡ p ‖ s′. Then, q ‖ s α−→ q ‖ s′ and (p ‖ s′)R(q ‖ s′).
Case p

l−→ p′, s
l̄−→ s′, α = τ and t ≡ p′ ‖ s′. Then, as p ∼ q, we obtain

q
l−→ q′ with p′ ∼ q′. So q ‖ s τ−→ q′ ‖ s′ and (p′ ‖ s′)R(q′ ‖ s′).
The proofs of (4) and (5) are similar, while those of (1) and (2) are easy.

They are left to the reader. 2

Exercise 5.9 (i) Show

rec(P = p) ∼ p[rec(P = p)/P] .

(ii) Show that
(p+ q) \ L ∼ p \ L+ q \ L ,

(p+ q)[f] ∼ p[f] + q[f] ,

but that
(p+ q) ‖ r 6∼ (p ‖ r) + (q ‖ r) .

[Hint: For the latter, taking p ≡ a.nil, q ≡ b.nil and r ≡ c.nil suffices.] 2

CHAPTER 5. PROCESS EQUIVALENCE 71

5.4.1 Expansion theorems

The parallel composition of processes behaves as if the actions of the processes
were nondeterministically shuffled together, though with the possibility of syn-
chronisation of complementary actions. So ultimately parallel composition is
understood in terms of nondeterministic sum; certainly any finite process built
up using parallel composition will be bisimilar to one not mentioning this opera-
tion. The role of the expansion theorem for parallel composition is to (partially)
eliminate occurrences of parallel-composition operator in favour of nondetermin-
istic sums.

Notice first that any CCS process is bisimilar to its expansion to a sum over
its initial actions.

Proposition 5.10 Let p be a pure CCS process. Then,

p ∼ Σ{λ.p′ | p λ−→ p′} .

Proof: Clearly

{(p,Σ{λ.p′ | p λ−→ p′})} ∪ {(r, r) | r ∈ P}

is a bisimulation. 2

Because restriction and relabelling distribute through sum we immediately
obtain the following proposition.

Proposition 5.11

(1) (Σi∈Iαi.pi) \ L ∼ Σ{αi.(pi \ L) | αi /∈ L ∪ L} .

(2) (Σi∈Iαi.pi)[f] ∼ Σi∈If(αi).(pi[f]) .

The expansion theorem for parallel composition is more interesting. It ex-
presses how the parallel composition of two processes allows the processes to
proceed asynchronously, or through joint τ -action of synchronisation whenever
their actions are complementary.

Theorem 5.12 Suppose

p ∼ Σi∈Iαi.pi and q ∼ Σj∈Jβj .qj .

Then,
(p ‖ q) ∼Σi∈Iαi(pi ‖ q) + Σj∈Jβj(p ‖ qj)+

Σ{τ.(pi ‖ qj) | αi = β̄j} .

In practice, to save writing, it’s often best to use a combination of the ex-
pansion laws for parallel composition, restriction and relabelling. For example,
suppose

p ∼ Σi∈Iαi.pi and q ∼ Σj∈Jβj .qj .

CHAPTER 5. PROCESS EQUIVALENCE 72

Then,

(p ‖ q) \ L ∼Σ{αi(pi ‖ q) \ L | αi /∈ L}+ Σ{βj(p ‖ qj \ L) | βj /∈ L}+
Σ{τ.(pi ‖ qj) \ L | αi = β̄j} .

Exercise 5.13 Write down an expansion law for three components set in par-
allel. 2

As an example of the expansion laws in use we study a binary semaphore in
parallel with two processes which are imagined to get the semaphore when they
wish to access their critical region. Define

Sem
def
= get. put. Sem ,

P1
def
= ¯get. a1. b1. ¯put.P1 ,

P2
def
= ¯get. a2. b2. ¯put.P2 .

Combining them together, we obtain

SY S ≡ (P1 ‖ P2 ‖ Sem) \ {get, put} .

To understand the behaviour of SY S, we apply the expansion laws and
derive:

SY S

∼ (¯get.a1.b1. ¯put.P1 ‖ ¯get.a2.b2. ¯put.P2 ‖ get.put.Sem) \ {get, put}

∼ τ.((a1.b1. ¯put.P1 ‖ P2 ‖ put.Sem) \ {get, put}) + τ.((P1 ‖ a2.b2. ¯put.P2 ‖ put.Sem) \ {get, put})

∼ τ.a1.b1.((¯put.P1 ‖ P2 ‖ put.Sem) \ {get, put}) + τ.a2.b2.((P1 ‖ ¯put.P2 ‖ put.Sem) \ {get, put})

∼ τ.a1.b1.τ.((P1 ‖ P2 ‖ Sem) \ {get, put}) + τ.a2.b2.τ.((P1 ‖ P2 ‖ Sem) \ {get, put})

∼ τ.a1.b1.τ.SY S + τ.a2.b2.τ.SY S .

Exercise 5.14 A semaphore with capacity 2 in its start state can be defined
as the process Twosem0 in the definition

Twosem0
def
= get.Twosem1 ,

Twosem1
def
= get.Twosem2 + put.Twosem0 ,

Twosem2
def
= put.Twosem1 .

Exhibit a bisimulation showing that

Twosem0 ∼ Sem ‖ Sem ,

where Sem is the unary semaphore above. 2

CHAPTER 5. PROCESS EQUIVALENCE 73

5.5 Weak bisimulation and observation congru-
ence

Strong bisimilarity discriminates between, for example, the three CCS processes
nil, τ.nil and τ.τ.nil, though their only difference is in the number of invisible
τ -actions they perform. The τ -actions are invisible in the sense that no process
can interact with a τ -action, although they can have a marked effect on the
course a computation follows as in the process a.p+ τ.q, where the τ -action can
make a preemptive choice.

In order to take better account of the invisibility of τ -actions, Hennessy and
Milner developed weak bisimilarity. In fact weak bisimilarity can be viewed
as strong bisimilarity on a transition system modified to make the number of
τ -actions invisible.

For CCS processes, define

p
τ⇒ q iff p(

τ→)∗q ,

i.e. p can do several, possibly zero, τ -actions, to become q. Thus p
τ⇒ p, for any

CCS process p. For any non-τ action l, define

p
l⇒ q iff ∃r, r′. p τ⇒ r & r

l→ r′ & r′
τ⇒ q .

A weak bisimulation is a binary relation R between CCS processes with the
following property: If pRq then

(i)∀λ, p′. p λ⇒ p′ ⇒ ∃q′.q λ⇒ q′ & p′Rq′ , and

(ii)∀λ, q′. q λ⇒ q′ ⇒ ∃p′.p λ⇒ p′ & p′Rq′ .

Two processes p and q are weakly bisimilar, written p
∼∼ q, iff there is a weak

bisimulation relating them.

So, weak bisimilarity is simply strong bisimilarity but based on
λ⇒- rather

than
λ→-transitions.

The following exercise guides you through the key properties of weak bisim-
ulation.

Exercise 5.15 Show that if p ∼ q, then p
∼∼ q.

Show p
∼∼ τ.p.

Explain why, if p
∼∼ q, then

α.p
∼∼ α.q , p ‖ r ∼∼ q ‖ r , p \ L ∼∼ q \ L , p[f]

∼∼ q[f] .

Explain why, though nil
∼∼ τ.nil, it is not the case that nil+a.nil

∼∼ τ.nil+a.nil.
2

As the exercise above shows, it is possible for p
∼∼ q and yet p + r 6∼∼ q + r.

The failure of this congruence property led Milner to refine weak bisimulation
to observation congruence which takes more careful account of initial actions.

CHAPTER 5. PROCESS EQUIVALENCE 74

Processes p, q are observation congruent iff

p
α→ p′ ⇒ ∃q′. q τ⇒ α→ τ⇒ q′ & p′

∼∼ q′ , and

q
α→ q′ ⇒ ∃p′. p τ⇒ α→ τ⇒ p′ & p′

∼∼ q′ .

Consequently, if processes p, q are strongly bisimilar, then they are observation
congruent.

Exercise 5.16 Writing = for observation congruence, show that if p = q, then
p+r = q+r. (In fact, all the expected congruence properties hold of observation
congruence—see [11] ch.7.) 2

5.6 On interleaving models

The two CCS processes a.b.nil+b.a.nil and a.nil ‖ b.nil have isomorphic transi-
tion systems according to the operational semantics, and so are certainly bisimi-
lar, despite one being a parallel composition and the other not even containing a
parallel composition. The presentation of parallelism here has, in effect, treated
parallel composition by regarding it as a shorthand for nondeterministic inter-
leaving of atomic actions of the components. This is despite the possibility that
the a- and b-actions in a.nil ‖ b.nil might be completely separate and indepen-
dent of each other. Consider too the parallel composition a.nil ‖ rec(P = τ.P).
This process might perform an infinite sequence of τ -actions without performing
the a-action, even though the a-action might in reality be completely indepen-
dent of all the τ -actions; a biproduct of an interleaving model is that processes
compete for execution time. If one were interested in the independence of ac-
tions the transition semantics is too abstract. We turn next to a model designed
to make such independence explicit.

Chapter 6

Petri nets

This chapter provides a quick introduction to Petri nets, probably the best
known example of a model which makes explicit the causal independence of
events. Nets will be applied in the next chapter in order to give an event-based
semantics and analysis of security protocols.

6.1 Preliminaries on multisets

The explanation of general Petri nets involves a little algebra of multisets (or
bags), which are like sets but where multiplicities of elements matters. Its
convenient to also allow infinite multiplicities, so we adjoin an extra element ∞
to the natural numbers.

Extend the natural numbers ω by the new element ∞ and write ω∞ =
ω ∪ {∞}. Extend addition on integers to the element ∞ by defining ∞ + n =
n +∞ = ∞, for all n ∈ ω∞. We can also extend subtraction to an operation
between ω∞, on the left of the minus, and ω, on the right, by taking

∞− n =∞ ,

for all n ∈ ω. In this way we avoid∞−∞! We also extend the order on numbers
by setting n ≤ ∞ for any n ∈ ω∞.

A ∞-multiset over a set X is a function f : X → ω∞, associating a nonneg-
ative number or∞ with each x ∈ X; here it is usual to write fx instead of f(x).
Write m∞X for the set of ∞-multisets over X. (It is helpful to think of a ∞-
multiset f over X as a kind of vector in a space m∞X with basis X serving to
index its components, or entries, fx.) We call multisets those∞-multisets whose
entries are never∞. Write mX for the space of multisets over X. In particular,
the null multiset over X is the function x 7→ 0 for any x ∈ X. We can iden-
tify subsets of X with those multisets of f ∈mX such that fx ≤ 1 for all x ∈ X.

75

CHAPTER 6. PETRI NETS 76

Some operations on multisets
Useful operations and relations on ∞-multisets are induced pointwise by

operations and relations on integers, though some care must be taken to avoid
negative entries and operations with ∞.

Let f, g ∈m∞X. Define

f ≤ g ⇐⇒ ∀x ∈ X. fx ≤ gx.

Clearly ∞-multisets are closed under + but not, in general, under −. Define

(f + g)x = fx + gx ,

for all x ∈ X. If g ≤ f , for ∞-multiset f and multiset g, then their difference
f − g is a multiset with

(f − g)x = fx − gx .

6.2 General Petri nets

Petri nets are a well-known model of parallel computation. They come in several
variants. Roughly, a Petri net can be thought of as a transition system where,
instead of a transition occurring from a single global state, an occurrence of an
event is imagined to affect only the conditions in its neighbourhood.

We start with the definition of general nets, where multisets play an explicit
role. Later we will specialise to two subclasses of nets for the understanding of
which only sets need appear explicitly; the implicit use of multisets does however
help explain the nets’ behaviour.

A general Petri net (often called a place-transition system) consists of

- a set of conditions (or places), P ,

- a set of events (or transitions), T ,

- a precondition map pre : T →mP , which to each t ∈ T assigns a multiset
of conditions pre(t). It is traditional to write ·t for pre(t).

- a postcondition map post : T → m∞P which to each t ∈ T assigns a
∞-multiset of conditions post(t), traditionally written t·.

- a capacity function Cap ∈m∞P which to each p ∈ P assigns a nonnegative
number or ∞, bounding the multiplicity to which a condition can hold; a
capacity of ∞ means the capacity is unbounded.

A state of a Petri net consists of a marking which is an ∞-multiset M over
P bounded by the capacity function, i.e.

M≤ Cap .

A marking captures a notion of distributed, global state.

CHAPTER 6. PETRI NETS 77

6.2.1 The token game for general nets

Markings can change as events occur, precisely how being expressed by the
transitions

M t→M′

events t determine between markings M and M′.
For markings M, M′ and t ∈ T , define

M t−→ M′ iff ·t ≤M and M′ =M− ·t+ t· .

An event t is said to have concession (or be enabled) at a markingM iff its pre-
conditions are met by the marking and its occurrence would lead to a legitimate
marking, i.e. iff

·t ≤M and M− ·t+ t· ≤ Cap .

There is a widely-used graphical notation for nets in which events are rep-
resented by squares, conditions by circles and the pre- and postcondition maps
by directed arcs weighted by nonzero numbers or ∞. A marking is represented
by the presence of tokens on a condition, the number of tokens representing the
multiplicity to which the condition holds. So, for example, a marking M in
which a

Mp = 2, Mq = 5 and Mr =∞,

would be represented by 2 tokens residing on the condition p, a number of 5
tokens on condition q and countably infinitely many tokens residing on r. As an
event t occurs for each condition p it removes (·t)p tokens from p and sets (t·)p
tokens onto p—for the event to have concession it must be possible to do this
without violating the capacity bounds. Note that it is possible for a condition
p to be both a precondition and postcondition of the same event t in the sense
that both (·t)p 6= 0 and (t·)p 6= 0; then there would be arcs in both directions
between p and t.

Example:
(1) Assuming that no capacities are exceeded, for example if the conditions
have unbounded capacities, the occurrence of the event affects the marking in
the way shown:

��
��
��
��

��
��
��
��

��
�� ��

��

��
�� ��

��H
HHHj

�
�
��>

-
H
HHHj

�
�
��

-

2
2

1

2

1

2

•
• •

•

•

•

•
• •

goes to

CHAPTER 6. PETRI NETS 78

(2) The following simple net represents, for example, a buffer which can store
up to five identical items, into which an item is put on each occurrence of the
event in. Initially it contains three items. The event in has no preconditions so
can occur provided in so doing it does not cause the capacity to be exceeded.
Consequently, the event in can only occur twice.

&%
'$

-

capacity 5

1
in •

• •

The following simple net represents a buffer which can store up to five identical
items, into which 2 items are put on each occurrence of the event in, and out of
which one item is taken on each occurrence of the event out. Initially it contains
three items. If the event out does not occur, then the event in can only occur
once, but can occur additionally as the buffer is emptied through occurrences
of out.

&%
'$

- -

capacity 5

2 1
in out•

• •

(3) Events can be in conflict, in the sense that the occurrence of one excludes
the occurrence of the other, either through competing at their preconditions, as
in:

&%
'$

-�2 •
• • 2

or through competing at their postconditions if the occurrence of both would
violate the capacity bounds, as in:

&%
'$

- �2 •
• •

capacity 5

2

This shows how nondeterminism can be represented in a net. (4) The behaviour
of general nets can be quite complicated, even with unbounded capacities, as is
assumed of the net below:

CHAPTER 6. PETRI NETS 79

�

$��'

&-

��
��
��
��

��
��
��
��

��
��
��
��

HHHHj

�
�
��>

-

�
�
��>

- HH
HHj

�
�
��>2

2

1

•
• •

•

•

2

2
1

1

1

[In fact, the use of finite capacities does not lead to any richer behaviour over nets
without any capacity constraints; for the conditions with a finite capacity there
is a way to adjoin “complementary” conditions so that all capacities may be set
to ∞ without upsetting the net’s behaviour—a special case of this construction
is given in Exercise 6.4 below.]

Exercise 6.1 Explain in words the behaviour of the net drawn in (4) of the
example above.

We won’t make use of it here, but more generally one can talk of a multiset
of events having concession, and whose joint, or concurrent, occurrence leads
from one marking to another. The concurrent, or independent, occurrence of
events is more easily understood for simpler nets of the kind we consider next.

6.3 Basic nets

We instantiate the definition of general Petri nets to a case where in all the
multisets the multiplicities are either 0 or 1, and so can be regarded as sets.
In particular, we take the capacity function to assign 1 to every condition, so
that markings become simply subsets of conditions. The general definition now
specialises to the following.

A basic Petri net consists of

- a set of conditions, B,

- a set of events, E, and

- two maps: a precondition map pre : E→Pow(B), and a postcondition map
post : E → Pow(B). We can still write ·e for the preconditions and e· for
the postconditions of e ∈ E.
[Note that it is possible for a condition to be both a precondition and a

postcondition of the same event.]

Now a marking consists of a subset of conditions, specifying those conditions
which hold.

CHAPTER 6. PETRI NETS 80

6.3.1 The token game for basic nets

Markings can change as events occur, precisely how being expressed by the
transitions

M e→M′

events e determine between markings M,M′.
For M,M′ ⊆ B and e ∈ E, define

M e→M′ iff (1) ·e ⊆M & (M\·e) ∩ e· = ∅ (Concession), and

(2) M′ = (M\·e) ∪ e· .

Property (1) expresses that the event e has concession at the marking M. Re-
turning to the definition of concession for general nets, of which it is an instance,
it ensures that the event does not load another token on a condition that is al-
ready marked. Property (2) expresses in terms of sets the marking that results
from the occurrence of an event. So, an occurrence of the event ends the holding
of its preconditions and begins the holding of its postconditions.

There is an alternative characterisation of the transitions between markings
induced by event occurrences:

Proposition 6.2 Let M,M′ be markings and e an event of a basic net. Then

M e→M′ iff ·e ⊆M & e· ⊆M′ & M\·e =M′ \ e·.

Exercise 6.3 Prove the proposition above. 2

For basic nets, it is simple to express when two events are independent of
each other; two events are independent if their neighbourhoods of conditions
are disjoint. Events e0, e1 are independent iff

(·e0 ∪ e·0) ∩ (·e1 ∪ e·1) = ∅ .

We illustrate by means of a few small examples how basic nets can be used to
model nondeterminism and concurrency. We can still make use of the commonly
accepted graphical notations for nets, though now conditions either hold or don’t
hold in a marking and the directed arcs always implicitly carry multiplicity 1.
The holding of a condition is represented by marking it by a single “token”.
The distribution of tokens changes as the “token game” takes place; when an
event occurs the tokens are removed from its preconditions and placed on its
postconditions.

Example:
(1) Concurrency: j j

kk6
6 6

6

• •

1 2

CHAPTER 6. PETRI NETS 81

The events 1 and 2 can occur concurrently, in the sense that they both have
concession and are independent in not having any pre or post conditions in
common.
(2)

j j

m

j i

m
6 6

Z
ZZ}

�
��> @

@@R

.

�
��=

? ?
1 2

•

• •
Forwards conflict: Backwards conflict:

1 2

Either one of events 1 and 2 can occur, but not both. This shows how nonde-
terminism can be represented in a basic net.

(3) Basic nets are generally more complicated of course, and may possess
looping behaviour. In the net below, initially, at the marking shown, the events
1, 2 and 3 all have concession. The events 1 and 3 can occur concurrently as
can the events 2 and 3. The events 1 and 2 are however in conflict with each
other, and only one of them can occur. Once either (1 and 3) or (2 and 3) have
occurred the event 4 has concession, and its occurrence will the restore the net
back to its initial marking.

& %6 6� %

$' $'

l l

ll

S
SSo

�
� 6

6
�
���

@
@I

�
�
�
��3

Q
Q
Q

QQk

1 2 3

4

• •

(4) Contact:

mn m- - - -••
1 2

The event 2 has concession. The event 1 does not—its post condition holds—and
it can only occur after 2.

Example (4) above illustrates contact. In general, there is contact at a
marking M when for some event e

·e ⊆M & (M\·e) ∩ e· 6= ∅.

CHAPTER 6. PETRI NETS 82

Contact has a paradoxical feel to it; the occurrence of an event is blocked through
conditions, which it should begin, holding already. However blocking through
contact is perfectly consistent with the understanding that the occurrence of an
event should end the holding of its preconditions and begin the holding of its
postconditions; if the postconditions already hold, and are not also preconditions
of the event, then they cannot begin to hold on the occurrence of the event.
Often contact is avoided at the markings which can arise in the behaviour of
nets. For example, often nets come equipped with an initial marking from which
all future markings are reachable through the occurrences of events. Such nets
are called safe when contact never occurs at any reachable marking, and many
constructions on nets preserve safeness. In fact, any net can be turned into a
safe net with essentially the same behaviour.

Exercise 6.4 Define the complement of a condition b in a net to be the condi-
tion b̃ such that

∀ events e. b̃ ∈ ·e iff b ∈ e· & b /∈ ·e ,
b̃ ∈ e· iff b ∈ ·e & b /∈ e·

—so the starting and ending events of b̃ are the reverse of those of b.
Here’s a way to make a non-safe net (so a net with an initial marking) into a

safe net with the same behaviour: adjoin, in addition to the existing conditions
b all their complements, extending the pre- and postcondition maps accordingly,
and take b̃ to be in the initial marking iff b is not in the initial marking.

Perform this operation on the net with contact exampled above. Why is the
result safe? 2

One important use of Petri nets and related independence models has been in
“partial-order” model-checking, where the independence of events is exploited in
exploring the reachable state space of a process. A net markingM is reachable
if there is a sequence of events

e1, · · · ei, ei+1 · · · ek

such that
M0

e1−→ · · · ei−→ Mi
ei+1−→ Mi+1 · · ·

ek−→ Mk ,

whereM0 is the initial marking andMk =M. If two consecutive events ei, ei+1

are independent, then the sequence

e1, · · · ei+1, ei · · · ek ,

with the two events interchanged, also leads to M. Two such sequences are
said to be trace-equivalent. Clearly in seeking out the reachable markings it
suffices to follow only one event sequence up to trace equivalence. This fact
is the corner stone of partial-order model-checking, the term “partial order”
referring to a partial-order of event occurrences that can be extracted via trace
equivalence.

CHAPTER 6. PETRI NETS 83

Exercise 6.5 Check that, in a net, if

M e1−→ M1
e2−→ M′

where the events e1, e2 are independent, then

M e2−→ M2
e1−→ M′

for some marking M2. 2

Exercise 6.6 Try to describe the operations of prefix, sum and parallel com-
position of pure CCS in terms of (graphical) operations on Petri nets. Assume
that the nets’ events carry labels. (This will be illustrated in the lectures.) 2

6.4 Nets with persistent conditions

Sometimes we have use for conditions which once established continue to hold
and can be used repeatedly. This is true of assertions in traditional logic, for
example, where once an assertion is established to be true it can be used again
and again in the proof of further assertions. Similarly, if we are to use net events
to represent rules of the kind we find in inductive definitions, we need conditions
that persist.

Persistent conditions can be understood as an abbreviation for conditions
within general nets which once they hold, do so with infinite multiplicity. Con-
sequently any number of events can make use of them as preconditions but
without their ever ceasing to hold. Such conditions, having infinite capacity,
can be postconditions of several events without there being conflict. Let us be
more precise.

We modify the definition of basic net given above by allowing certain condi-
tions to be persistent. A net with persistent conditions will still consist of events
and conditions related by pre- and postcondition maps which to an event will
assign a set of preconditions and a set of postconditions. But, now amongst the
conditions are the persistent conditions forming a subset P . A marking of a net
with persistent conditions will be simply a subset of conditions, of which some
may be persistent.

We can understand a net with persistent conditions as a general net with
the same sets for conditions and events. (It is this interpretation that leads to
the token game for nets with persistent conditions.) The general net’s capacity
function will be either 1 or∞ on a condition, being∞ precisely on the persistent
conditions. When p is persistent, p ∈ e· is interpreted in the general net as
(e·)p = ∞, and p ∈ ·e as (·e)p = 1. A marking of a net with persistent
conditions will correspond to a marking in the general Petri net in which those
persistent conditions which hold do so with infinite multiplicity.

Graphically, we’ll distinguish persistent conditions by drawing them as dou-
ble circles: l���

CHAPTER 6. PETRI NETS 84

6.4.1 Token game for nets with persistent conditions

The token game is modified to account for the subset of conditions P being
persistent. Let M and M′ be markings (i.e. subsets of conditions), and e an
event. Define

M e→M′ iff ·e ⊆M & (M\ (P ∪ ·e)) ∩ e· = ∅ (e has concession), and

M′ = (M\ ·e) ∪ e· ∪ (M∩ P) .

The token game of a net with persistent conditions fits our understanding
of persistency, and specifically it matches the token game in the interpretation
as a general net.

We will find nets with persistent conditions useful in modelling and analysing
security protocols.

6.5 Other independence models

Petri nets are an example of an independence model, in the sense that they
make explicit the independence of events. Other examples of independence
models are Mazurkiewicz trace languages (languages subject to trace equiv-
alence determined by the independence of actions), event structures (sets of
events with extra relations of causality and conflict), pomset languages (lan-
guages of labelled partial orders of events) and transition systems with an extra
relation of independence on transitions or actions. Despite their superficial dif-
ferences, independence models, including nets, are closely related, and there are
translations between the different models (see [21]). For example, just as one
can unfold a transition system to a tree, so can one unfold a net to an occur-
rence net, a trace language, or an event structure. Trace languages give rise
to event structures with a partial order of causal dependence on events (the
reason for the term “partial order” model checking). Not only do Petri nets
determine transition systems with independence (with the markings as states),
but conversely transition systems with independence give rise to Petri nets (the
conditions being built out of certain subsets of states and transitions).

Chapter 7

Security protocols

Security protocols raise new issues of correctness. A process language SPL
(Security Protocol Language) in which to formalise security protocols is intro-
duced. Its Petri-net semantics supports a form of event-based reasoning in the
analysis of security protocols (similar to that used in strand spaces and Paul-
son’s inductive method). Several reasoning principles are extracted from the
semantics and applied in proofs of secrecy and authentication.1

7.1 Introduction

Security protocols are concerned with exchanging messages between agents via
an untrusted medium or network. The protocols aim at providing guarantees
such as confidentiality of transmitted data, user authentication, anonymity etc.
A protocol is often described as a sequence of messages, and usually encryption
is used to achieve security goals.

As an example consider the Needham-Schröder-Lowe (NSL) protocol:

(1) A −→ B : {m,A}Pub(B)

(2) B −→ A : {m,n,B}Pub(A)

(3) A −→ B : {n}Pub(B)

This protocol, like many others of its kind, has two roles: one for the initiator,
here A, and one for the responder, here B. It is a public-key protocol that
assumes an underlying public-key infrastructure, such as RSA. Both A and B
have their own, secret private keys. Public keys in contrast are known to all
participants in the protocol. In addition, the NSL protocol makes use of nonces,
m, n. One can think of them as newly generated, unguessable numbers whose
purpose is to ensure the freshness of messages.

Suppose A and B are agent names standing say for agents Alice and Bob.
The protocol describes an interaction between the initiator Alice and the re-
sponder Bob as following: Alice sends to Bob a new nonce m together with her

1This chapter is based on joint work with Federico Crazzolara.

85

CHAPTER 7. SECURITY PROTOCOLS 86

own agent name A both encrypted with Bob’s public key. When the message
is received by Bob, he decrypts it with his secret private key. Once decrypted,
Bob prepares an encrypted message for Alice that contains a new nonce together
with the nonce received from Alice and his name B. Acting as responder, Bob
sends it to Alice, who recovers the clear text using her private key. Alice con-
vinces herself that this message really comes from Bob, by checking whether she
got back the same nonce sent out in the first message. If that is the case, she
acknowledges Bob by returning his nonce. He will do a similar test.

The NSL protocol aims at distributing nonces m and n in a secure way,
allowing no one but the initiator and the responder to know them (secrecy).
Another aim of the protocol is authentication: Bob should be guaranteed that
m is indeed the nonce sent by Alice.

The protocol should be thought of as part of a longer message-exchange
sequence. After initiator and responder complete a protocol exchange, they will
continue communication, possibly using the exchanged nonces to establish a
session key.

Even if protocols are designed carefully, following established criteria, they
may contain flaws. Protocols involve many concurrent runs among a set of
distributed users. Then, the NSL protocol is prone to a “middle-man” attack if
the name B is not included in the second message. This attack on the original
protocol of Needham and Schröder was discovered by Gavin Lowe. B is not
included in the second message. Consider the original protocol of Needham and
Schröder:

(1) A −→ B : {m,A}Pub(B)

(2) B −→ A : {m,n}Pub(A)

(3) A −→ B : {n}Pub(B)

The following is a sequence of message exchanges, following the above protocol
and leading to an attack.

A E B

•
{m,A}Pub(E)

// •

•
{m,A}Pub(B)

// •

• •
{m,n}Pub(A)

oo

•
{n}Pub(E)

// •

•
{n}Pub(B)

// •

CHAPTER 7. SECURITY PROTOCOLS 87

The agent E not only gets to know the “secret” nonce n but also convinces B
that he is talking to A, when A is instead talking to E. It is both an attack on
secrecy and on the desired authentication guarantee for B.

Exercise 7.1 Suppose Alice wishes to send a secret message to Bob by an
untrustworthy messager. Alice has her own padlock, the key to which only she
possesses. Similarly, Bob has his own padlock and key. Alice also has a casket
which is impregnable when padlocked. How can Alice send her secret message
to Bob without revealing it to the untrustworthy messenger? 2

7.1.1 Security properties

When we talk about secrecy we mean:

“A message M is secret if it never appears unprotected on the net-
work.”

A common definition of authentication is an agreement property defined for
instance by Lowe:

“An initiator A agrees with a responder B on same message M if
whenever A completes a run of the protocol as initiator, using M
apparently with B, then there exists a run of the protocol where B
acts as responder using M apparently with A.”

7.2 SPL—a language for security protocols

In order to be more explicit about the activities of participants in a protocol and
those of a possible attacker we design a little process language for the purpose.
The language SPL(Security Protocol Language) is close to an asynchronous
Pi-Calculus of Milner and is similar to the Spi-calculus of Abadi and Gordon.

7.2.1 The syntax of SPL

We start by giving the syntactic sets of the language:

• An infinite set of Names, with elements n,m, · · · , A,B, · · ·.

• Variables over names x, y, · · · , X, Y, · · ·.

• Variables over messages ψ,ψ′, ψ1, · · ·.

• Indices i ∈ Indices with which to index components of parallel composi-
tions.

The other syntactic sets of the language are described by the grammar shown
in Figure 7.1. Note we use “vector” notation; for example, the “vector” ~x
abbreviates some possibly empty list x1, · · · , xl.

CHAPTER 7. SECURITY PROTOCOLS 88

Name expressions v ::= n,A, · · · | x,X, · · ·
Key expressions k ::= Pub(v) | Priv(v) | Key(v1, v2)
Messages M ::= v | k | M1,M2 | {M}k |ψ
Processes p ::= out new~xM.p |

in pat~x~ψM.p |
‖i∈Ipi

Figure 7.1: Syntax of SPL

We take fv(M), the free variables of a a message M , to be the set of variables
which appear in M , and define the free variables of process terms by:

fv(out new~xM.p) = (fv(p) ∪ fv(M))\{~x}
fv(in pat~x~ψM.p) = (fv(p) ∪ fv(M))\{~x, ~ψ})
fv(‖i∈Ipi) =

⋃
i∈I fv(pi)

As usual, we say that a process without free variables is closed, as is a
message without variables. We shall use standard notation for substitution into
the free variables of an expression, though we will only be concerned with the
substitution of names or closed (variable-free) messages, obviating the problems
of variable capture.

We use Pub(v), Priv(v) for the public, private keys of v, and Key(v1, v2)
for the symmetric key of v1 and v2. Keys can be used in building up encrypted
messages. Messages may consist of a name or a key, be the composition of two
messages (M1,M2), or an encrypted message {M}k representing the message
M encrypted using the key k.

An informal explanation of the language:

out new~xM.p This process chooses fresh, distinct names ~n and binds them to
the variables ~x. The message M [~n/~x] is output to the network and the
process resumes as p[~n/~x]. The communication is asynchronous in the
sense that the action of output does not await input.

The new construct abstracts out an important property of a value chosen
randomly from some large set; such a value is likely to be new.

in pat~x~ψM.p This process awaits an input that matches the pattern M for some
binding of the pattern variables ~x~ψ and resumes as p under this binding.
All the pattern variables ~x~ψ must appear in the pattern M .

‖i∈Ipi This process is the parallel composition of all components pi for i in
the indexing set I. The set I is a subset of Indices. Indices will help us
distinguish in what agent and what run a particular action occurs. The nil
process, written nil, abbreviates the empty parallel composition (where
the indexing set is empty).

Convention 7.2 It simplifies the writing of process expressions if we adopt
some conventions.

CHAPTER 7. SECURITY PROTOCOLS 89

First, we simply write
out M.p

when the list of “new” variables is empty.
Secondly, and more significantly, we allow ourselves to write

· · · in M.p · · ·

in an expression, to be understood as meaning the expression

· · · in pat~x~ψM.p · · ·

where the pattern variables ~x, ~ψ are precisely those variables left free in M by
the surrounding expression. For example, we can describe a responder in NSL
as the process

Resp(B) ≡ in{x, Z}Pub(B).
out new y {x, y,B}Pub(Z).
in {y}Pub(B).
nil

For the first input, the variables x, Z in {x, Z}Pub(B) are free in the whole
expression, so by convention are pattern variables, and we could instead write

in pat x, Z {x, Z}Pub(B). · · · .

On the other hand, in the second input the variable y in {y}Pub(B) is bound by
the outer new y · · · and so by the convention is not a pattern variable, and has
to be that value sent out earlier.

Often we won’t write the nil process explicitly, so, for example, omitting its
mention at the end of the responder code above.

A parallel composition can be written in infix form via the notation

p1‖p2 · · · ‖pr ≡ ‖i∈{1,···,r}pi .

Replication of a process, !p, abbreviates ‖i∈ωp, consisting of a countably
infinite copies of p set in parallel.

The set of names of a process is defined to be all the names that appear in
its subterms and submessages (even under encryption).

Note that the language permits the coding of privileged agents such as key
servers, whose power is usually greater than one would anticipate of an attacker.
As an extreme, here is code for a key-server gone mad, which repeatedly outputs
private keys unprotected onto the network on receiving a name as request

!(in X. out Priv(X).nil) .

CHAPTER 7. SECURITY PROTOCOLS 90

Init(A,B) ≡ out new x{x,A}Pub(B).
in {x, y,B}Pub(A).
out{y}Pub(B).
nil

Resp(B) ≡ in{x, Z}Pub(B).
out new y {x, y,B}Pub(Z).
in {y}Pub(B).
nil

Figure 7.2: Initiator and responder code

Spy1 ≡ in ψ1.in ψ2.out(ψ1, ψ2).nil (composing)
Spy2 ≡ in(ψ1, ψ2).out ψ1.out ψ2.nil (decomposing)
Spy3 ≡ in x.in ψ.out {ψ}Pub(x).nil (encryption)
Spy4 ≡ in Priv(x).in {ψ}Pub(x).out ψ.nil (decryption)

Spy ≡ ‖i∈{1,...,4}Spyi

Figure 7.3: Attacker code

7.2.2 NSL as a process

We can program the NSL protocol in the language SPL, and so formalise the
introductory description given in the Section 7. We assume given a set of agent
names, Agents, of agents participating in the protocol. The agents partici-
pating in the NSL protocol play two roles, as initiator and responder with any
other agent. Abbreviate by Init(A,B) the program of initiator A ∈ Agents
communicating with B ∈ Agents and by Resp(B) the program of responder
B ∈ Agents. The code of both an arbitrary initiator and an arbitrary responder
is given in Figure 7.2. In programming the protocol we are forced to formalise
aspects that are implicit in the informal description, such as the creation of new
nonces, the decryption of messages and the matching of nonces.

We can model the attacker by directly programming it as a process. Figure
7.3, shows a general, active attacker or “spy”. The spy has the capability of
composing eavesdropped messages, decomposing composite message, and using
cryptography whenever the appropriate keys are available; the available keys are
all the public keys and the leaked private keys. By choosing a different program
for the spy we can restrict or augment its power, e.g., to passive eavesdropping
or active falsification.

The whole system is obtained by putting all components in parallel. Com-
ponents are replicated, to model multiple concurrent runs of the protocol. The
system is described in Figure 7.4.

CHAPTER 7. SECURITY PROTOCOLS 91

Pinit ≡ ‖A,B ! Init(A,B)
Presp ≡ ‖A ! Resp(A)
Pspy ≡ ! Spy

NSL ≡ ‖i∈{resp,init,spy} Pi

Figure 7.4: The NSL process

Induction on size

Often definitions and proofs by structural induction won’t suffice, and we would
like to proceed by induction on the “size” of closed process expressions, i.e.,
on the number of prefix and parallel composition operations in the process
expression. But because of infinite parallel compositions, expressions may not
contain just a finite number of operations, so we rely on the following well-
founded relation.

Definition: Define the size relation on closed process terms:

p[~n/~x] ≺ (out new~xM.p) ,

for any substitution of names ~n/~x.

p[~n/~x, ~L/~ψ] ≺ (in pat~x~ψM.p) ,

for any substitution of names ~n/~x, and closed messages ~L/~ψ.

pj ≺ (‖i∈Ipi) , for any index j ∈ I .

Proposition 7.3 The size relation ≺ is well-founded.

Proof: Let @1 denote the subexpression relation between process expressions;
so p′ @1 p iff p′ is an immediate subexpression of p. Then

q′ ≺ q ⇐⇒ q′ ≡ p0[σ] & p0 @1 q

for some process expression p0 and some substitution σ making q′ a closed
substitution instance of p0. A simple structural induction on q shows that

p @1 q[σ]⇒ ∃q′ @1 q. p ≡ q′[σ] .

Hence any infinite descending ≺-chain would induce an infinite descending @1-
chain, and so a contradiction. 2

As we go down with respect to the relation ≺ so does the “size” of the closed
term in the sense that less prefix and parallel operations appear in the closed
term. This cannot go on infinitely. We shall often do proofs by well-founded
induction on the relation ≺ which we will call “induction on the size” of closed
terms.2

2Alternatively, using ordinals, we could define the size measure size(p) of a process term
p to be an ordinal measuring the height of the number of process operations in a term, e.g.

size(out new~xM.p) = 1 + size(p), size((‖i∈Ipi) = 1 + supi∈Isize(pi) .

CHAPTER 7. SECURITY PROTOCOLS 92

(output) Provided the names ~n are all distinct and not in s,

〈out new ~xM.p, s, t〉 out new ~nM [~n/~x]−→ 〈p[~n/~x], s ∪ {~n}, t ∪ {M [~n/~x]}〉

(input) Provided M [~n/~x, ~N/~ψ] ∈ t,

〈in pat~x~ψM.p, s, t〉 in M [~n/~x, ~N/~ψ]−→ 〈p[~n/~x, ~N/~ψ], s, t〉

(par)

〈pj , s, t〉
α−→ 〈p′j , s′, t′〉

〈‖i∈Ipi, s, t〉
j:α−→ 〈‖i∈Ipi[p′j/j], s′, t′〉

j ∈ I

Figure 7.5: Transition semantics

7.2.3 A transition semantics

A configuration consists of a triple

〈p, s, t〉

where p is a closed process term, s is a subset of the set of names Names, and
t is a subset of closed (i.e., variable-free) messages. We say the configuration
is proper iff the names in p and t are included in s. The idea is that a closed
process p acts in the context of the set of names s that have been used so far,
and the set of messages t which have been output, to input a message or to
generate new names before outputting a message.

Actions α may be inputs or new-outputs, possibly tagged by indices to show
at which parallel component they occur:

α ::= out new ~n.M | in M | i : α

where M is a closed message, ~n are names and i is an index drawn from Indices.
We write out M for an output action, outputting a message M , where no new
names are generated.

How configurations evolve is expressed by transitions

〈p, s, t〉 α−→ 〈p′, s′, t′〉 ,

given by the rules displayed in Figure 7.5.
The transition semantics allows us to state formally many security proper-

ties. It does not support directly local reasoning of the kind one might wish
to apply in the analysis of security protocols. To give an idea of the difficulty,
imagine we wished to establish that the nonce generated by B as responder in

CHAPTER 7. SECURITY PROTOCOLS 93

NSL was never revealed as an open message on the network. More exactly:

Secrecy of responder’s nonce:

Suppose Priv(A), P riv(B) do not appear as the contents of any
message in t0. For all runs

〈NSL, s0, t0〉
α1−→ · · · 〈pr−1, sr−1, tr−1〉

αr−→ · · · ,

where 〈NSL, s0, t0〉 is proper, if αr has the form resp : B : j :
out new n {m,n,B}Pub(A), then n /∈ tl, for all l ∈ ω.

A reasonable way to prove such a property is to find a stronger invariant, a
property which can be shown to be preserved by all the reachable actions of
the process. Equivalently, one can assume that there is an earliest action αl in
a run which violates the invariant, and derive a contradiction by showing that
this action must depend on a previous action, which itself violates the invariant.

An action might depend on another action through being, for example, an
input depending on a previous output, or simply through occurring at a later
control point in a process. A problem with the transition semantics is that
it masks such local dependency, and even the underlying process events on
which the dependency rests. The wish to support arguments based on local
dependency leads to an event-based semantics.

7.3 A net from SPL

In obtaining an event-based semantics, we follow the lead from Petri nets, and
define events in terms of how they affect conditions. We can discern three kinds
of conditions: control, output and name conditions.

The set of control conditions C consists of output or input processes, perhaps
tagged by indices, and is given by the grammar

b ::= out new ~xM.p | in pat~x~ψM.p | i : b

where i ∈ Indices. A condition in C stands for the point of control in a
process. When C is a subset of control conditions we will write i : C to mean
{i : b | b ∈ C}.

The set of network conditions O consists of closed message expressions. An
individual condition M in O stands for the message M having been output on
the network. Network conditions are assumed to be persistent; once they are
made to hold they continue to hold forever.

The set of name conditions is precisely the set of names Names. A condition
n in S stands for the name n being in use.

We define the initial conditions of a closed process term p, to be the subset

CHAPTER 7. SECURITY PROTOCOLS 94

Ic(p) of C, given by the following induction on the size of p:

Ic(out new ~xM.p) = {out new ~xM.p}

Ic(in pat~x~ψM.p) = {in pat~x~ψM.p}

Ic(‖i∈Ipi) =
⋃
i∈I

i : Ic(pi)

where the last case also includes the base case nil, when the indexing set is
empty.

We will shortly define the set of events Events as a subset of

Pow(C)× Pow(O)× Pow(S)× Pow(C)× Pow(O)× Pow(S) .

So an individual event e ∈ Events is a tuple

e = (ce,oe,se, ec, eo, es)

where ce is the set of C-preconditions of e, ec is the set of C-postconditions of e,
etc. Write ·e for ce ∪oe ∪se, all preconditions of e, and e· for all postconditions
ec ∪ eo ∪ es. Thus an event will be determined by its effect on conditions.

Earlier in the transition semantics we used actions α to specify the nature of
transitions. An event e is associated with a unique action act(e), though carry
more information.

The set of events associated with SPL is given by an inductive definition.
Define Events to be the smallest set which includes all

- output events Out(out new ~xM.p;~n), where ~n = n1, · · · , nl are distinct
names to match the variables ~x = x1, · · · , xl, consists of an event e with
these pre- and postconditions:

ce = {out new ~xM.p} , oe = ∅ , se = ∅ ,
ec = Ic(p[~n/~x]) , eo = {M [~n/~x]} es = {n1, · · · , nl} .

The action of an output event act(Out(out new ~xM.p;~n)) is out new ~n M [~n/~x].

���

��� ��
��
����l m���

@
@R

�
��	

Z
ZZ~

�
��

C
CW

��
����� M [~n/~x]

out new ~xM . p

out new ~nM [~n/~x]

. .n1 nl. . .

Ic(p[~n/~x])

An occurrence of the output event Out(out new ~xM.p;~n) affects the con-
trol conditions and puts the new names n1, · · · , nl into use, necessarily for
the first time as according to the token game the event occurrence must
avoid contact with names already in use.

CHAPTER 7. SECURITY PROTOCOLS 95

The definition includes the special case when ~x and ~n are empty lists, and
we write Out(out M.p) for the output event with no name conditions and
action out M .

- input events In(in pat~x~ψM.p;~n, ~L), where ~n is a list of names to match ~x

and ~L is a list of closed messages to match ~ψ, consists of an event e with
these pre- and postconditions:

ce = {in pat~x~ψM.p} , oe = {M [~n/~x, ~L/~ψ]} , se = ∅ ,

ec = Ic(p[~n/~x, ~L/~ψ]) , eo = ∅ , es = ∅ .

The action of an input event act(In(in pat~x~ψM.p;~n, ~L)) is in M [~n/~x, ~L/~ψ].

���

���
��
��
����

���
@
@R

�
��	

�
��=

���
����

M [~n/~x, ~L/~ψ]

inM [~n/~x, ~L/~ψ]

. . . Ic(p[~n/~x, ~L/~ψ])

in pat~x~ψM.p

- indexed events i : e where e ∈ Events, where i ∈ Indices and

c(i : e) = i :c e , o(i : e) =o e , s(i : e) =s e ,

(i : e)c = i : ec , (i : e)o = eo , (i : e)s = es .

The action of an indexed event act(i : e) is i : α, where α is the action of
e.

When E is a subset of events we will generally use i : E to mean {i : e | e ∈ E}.
Having specified its conditions and events, we have now defined a (rather

large) net from the syntax of SPL. Its behaviour is closely related to the earlier
transition semantics.

7.4 Relating the net and transition semantics

The SPL-net has conditions C ∪O ∪ S and events Events. Its markings M
will be subsets of conditions and so of the form

M = c ∪ s ∪ t

where c ⊆ C, s ⊆ S, and t ⊆ O. The set of conditions O are persistent and
determine the following token game.

CHAPTER 7. SECURITY PROTOCOLS 96

Letting c ∪ s ∪ t and c′ ∪ s′ ∪ t′ be two markings, c ∪ s ∪ t e−→ c′ ∪ s′ ∪ t′ iff

the event e has concession,
·e ⊆ c ∪ s ∪ t & ec ∩ c = ∅ & es ∩ s = ∅ ,
and

c′ = (c \ce) ∪ ec & s′ = s ∪ es & t′ = t ∪ eo .

In particular, the occurrence of e begins the holding of its name postconditions
es—these names have to be distinct from those already in use to avoid contact.

It turns out that all the markings reached in the behaviour of processes will
have the form

M = Ic(p) ∪ s ∪ t

for some closed process term p, names s and network conditions and t. There
will be no contact at control conditions, throughout the reachable behaviour of
the net, by the following.

Proposition 7.4 Let p be a closed process term. Let e ∈ Events. Then,

ce ⊆ Ic(p)⇒ ec ∩ Ic(p) = ∅ .

Proof: By induction on the size of p. 2

The behaviour of the SPL-net is closely related to the transition semantics
given earlier.

Theorem 7.5

(1) If

〈p, s, t〉 α−→ 〈p′, s′, t′〉 ,

then
Ic(p) ∪ s ∪ t e−→ Ic(p′) ∪ s′ ∪ t′

in the SPL-net, for some e ∈ Events with act(e) = α.

(2) If

Ic(p) ∪ s ∪ t e−→ M′ ,

then

〈p, s, t〉 act(e)−→ 〈p′, s′, t′〉 and M′ = Ic(p′) ∪ s′ ∪ t′ ,

for some closed process p′, s′ ⊆ S and t′ ⊆ O.

Proof: Both (1) and (2) are proved by induction on the size of p.

(1)

Consider the possible forms of the closed process term p.

CHAPTER 7. SECURITY PROTOCOLS 97

Case p ≡ out new ~xM.q:

Assuming 〈p, s, t〉 α−→ 〈p′, s′, t′〉, there must be distinct names ~n = n1, · · · , nl,
not in s, for which α = out new ~n.M [~n/~x] and p′ ≡ q[~n/~x].

The initial conditions Ic(p) form the singleton set {p}. The output event

e = Out(out new ~xM.q;~n)

is enabled at the marking {p} ∪ s ∪ t, its action is α, and

Ic(p) ∪ s ∪ t e−→ Ic(q[~n/~x]) ∪ s′ ∪ t′ .

Case p ≡ in pat~x~ψM.q:

The argument is very like that above for the output case.

Case p ≡ ‖i∈Ipi:

Assuming 〈p, s, t〉 α−→ 〈p′, s′, t′〉, there must be 〈pj , s, t〉
β−→ 〈p′j , s′, t′〉, with

α = j : β and p′ ≡ ‖i∈Ip′i, where p′i = pi whenever i 6= j. Inductively,

Ic(pj) ∪ s ∪ t
e−→ Ic(p′j) ∪ s′ ∪ t′ ,

for some event e such that act(e) = β. It is now easy to check that

Ic(p) ∪ s ∪ t j:e−→ Ic(‖i∈Ip′i) ∪ s′ ∪ t′ .

(2)

Consider the possible forms of the closed process term p.

Case p ≡ out new ~xM.q:

Assume that
Ic(p) ∪ s ∪ t e−→ M′.

Note that Ic(p) = {p}. By the definition of Events, the only possible events
with concession at {p} ∪ s ∪ t, are ones of the form

e = Out(out new ~xM.q;~n) ,

for some choice of distinct names ~n not in s. The occurrence of e would make
s′ = s ∪ {~n} and t′ = t ∪ {M [~n/~x]}. Clearly, from the transition semantics,

〈p, s, t〉 act(e)−→ 〈q[~n/~x], s′, t′〉 .

CHAPTER 7. SECURITY PROTOCOLS 98

Case p ≡ in pat~x~ψM.q: The argument is like that for the output case.

Case p ≡ ‖i∈Ipi:

Assume that
Ic(p) ∪ s ∪ t e−→ c′ ∪ s′ ∪ t′ ,

for c′ ⊆ C, s′ ⊆ S, and t′ ⊆ O.
From the token game and by the definition of Events, the event e can only

have the form e = j : e′, where

Ic(pj) ∪ s ∪ t
e′−→ c′j ∪ s′ ∪ t′

and
c′ =

⋃
i 6=j

Ic(pi) ∪ j : c′j .

Inductively,

〈pj , s, t〉
act(e′)−→ 〈p′j , s′, t′〉 and c′j = Ic(p′j) ,

for some closed process p′j . Thus, according to the transition semantics,

〈p, s, t〉 act(e)−→ 〈‖i∈Ip′i, s′, t′〉 ,

where p′i = pi whenever i 6= j. Hence, c′ = Ic(‖i∈Ip′i). 2

Definition: Let e ∈ Events. Let p be a closed process term, s ⊆ S, and t ⊆ O.
Write

〈p, s, t〉 e−→ 〈p′, s′, t′〉

iff
Ic(p) ∪ s ∪ t e−→ Ic(p′) ∪ s′ ∪ t′

in the SPL-net.

7.5 The net of a process

The SPL-net is awfully big of course. Generally for a process p only a small
subset of the events Events can ever come into play. For this reason it’s useful
to restrict the events to those reachable in the behaviour of a process.

CHAPTER 7. SECURITY PROTOCOLS 99

The events Ev(p) of a closed process term p are defined by induction on size:

Ev(out new ~xM.p) ={Out(out new ~xM.p;~n) | ~n distinct names}

∪
⋃
{Ev(p[~n/~x]) | ~n distinct names}

Ev(in pat~x~ψM.p) ={In(in pat~x~ψM.p;~n, ~L) | ~n names, ~L closed messages}

∪
⋃
{Ev(p[~n/~x, ~L/~ψ]) | ~n names, ~L closed messages}

Ev(‖i∈Ipi) =
⋃
i∈I

i : Ev(pi) .

A closed process term p denotes a net Net(p) consisting of the global set of
conditions C∪O∪S built from SPL, events Ev(p) and initial control conditions
Ic(p).

The net Net(p) is open to the environment at its O- and S-conditions; the
occurrence of events is also contingent on the output and name conditions that
hold in a marking. The net of a closed process term ‖i∈Ipi is the net with
initial conditions

⋃
i∈I i : Ic(pi) and events

⋃
i∈I i : Ev(pi). We can view this

as a parallel composition of the nets for pi, i ∈ I; only the control conditions
of different components are made disjoint so the components’ events affect one
another through the name and output conditions that they have in common.
We can define the token game on the net Net(p) exactly as we did earlier for
the SPL-net, but this time events are restricted to being in the set Ev(p).

It’s clear that if an event transition is possible in the restricted net Net(p)
then so is it in the SPL-net. The converse also holds provided one starts from
a marking whose control conditions either belong to Ic(p) or are conditions of
events in Ev(p).

Definition: Let p be a closed process term. Define the control-conditions of p
to be

pc = Ic(p) ∪
⋃
{ec | e ∈ Ev(p)} .

Proposition 7.6 Let p be a closed process term and e ∈ Events. If ce ⊆ pc,
then e ∈ Ev(p).

Proof: By induction on the size of p. 2

Lemma 7.7 Let M∩C ⊆ pc. Let e ∈ Events. Then,

M e−→ M′ in the SPL-net

iff

e ∈ Ev(p) & M e−→ M′ in Net(p) .

Proof: “if”: Clear. “only if”: Clear by Proposition 7.6. 2

CHAPTER 7. SECURITY PROTOCOLS 100

Consequently, in analysing those sequences of event transitions

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

a closed process p can perform, or correspondingly those of the transition se-
mantics, it suffices to study the behaviour of Net(p) with its restricted set of
events Ev(p). This simplification is especially useful in proving invariance prop-
erties which amount to an argument by cases on the form of events possible in
the process.

Recall that we say a configuration 〈p, s, t〉 is proper iff the names in p and t
are included in s.

Proposition 7.8 Let e ∈ Events. Suppose that 〈p, s, t〉 and 〈p′, s′, t′〉 are con-
figurations, and that 〈p, s, t〉 is proper. If

〈p, s, t〉 e−→ 〈p′, s′, t′〉 ,

then 〈p′, s′, t′〉 is also proper.

Proof: By considering the form of e. Input and output events are easily seen
to preserve properness, and consequently indexed events do too. 2

Important convention: From now on we assume that all configurations
〈p, s, t〉 are proper. Notice, in particular, that in a proper configuration 〈NSL, s, t〉
the set s will include all agent names because all agent names are mentioned in
NSL, the process describing the Needham-Schröder-Lowe protocol.

7.6 The events of NSL

We can classify the events Ev(NSL) involved in the NSL protocol.
Initiator events:

Out(Init(A,B);m):

���

��� ��
��
�������

@
@R

�
��	 ?

Z
ZZ~

{m,A}Pub(B)m

Init(A,B)

in{m, y,B}Pub(A).out{y}Pub(B)

out new m {m,A}Pub(B)

In(in{m, y,B}Pub(A).out{y}Pub(B);n):

���

���
��
��
����

@
@R

�
��	

�
��=

{m,n,B}Pub(A)in{m, y,B}Pub(A)out{y}Pub(B)

out{n}Pub(B)

in{m,n,B}Pub(A)

CHAPTER 7. SECURITY PROTOCOLS 101

Out(out{n}Pub(B)):

���

��
��
����

@
@R

Z
ZZ~

{n}Pub(B)

out{n}Pub(B)

out{n}Pub(B)

Responder events:

In(Resp(B);m,A):

���

���
��
��
����

@
@R

�
��	

�
��=

{m,A}Pub(B)Resp(B)

out new y {m, y,B}Pub(A).in {y}Pub(B)

in {m,A}Pub(B)

Out(out new y {m, y,B}Pub(A).in {y}Pub(B);n):

���

��� ��
��
�������

@
@R

�
��	 ?

Z
ZZ~

{m,n,B}Pub(A)n

out new y {m, y,B}Pub(A).in {y}Pub(B)

in {n}Pub(B)

out new n {n,B}Pub(A)

In(in {n}Pub(B)):

��� ��
��
����

@
@R

�
��=

{n}Pub(B)in {n}Pub(B)

in {n}Pub(B)

Spy events:

Composition, Spy1 ≡ in ψ1.in ψ2.out(ψ1, ψ2):m
m���
l
���m

l
���m

Q
Qs �

�3 PPPq ��
�* HHHj

��3 ��
�* H

HHj

M1 M2 (M1,M2)

CHAPTER 7. SECURITY PROTOCOLS 102

Decomposition, Spy2 ≡ in(ψ1, ψ2).out ψ1.out ψ2:

m
m���
l l
���m ���m

Q
Qs �

�3 PPPq �
��* HHHj

��3
HHHj

H
HHj

(M1,M2) M1 M2

Encryption, Spy3 ≡ in x.in ψ.out {ψ}Pub(x):

m
m���
l
���m

l
���m

Q
Qs �

�3 PPPq ��
�* H

HHj

��3 �
��* HHHj

n M {M}Pub(n)

Decryption, Spy4 ≡ in Priv(x).in {ψ}Pub(x).out ψ:

m
m���
l
���m

l
���m

Q
Qs �

�3 PPPq ��
�* HHHj

��3 ��
�* H

HHj

Priv(n) {M}Pub(n) M

7.7 Security properties for NSL

In this section we apply our framework to prove authentication and secrecy
guarantees for the responder part of the NSL protocol.

7.7.1 Principles

Some principles are useful in proving authentication and secrecy of security
protocols. Write M @ M ′ to mean message M in a subexpression of message
M ′. More precisely, @ is the smallest binary relation on messages such that

M @M ,

M @ N ⇒M @ (N,N ′) & M @ (N ′, N) ,

M @ N ⇒M @ {N}k .

We also write M @ t iff ∃M ′ .M @M ′ & M ′ ∈ t, for a set of messages t.

CHAPTER 7. SECURITY PROTOCOLS 103

Proposition 7.9 (Well-foundedness) Given a property P on configurations, if
a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

contains a configurations such that P(p0, s0, t0) and ¬P(pj , sj , tj), then there is
an event eh, 0 < h ≤ j, such that P(pi, si, ti) for all i < h and ¬P(ph, sh, th).

We say that a name m ∈ Names is fresh on an event e if m ∈ es and we
write Fresh(m, e).

Proposition 7.10 (Freshness) Within a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

the following properties hold:

1. If n ∈ si then either n ∈ s0 or there is a previous event ej such that
Fresh(n, ej).

2. Given a name n there exists at most one event ei such that Fresh(n, ei).

3. If Fresh(n, ei) then for all j < i the name n does not appear in 〈pj , sj , tj〉.

Proposition 7.11 (Control precedence) Within a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

if b ∈ cei either b ∈ Ic(p0) or there is an earlier event ej, j < i, such that
b ∈ ejc.

Proposition 7.12 (Output-input precedence) In a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

if M ∈ oei either M ∈ t0 or there is an earlier event ej, j < i, such that
M ∈ ejo.

7.7.2 Secrecy

The following lemma is an essential prerequisite in proving secrecy. In fact, it
is a secrecy result in its own right.

Lemma 7.13 Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

and consider an agent A0. If Priv(A0) 6@ t0, then Priv(A0) 6@ tl at all stages l.

CHAPTER 7. SECURITY PROTOCOLS 104

Proof: Assume Priv(A0) 6@ t0. Suppose there were a stage in the run at which
Priv(A0) @ tl. By well-foundedness, there would be an earliest event e = er in
the run at which Priv(A0) 6@ tr−1 and Priv(A0) @ tr.

We can show that such an earliest event e cannot exist by considering all
the possible forms it might take. We need only consider indexed output events
since only for such events do we have eo 6= ∅.

An easy check shows that e cannot be an initiator or responder event.
It remains to consider spy events. We consider only one case—the other

cases follow in a similar fashion. Suppose that the event e has the form spy : i :
2 : Out(outM2) for some run index i with Priv(A0) @ M2. Then, by control
precedence, there must be a preceding event which has as precondition the
network condition (M1,M2). Clearly, Priv(A0) @ (M1,M2). As Priv(A0) 6@ t0,
by output-input precedence, there must be an even earlier event than e that
marked the condition (M1,M2).n
n���
m m

���m ���m
Q
Qs �

��3 PPPq ��
�* HHHj

�
�3 HHHj

HHHj

(M1,M2) M1

e

M2

2

Exercise 7.14 Complete the proof of Lemma 7.13, by considering the remain-
ing cases of spy events. 2

The following theorem shows that the nonce of a responder in the NSL
protocol remains secret.

Theorem 7.15 Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · .

Suppose it contains an event er with

act(er) = resp : B0 : j0 : out new n0 {m0, n0, B0}Pub(A0) ,

where j0 is an index. Suppose that Priv(A0) 6@ t0 and Priv(B0) 6@ t0. Then,
at all stages n0 6∈ tl.

Proof: We prove a stronger invariant: At all stages l,

for all messages M ∈ tl, if n0 @M then
either {m0, n0, B0}Pub(A0) @M or {n0}Pub(B0) @M .

Because Fresh(n0, er), by freshness (Proposition 7.10) all configurations 〈pl, sl, tl〉
where l < r satisfy this invariant. In particular so does 〈NSL, s0, t0〉. The proof
is based on the well-foundedness principle. Suppose the invariant fails to hold

CHAPTER 7. SECURITY PROTOCOLS 105

at some stage. Then there is an earliest event e in the run that violates the
invariant through having a network condition M as postcondition for which

n0 @M & {m0, n0, B0}Pub(A0) 6@M & {n0}Pub(B0) 6@M .

Assume there is such an earliest event e. We shall obtain a contradiction no
matter what the form of e. Since indexed input events leave the network con-
ditions unchanged, they cannot violate the invariant. It remains to consider
indexed output events.
Initiator events. There are two cases:
Case 1. Assume e = init : (A,B) : i : Out(out {n}Pub(B)) for some index i:m

���m
eHHHj

HHHj
{n}Pub(B)

Since the event e is assumed to violate the invariant it must be the case that
n = n0 and B0 6= B. There exists a preceding event that marked e’s control
precondition. This condition determines the form of the preceding event:m

���m
m

���m
PPPq ��

�* HHHj

��
�* HHHj

{m,n0, B}Pub(A)

e

{n0}Pub(B)

Consider now the network condition {m,n0, B}Pub(A). We know there exists an
even earlier event that marked it, which thus violates the invariant (remember
B 6= B0). But this contradicts e being the earliest event to violate the invariant.3

Case 2. Assume the event e = init : (A,B) : i : Out(Init(A,B);m) for some
index i. This event has the form:

- m

���m
m mmPPPq ��

�*

H
HHj

e

{m,A}Pub(B)

Since e violates the invariant, n0 @ {m,A}Pub(B), so:

3At this point in the proof, the ingredient B 6= B0 is crucial in showing that there is
an earlier event violating the secrecy invariant. An analogous proof attempt for the original
protocol of Needham and Schröder would fail here. For the original protocol we might try
to establish the modified invariant: For all l, for all messages M ∈ tl, if n0 @ M then either
{m0, n0}Pub(A0) @ M or {n0}Pub(B0) @ M . However, at this point, we would be unable to
deduce that there was an earlier event which violated this modified invariant.

CHAPTER 7. SECURITY PROTOCOLS 106

• Either m = n0. So Fresh(e, n0). Since e is an initiator event it is distinct
from er and Fresh(er, n0), this contradicts freshness.

• Or A = n0. But in this case, by the properness of the initial configuration
n0 ∈ s0, which again contradicts freshness.

Responder events. There is only one form of event to consider. Assume
e = resp : B : i : Out(out new y {m, y,B}Pub(A).in{y}Pub(B);n):

- n

���m
m mmPPPq �

��*

HHHj

e

{m,n,B}Pub(A)

Since e violates the invariant, n0 @ {m,n,B}Pub(A), so one of the following:

• m = n0. There must then be an earlier event that marked the network
condition {m,A}Pub(B) and thus violates the invariant. This contradicts
the assumption that e is the earliest event to violate the invariant.

- n0

���mn���
m mm�

��3 PPPq ��
�*

�
�3 H

HHj
{m,A}Pub(B)

e

{m,n0, B}Pub(A)

• n = n0. Then since e violates the invariant, we must have e 6= er. We
have Fresh(e, n0) and Fresh(er, n0) which contradicts freshness.

• The case B = n0 is excluded because n0 is fresh on er and so cannot be
an agent name in t0.

Spy events. We consider only some cases, the others follow in a similar way.
Case 1. Assume the event e = spy : 4 : i : Out(outM) for some index i:

���m
m
PPPq

H
HHj

e

M

By precedence there is an earlier event that marked {M}Pub(A).

CHAPTER 7. SECURITY PROTOCOLS 107

��
�*

���m
n
n���
m m

���m
Q
Qs �

��3 PPPq ��
�* H

HHj

�
�3 H

HHj

Priv(A) {M}Pub(A)

e

M

Lemma 7.13 guarantees that Priv(A) 6= Priv(A0) and Priv(A) 6= Priv(B0), so
that A 6= A0 and A 6= B0. Therefore because e violates the invariant, n0 @ M
with {m0, n0, B0}Pub(A0) 6@ {M}Pub(A) and {n0}Pub(B0) 6@ {M}Pub(A). This
contradicts e being the earliest event to violate the invariant.
Case 2. Assume the event e = spy : 2 : i : Out(outM2) for some index i:m

���m
HHHj

HHHj

e

M2

By precedence there is an earlier event marking the persistent condition (M1,M2).

n
n���
m m

���m ���m
Q
Qs �

��3 PPPq ��
�* H

HHj

�
�3 HHHj

HHHj

(M1,M2) M1

e

M2

Even though e violates the invariant, it may still be that {m0, n0, B0}Pub(A0) @
M1 or {n0}Pub(B0) @M1 (and this prevents us from immediately deducing that
there is an even earlier event which violates the invariant by virtue of hav-
ing (M1,M2) as a postcondition). However, in this situation only an earlier
spy event can have marked a network condition with (M1,M2) as submessage.
Consider the earliest such spy event e′ in the sequence of transitions. A case
analysis (Exercise!) of the possible events which precede e′ always yields an ear-
lier event which either violates the invariant or outputs a message with (M1,M2)
as submessage. 2

Exercise 7.16 Complete the proof of secrecy, Theorem 7.15, by finishing off
the case analysis marked “Exercise!” in the proof. 2

Exercise 7.17 (Big exercise: Secrecy of initiator’s nonce)
Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

CHAPTER 7. SECURITY PROTOCOLS 108

containing the initiator event er where

act(er) = init : (A0, B0) : j0 : out newm0 {m0, A0}Pub(B0) ,

with j0 an index, and such that Priv(A0) 6@ t0 and Priv(B0) 6@ t0. Show that
at all stages m0 6∈ ti.
[Use the invariant: For all r and for all messages M ∈ tr, if m0 @M then either
{m0, A0}Pub(B0) @M or {m0, n0, B0}Pub(A0) @M .] 2

Simplifying the attacker events

We have described the possible events of an attacker as those of an SPL process
Spy. We could, however, reduce the number of cases to consider and simplify
proofs by describing the attacker events directly as having the following form—
note all the conditions involved are network conditions and so persistent:

- Composition events: an event with two network conditions M1 and M2 as
preconditions, and the network condition (M1,M2) as postcondition.

- Decomposition events: an event with an network condition network con-
dition (M1,M2) as precondition, and the two network conditions M1 and
M2 as postconditions.

- Encryption events: an event with network conditions M and a name n as
preconditions, and the network condition {M}Pub(n) as postcondition.

- Decryption events: an event with the two network conditions {M}Pub(n)

and a key Priv(n) as preconditions, and the output condition M as post-
condition.

Then, we can show security properties of an SPL process p by establishing
properties of the net obtained by setting Net(p) in parallel with all the attacker
events.

7.7.3 Authentication

We will prove authentication for a responder in an NSL protocol in the sense
that: To any complete session of agent B0 as responder, apparently with agent
A0, there corresponds a complete session of agent A0 as initiator.

In the proof it’s helpful to make use of a form of diagrammatic reasoning
which captures the precedence of events. When the run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · ·

is understood we draw
e // e′

when e precedes e′ in the run, allowing e = e′.

CHAPTER 7. SECURITY PROTOCOLS 109

Theorem 7.18 (Authentication) If a run of NSL

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

contains the responder events b1, b2, b3, with actions

act(b1) = resp : B0 : i : in {m0, A0}Pub(B0) ,
act(b2) = resp : B0 : i : out new n0 {m0, n0, B0}Pub(A0) ,
act(b3) = resp : B0 : i : in{n0}Pub(B0) ,

for an index i, and Priv(A0) 6@ t0, then the run contains initiator events

a1, a2, a3 with a3
// b3 , where, for some index j,

act(a1) = init : (A0, B0) : j : out newm0 {m0, A0}Pub(B0) ,
act(a2) = init : (A0, B0) : j : in{m0, n0, B0}Pub(A0) ,
act(a3) = init : (A0, B0) : j : out{n0}Pub(B0) .

Proof: By control precedence we know that

b1 // b2 // b3 .

Consider the property of configurations

Q(p, s, t)⇔ ∀M ∈ t. n0 @M ⇒ {m0, n0, B0}Pub(A0) @M .

By freshness, the property Q holds immediately after b2, but clearly not imme-
diately before b3. By well-foundedness there is a earliest event following b2 but
preceding b3 that violates Q. Let e be such an event.

b1 // b2 //

��

b3

e

??

Inspecting the events of the NSL protocol, in a similar way to the proof of
secrecy, using the assumption that Priv(A0) 6@ t0, one can show (Exercise!)
that e can only be an initiator event a′3 with action

act(a′3) = init : (A,B0) : j : out{n0}Pub(B0)

for some index j and agent A. There must also be preceding events a′1, a
′
2 with

actions

act(a′1) = init : (A,B0) : j : out newm {m,A}Pub(B0) ,
act(a′2) = init : (A,B0) : j : in{m,n0, B0}Pub(A) .

b1 // b2 //

��

b3

a′1 // a′2 // a′3

??

CHAPTER 7. SECURITY PROTOCOLS 110

Since Fresh(b2, n0), the event b2 must precede a′2. The property Q holds on
configurations up to a′3 and, in particular, on the configuration immediately
before a′2. From this we conclude that m = m0 and A = A0. Hence a′3 = a3,
a′2 = a2, and a′1 = a1 as described below.

b1 // b2 //

��

b3

a1
// a2

// a3

OO

(Since Fresh(a1,m0), the event a1 precedes b1.)

Exercise 7.19 Complete the proof of Theorem 7.18 at the point marked “Ex-
ercise!” in the proof. 2

As the proof of Theorem 7.18 suggests, authentication for a responder in NSL
can be summarised in a diagram showing the dependency of the key events. For
all NSL-runs in which events b1, b2, b3 occur with actions

act(b1) = resp : B0 : i : in {m0, A0}Pub(B0) ,
act(b2) = resp : B0 : i : out new n0 {m0, n0, B0}Pub(A0) ,
act(b3) = resp : B0 : i : in{n0}Pub(B0) ,

for an index i, and where Priv(A0) is not a submessage of any initial output
message, there are events a1, a2, a3 with actions

act(a1) = init : (A0, B0) : j : out newm0 {m0, A0}Pub(B0) ,
act(a2) = init : (A0, B0) : j : in{m0, n0, B0}Pub(A0) ,
act(a3) = init : (A0, B0) : j : out{n0}Pub(B0) ,

such that
b1 // b2 //

��

b3

a1

OO

// a2
// a3.

OO

In particular, the occurrence of the event b3 depends on the previous occurrence
of an event a3 with action having the form above. Drawing such an event-
dependency diagram, expressing the intended event dependencies in a protocol,
can be a good preparation for a proof of authentication.

Exercise 7.20 (Big exercise: Authentication guarantee for initiator)
Consider a run of NSL

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

containing the initiator events a1, a2, a3 where

act(a1) = init : (A0, B0) : j : out newm0 {m0, A0}Pub(B0) ,
act(a2) = init : (A0, B0) : j : in{m0, n0, B0}Pub(A0) ,
act(a3) = init : (A0, B0) : j : out{n0}Pub(B0) ,

CHAPTER 7. SECURITY PROTOCOLS 111

for an index j. Assume Priv(A0) 6@ t0 and Priv(B0) 6@ t0. Show the run

contains responder events b1, b2 with b2 // a3 , where, for some index i,

act(b1) = resp : B0 : i : in {m0, A0}Pub(B0) ,
act(b2) = resp : B0 : i : out new n0 {m0, n0, B0}Pub(A0) .

In addition, show that if Priv(A0) ∈ t0, then there is an attack violating the
above authentication. 2

Chapter 8

Mobile processes

This chapter introduces a small but powerful language for higher-order nondeter-
ministic processes. It is used to explain and unify a range of process languages.
The language, HOPLA (Higher Order Process LAnguage), can be viewed as an
extension of the lambda calculus with a prefix operation and nondeterministic
sums, in which types express the form of computation path of which a process
is capable. Its operational semantics, bisimulation, congruence properties and
expressive power are investigated. The meaning and consequences of linearity,
where a process argument is executed exactly once, are explored. It is shown
how HOPLA can directly encode process languages such as CCS, CCS with
value passing, process passing, and mobile ambients with public names. Finally
it is indicated how HOPLA may be extended to include name generation.1

8.1 Introduction

We broaden our study to more general processes. A topic of current research is
that of mobile processes. Mobility concerns the relocation of processes.

One form of mobility is achieved through treating a process as encapsulated
like a value which moves from one context to another, perhaps executing as it
moves. This idea is central to the Calculus of Mobile Ambients [1]. This kind of
mobility can lead to abrupt changes in the process’s environment. Such forms
of mobility can perhaps always be realized through a mechanism for passing
processes.

In another form of mobility the relocation of process is more virtual, and
achieved through a change of contiguity of the process, by incrementally amend-
ing its access to processes in its environment. This is the form of mobility
manifest in the Pi-Calculus [12]. Though often described as a calculus of mo-
bile processes, it is perhaps more informative to view the the Pi-Calculus as
one in which the communication links are mobile; the movement of a process is

1This chapter is based on joint work with Mikkel Nygaard.

112

CHAPTER 8. MOBILE PROCESSES 113

achieved only through a change in the set of channel names it knows, so altering
the processes it can access.

The field of calculi for mobility is very alive and unsettled and for this reason
hard to summarise. However, a case can be made that almost all current process
calculi centre on two mechanisms:2

• Name generation: the ability of processes to generate new names. The
new names can be transmitted in a restricted way and so made into pri-
vate channels of communication. The language SPL allows this indirectly
through the generation of new keys. The Pi-Calculus is built directly
around the dynamic creation of new channels to effect a change of process
contiguity.

• Higher-order processes: the ability of processes to pass and receive pro-
cesses as values. Higher-order processes are akin to terms of the lambda-
calculus, but where processes rather than functions appear as arguments.
A higher-order process can receive a process as an argument and yield
a process as result. In this way a process can be passed from one con-
text to another. Process passing is sometimes implicit as in the Ambient
Calculus.

In this chapter we’ll chiefly study higher-order processes and the kind of
mobility they permit. To do this systematically we will use a single higher-
order process language, HOPLA. Processes will have first-class status and will
receive a type which describes the nature of their computations. It’s possible to
add types and terms to support name generation to HOPLA, to get “a language
to do everything”, but the result is harder to understand—the subject of current
research!

8.2 A Higher-Order Process Language

The types of the language HOPLA are given by the grammar

P,Q ::= .P | P→ Q | Σa∈AaPa | P | µj ~P ~P .

P is drawn from a set of type variables used in defining recursive types; µj ~P .~P
abbreviates µjP1, . . . , Pk.(P1, . . . ,Pk) and is interpreted as the j-component,
for 1 ≤ j ≤ k, of the recursive type P1 = P1, . . . , Pk = Pk, in which the
type expressions P1, . . . ,Pk may contain the Pj ’s. We shall write µ~P .~P as an

abbreviation for the k-tuple with j-component µj ~P .~P. In a sum type Σa∈AaPa
the indexing set A may be an arbitrary countable set. When the set A is finite,
so A = {a1, · · · , ak} we shall most often write the sum type as a1Pa1+· · ·+akPak .
Write O for the empty sum type. Henceforth by a process type we mean a closed
type expression.

2Current research in “domain theory for concurrency” suggests however that a better
understanding will uncover other fundamental mechanisms, some related to independence
models.

CHAPTER 8. MOBILE PROCESSES 114

The types P describe the computations processes can perform. A process of
prefix type .P can do an action . and then resume as a process doing compu-
tations of type P; a process of function type P → Q is a higher-order process
which given a process of type P as input yields a process of type Q as output;
a process of sum type Σa∈AaPa can perform computations in any of the types
Pa but with the difference that, when it does so, its initial action is tagged
by the component label a; a process of recursive type µj ~P .~P can do the same

computations as the type obtained as the unfolding Pj [µj ~P .~P/~P].
The raw syntax of terms:

t, u ::= x | rec x t | Σi∈Iti | .t | [u > .x⇒ t] | λx t | t u | a t | πa(t)

Here x is a process variable, which can be captured within a recursive definition
rec x t, an abstraction λx t, or a match term. The variable x in the prefix match
term [u > .x⇒ t] is a binding occurrence and so binds later occurrences of the
variable in the body t; intuitively, the variable x in the pattern .x is matched
with any possible resumption of u after doing an action .. In a nondeterministic
sum, Σi∈Iti, the indexing set I may be an arbitrary set; we write t1 + · · · + tk
for a typical finite sum, and nil when I is empty. A prefix term .t describes a
process able to do the action . and resume as the process t. A term a t represents
the injection of t into the a-component of a sum type Σa∈AaPa, while πa(t) is
the projection of a term t of sum type to the a-component.

Let P1, . . . ,Pk,Q be closed type expressions and assume that the variables
x1, . . . , xk are distinct. A syntactic judgement x1 : P1, . . . , xk : Pk ` t : Q
means that with processes of the alloted types assigned to the free variables,
the term t performs computations of type Q. We let Γ range over environment
lists x1 : P1, . . . , xk : Pk, which we may treat as finite partial functions from
variables to closed type expressions. The term formation rules are:

Γ(x) = P
Γ ` x : P

Γ, x : P ` t : P
Γ ` rec x t : P

Γ ` tj : P all j ∈ I
Γ ` Σi∈Iti : P

Γ ` t : P
Γ ` .t : .P

Γ ` u : .P Γ, x : P ` t : Q
Γ ` [u > .x⇒ t] : Q

Γ, x : P ` t : Q
Γ ` λx t : P→ Q

Γ ` t : P→ Q Γ ` u : P
Γ ` t u : Q

Γ ` t : Pb b ∈ A
Γ ` b t : Σa∈AaPa

Γ ` t : Σa∈AaPa b ∈ A
Γ ` πb(t) : Pb

Γ ` t : Pj [µ~P ~P/~P]

Γ ` t : µj ~P ~P
Γ ` t : µj ~P ~P

Γ ` t : Pj [µ~P ~P/~P]

We write t : P when ∅ ` t : P.
We have a syntactic substitution lemma:

Lemma 8.1 Suppose Γ, x : P ` t : Q and Γ ` u : P. Then Γ ` t[u/x] : Q.

Proof: By induction on the derivation of Γ, x : P ` t : Q. 2

CHAPTER 8. MOBILE PROCESSES 115

8.3 Transition Semantics

Every type is associated with actions processes of that type may do. Actions
are given by the grammar

p ::= . | u 7→ p | a p ,

where u is a closed term and a is a sum index. Processes of type .P may do an
action .. An action of type P → Q comprises u 7→ p, where u : P and p is an
action of type Q; a process t : P → Q can do the action u 7→ p precisely when
t u can do p. Processes of sum type Σa∈AaPa may do actions a p where a ∈ A
and p is an action of processes of type Pa.

It is useful in typing actions not just to specify the type of processes that
can do an action—the type of process at the beginning of the action, but also
say which type of process results—the type of process at the end of the action.
We type actions with their begin and end types:

.P : . : P
u : P Q : q : Q′

P→ Q : (u 7→ q) : Q′
Pa : p : P′

Σa∈AaPa : a p : P′
Pj [µ~P ~P/~P] : p : P′

µj ~P ~P : p : P′

HOPLA has transitions P : t
p−→ t′ between a closed term t : P, an action

P : p : P′ and a closed term t′, the resumption of t after action p, given by the
following rules; as a consequence we will obtain t′ : P′.

P : t[rec x t/x]
p−→ t′

P : rec x t
p−→ t′

P : tj
p−→ t′

P : Σi∈Iti
p−→ t′

j ∈ I

.P : .t
.−→ t

.P : u
.−→ u′ Q : t[u′/x]

q−→ t′

Q : [u > .x⇒ t]
q−→ t′

Q : t[u/x]
p−→ t′

P→ Q : λx t
u7→p−→ t′

P→ Q : t
u7→p−→ t′

Q : t u
p−→ t′

Pa : t
p−→ t′

Σa∈AaPa : a t
a p−→ t′

Σa∈AaPa : t
a p−→ t′

Pa : πa(t)
p−→ t′

Pj [µ~P ~P/~P] : t
p−→ t′

µj ~P ~P : t
p−→ t′

Proposition 8.2 Suppose P : t
p−→ t′ where P : p : P′. Then t′ : P′.

Proof: By a simple induction on derivations. 2

Definition: From the proposition above it makes sense to write

P : t
p−→ t′ : P′

when P : t
p−→ t′ and P : p : P′ (though I’ll omit types whenever I think I can

get away with it—then it should be a simple matter to infer them).

CHAPTER 8. MOBILE PROCESSES 116

Exercise 8.3 By considering their form of derivations, argue that for t : Σa∈AaPa

t
a p−→ t′ iff πa(t)

p−→ t′ ,

and for P→ Q and u : P that

t
u7→p−→ t′ iff t u

p−→ t′ .

For an action p and a term t, define

.∗(t) ≡ t , (u 7→ p)∗(t) ≡ p∗(t u) , (a p)∗(t) ≡ p∗(πa(t)) .

Show by structural induction on p, that

t
p−→ t′ iff p∗(t)

.−→ t′

2

Exercise 8.4 * The HOPLA type B ≡ true.O + f alse.O represents the truth
values. The HOPLA type N ≡ µP (0.O + SucP) represents the natural num-
bers. With respect to these types, write down HOPLA terms to represent zero,
perform successor, test for zero, sum and multiplication. 2

8.3.1 Abbreviations

Products

We can define the product type P&Q of types P, Q to be 1P+ 2Q. A pair (t, u)
of terms t of type P and u of type Q is given by

(t, u) ≡ 1 t+ 2u .

Projections are given by fst (v) ≡ π1(v) and snd (v) ≡ π2(v), for v a term of
type P & Q. For actions of type P & Q, write (p,−) ≡ 1p, where p is an action
of type P, and (−, q) ≡ 2q, where q is an action of type Q.

We can derive the following type rules for product terms and actions:

Γ ` t : P Γ ` u : Q
Γ ` (t, u) : P & Q

Γ ` v : P & Q
Γ ` fst (v) : P

Γ ` v : P & Q
Γ ` snd (v) : Q

P : p : P′
P & Q : (p,−) : P′

Q : q : Q′
P & Q : (−, q) : Q′

The rules are derivable in the sense that from the existing rules we can build a
derivation starting with their premises and ending with their conclusion. Tran-
sitions of product terms are associated with the following rules, derivable from
the existing transition rules:

P : t
p−→ t′

P & Q : (t, u)
(p,−)−→ t′

Q : u
p−→ u′

P & Q : (t, u)
(−,q)−→ u′

P & Q : v
(p,−)−→ v′

P : fst (v)
p−→ v′

P & Q : v
(−,q)−→ v′

Q : snd (v)
q−→ v′

Exercise 8.5 Derive the above typing and transition rules for products. 2

CHAPTER 8. MOBILE PROCESSES 117

General patterns

Patterns in match expression can be extended from the basic form .x, where x
is a variable, to general patterns

p ::= .x | u 7→ p | a p

where a is an index and u is a term. We adopt the following abbreviations

[u > a p⇒ t] ≡ [πa(u) > p⇒ t] , [v > (u 7→ p)⇒ t] ≡ [(vu) > p⇒ t] .

The extended patterns p are each associated with a unique variable x and with
a derivable rule of the form:

P : u
p−→ u′ Q : t[u′/x]

q−→ t′

Q : [u > p⇒ t]
q−→ t′

By convention we elide the variable mentioned in the pattern p when it appears
as an action on a transition. Again, the rule is derivable in the sense that from
the existing rules we can build a derivation starting with its premises and ending
with its conclusion.

Exercise 8.6 Show by induction on the structure of the pattern p, assumed to
have variable x, that the transition rule for [u > Q : p⇒ t] above is derivable.

Show, by induction on the structure of the pattern p, that the typing rule

Γ ` u : P Γ, x : R ` t : Q
Γ ` [u > p⇒ t] : Q

,

where P : p : R (eliding the unique variable x in p), is derivable. 2

8.4 Bisimulation

A type-respecting relation R on closed process terms is a collection of relations
RP, indexed by types P, such that if t1 RP t2, then t1 : P and t2 : P.

A type-respecting relation R on closed process terms is a bisimulation if,
whenever t1 RP t2, then

1. if P : t1
p−→ t′1 : Q, then P : t2

p−→ t′2 : Q for some t′2 such that t′1 RQ t
′
2;

2. if P : t2
p−→ t′2 : Q, then P : t1

p−→ t′1 : Q for some t′1 such that t′1 RQ t
′
2.

Bisimilarity, ∼, is the largest bisimulation.
(Again, I’ll often drop type annotations when it’s easy to restore them.)

CHAPTER 8. MOBILE PROCESSES 118

Proposition 8.7 The following pairs of closed, well-formed terms are bisimi-
lar:

1. rec x t ∼ t[rec x t/x]

2. [.u > .x⇒ t] ∼ t[u/x]
3. [Σi∈Iui > .x⇒ t] ∼ Σi∈I [ui > .x⇒ t]
4. [u > .x⇒ Σi∈Iti] ∼ Σi∈I [u > .x⇒ ti]
5. [u > .x⇒ .x] ∼ u
6. (λx t) u ∼ t[u/x]
7. λx (t x) ∼ t
8. λx (Σi∈Iti) ∼ Σi∈I(λx ti)
9. (Σi∈Iti) u ∼ Σi∈I(ti u)

10. πa(a t) ∼ t
11. πa(b t) ∼ nil if a 6= b
12. t ∼ Σa∈Aa πa(t)
13. πa(Σi∈Iti) ∼ Σi∈Iπa(ti)

Proof: In each case t1 ∼ t2, we can prove that the identity relation extended
by the pair (t1, t2) is a bisimulation, so the correspondence between transitions
is very close. 2

Exercise 8.8 Check the bisimilarities above. Justify that the following bisim-
ilarities involving derived terms:

1. [a.u > a.x⇒ t] ∼ t[u/x]
2. [b.u > a.x⇒ t] ∼ nil if a 6= b
3. [Σi∈Iui > a.x⇒ t] ∼ Σi∈I [ui > a.x⇒ t]
4. [u > a.x⇒ Σi∈Iti] ∼ Σi∈I [u > a.x⇒ ti]
5. fst (t, u) ∼ t
6. snd (t, u) ∼ u
7. t ∼ (fst t, snd t)
8. (Σi∈Iti,Σi∈Iui) ∼ Σi∈I(ti, ui)
9. fst (Σi∈Iti) ∼ Σi∈I(fst ti)

10. snd (Σi∈Iti) ∼ Σi∈I(snd ti)

Devise and prove correct bisimiliarities like 1-4 above, but for a match [u > p⇒
t] associated with a general pattern p (with unique variable x). 2

Theorem 8.9 Bisimilarity is a congruence.

Proof: [Non-examinable] We use Howe’s method [9]. It depends on first ex-
tending the definition of bisimulation to open terms. When Γ ` t1 : P and
Γ ` t2 : P, we write t1 ∼o t2 iff for all type-respecting substitutions σ for Γ by
closed terms, t1[σ] ∼ t2[σ].

CHAPTER 8. MOBILE PROCESSES 119

In summary, we define a precongruence candidate ∼̂ by the rules:

x ∼o w
x ∼̂ w

t ∼̂ t′ rec x t′ ∼o w
rec x t ∼̂ w

tj ∼̂ t′j all j ∈ I Σi∈It
′
i ∼o w

Σi∈Iti ∼̂ w

t ∼̂ t′ .t′ ∼o w
.t ∼̂ w

t ∼̂ t′ u ∼̂ u′ [u′ > .x⇒ t′] ∼o w
[u > .x⇒ t] ∼̂ w

t ∼̂ t′ λx t′ ∼o w
λx t ∼̂ w

t ∼̂ t′ u ∼̂ u′ t′ u′ ∼o w
t u ∼̂ w

t ∼̂ t′ a t′ ∼o w
a t ∼̂ w

t ∼̂ t′ πat
′ ∼o w

πat ∼̂ w

By induction on derivations, we can now show that: (i) ∼̂ is reflexive; (ii) ∼̂ is
operator-respecting; (iii) ∼o⊆∼̂; (iv) if t ∼̂ t′ and t′ ∼o w then t ∼̂ w; (v) if
t ∼̂ t′ and u ∼̂ u′ then t[u/x] ∼̂ t′[u′/x] whenever the substitutions are well-
formed; (vi) since ∼ is an equivalence relation, the transitive closure ∼̂+ of ∼̂
is symmetric, and therefore, so is ∼̂+

c .
Now we just need to show that ∼̂c is a simulation (i.e., it satisfies the first

clause in the definition of bisimulation), because then ∼̂+
c is a bisimulation by

(vi), and so ∼̂+
c ⊆∼. In particular, ∼̂c⊆∼. By (i) and (v), it follows that ∼̂⊆∼o,

and so by (iii), ∼̂=∼o. Hence, ∼ is a congruence because it is an equivalence
relation and by (ii) it is operator respecting.

We prove that ∼̂c is a simulation by induction on the derivations of the
operational semantics and using (iv-v). In fact, we need an induction hypothesis
slightly stronger than one might expect. It involves extending ∼̂c to actions by
the rules:

. ∼̂c .

u1 ∼̂c u2 p1 ∼̂c p2

(u1 7→ p1) ∼̂c (u2 7→ p2)

p1 ∼̂c p2

a p1 ∼̂c a p2

Now by induction on the derivation of t1
p1−→ t′1 it can be shown that:

if t1 ∼̂c t2 and t1
p1−→ t′1, then for all p2 with p1 ∼̂c p2 we have

t2
p2−→ t′2 for some t′2 such that t′1 ∼̂c t

′
2.

By (i), p1 ∼̂c p1 for all actions p1, from which it follows that ∼̂c is a simulation.
2

We now know that ∼ supports an equational style of reasoning in which
bisimilar terms of the same type may substituted for each other while maintain-
ing bisimilarity.

Proposition 8.10 Let t1, t2 be closed terms of type P→ Q. The following are
equivalent:

1. t1 ∼ t2;

2. t1 u ∼ t2 u for all closed terms u of type P;

CHAPTER 8. MOBILE PROCESSES 120

3. t1 u1 ∼ t2 u2 for all closed terms u1 ∼ u2 of type P.

Proof: 1. implies 2. and 3. as ∼ is a congruence. 3. clearly implies 2. as ∼ is
reflexive. From the transition semantics it’s easily seen that

t
u7→p−→ t′ iff t u

p−→ t′ .

Consequently, 2. implies 1. by:

t1
u7→p−→ t′1 ⇒ t1 u

p−→ t′1
⇒ t2 u

p−→ t′2 & t′1 ∼ t′2
⇒ t2

u7→p−→ t′2 & t′1 ∼ t′2 ,

and vice versa. 2

8.5 Linearity

Consider a process term t with a single free variable x, associated with the
typing

x : P ` t : Q .

We can regard the term t as an operation (or function) from processes of type
P to processes of type Q; given a process u : P as argument, we obtain a process
t[u/x] as result.

Imagine Q : t[u/x]
q−→ t′ and that every time u is executed to get a transition

that capability is used up. We can ask how many copies of the process u were
needed to produce the transition. In distributed computation the copying of
processes is often limited. For this reason many naturally-occurring operations
on processes require at most one copy of the process they take as argument.
Informally, an operation is linear when any resulting transition always requires
precisely one copy of any input process. There are two ways in which an op-
eration on processes can fail to be linear: either the operation does not need
to execute the argument process, or it needs to execute strictly more than one
copy.3

Consider the term .x where

x : P ` .x : .P .

Certainly
P : .u

.−→ u .

But the process u was not executed in producing the transition—the nil process
would have served as well. The operation determined by .x is not linear because
it required no copy of the argument process.

3There’s much more to linearity than appears here. The language HOPLA was in fact
discovered through a form of domain theory [14, 15, 16] which is also a model of a resource-
conscious logic called Linear Logic, discovered and shown to underlie traditional logic by
Jean-Yves Girard in the mid 1980’s.

CHAPTER 8. MOBILE PROCESSES 121

Consider now the term

t ≡ [x > a.y ⇒ [x > b.z ⇒ c.nil]]

with typing
x : a.O + b.O ` t : c.O .

In order to produce a transition

c.O : t[u/x]
c.−→ nil

one copy of u is executed to give a a.-transition and another copy to give a
b.-transition.

Linearity and its absence have mathematical consequences. We have ex-
plained linearity informally. Its mathematical counterpart is reflected in the
preservation of nondeterministic sums. This turns on the fact that a single exe-
cution of a sum Σi∈Iui amounts to a single execution of a component. Let t be
a term of type Q with one free variable x of type P. Say t is linear in x iff for
any sum of closed terms Σi∈Iui of type Q

t[Σi∈Iui/x] ∼P Σi∈It[ui/x] .

It is easy to check that the prefix term .x is not linear in x (Exercise!). Nor is
the term

t ≡ [x > a.y ⇒ [x > b.z ⇒ c.nil]]

linear in x. It is easy to see that

t[a.nil + b.nil/x] 6∼ t[a.nil/x] + t[b.nil/x]

because
t[a.nil + b.nil/x]

c−→ nil

whereas
t[a.nil/x] + t[b.nil/x]

is incapable of any transitions.
However many operations are linear:

Exercise 8.11 Show that .x is not linear in x (assume that x has any type
that is convenient). Show from the transition semantics, referring to previously
done exercises if helpful, that the following terms, assumed well-typed and to
have only x as free variable, are all linear in x:

a x πa(x) xu λy(x y) [x > .y ⇒ u] (x is not free in u).

Show that x+ x is always linear in x.
Let u be a term of type P with no free variables; then x : Q ` u : P for any type
Q. Show that u is linear in x iff u ∼ nil. [Hint: Consider empty sums.] 2

Exercise 8.12 * Is there a typable term which does not involve prefix or prefix
match which is not linear. 2

CHAPTER 8. MOBILE PROCESSES 122

8.6 Examples

In the examples, for readability we’ll depart from the strict syntax of HOPLA
and write recursive definitions of types and terms as equations; it is routine to
convert such definitions into HOPLA.

8.6.1 CCS

As in CCS [11], let N be a set of names and N̄ the set of complemented names
{n̄ | n ∈ N}. Let l range over labels L = N∪N̄ , with complementation extended
to L by taking ¯̄n = n, and let τ be a distinct label. We can then specify a type
P as

P = τ.P + Σn∈Nn.P + Σn∈N n̄.P .

Below, we let α range over L ∪ {τ}. The terms of CCS can be translated into
HOPLA as the following terms of type P:

[[x]] ≡ x [[rec xP]] ≡ rec x [[P]]
[[α.P]] ≡ α.[[P]] [[Σi∈IPi]] ≡ Σi∈I [[Pi]]
[[P |Q]] ≡ Par [[P]] [[Q]] [[P \ S]] ≡ ResS [[P]]
[[P [f]]] ≡ Relf [[P]]

Here, Par : P → (P → P), ResS : P → P, and Relf : P → P are abbreviations
for the following recursively defined processes:

Par ≡ rec p.λx λy.Σα[x > α.x′ ⇒ α.(p x′ y)] +
Σα[y > α.y′ ⇒ α.(p x y′)] +
Σl[x > l.x′ ⇒ [y > l̄.y′ ⇒ τ.(p x′ y′)]]

ResS ≡ rec r.λxΣα 6∈(S∪S̄)[x > α.x′ ⇒ α.(r x′)]
Relf ≡ rec r.λxΣα[x > α.x′ ⇒ f(α).(r x′)]

Proposition 8.13 If P
α−→ P ′ in CCS then [[P]]

α−→ [[P ′]] in HOPLA.

Conversely, if [[P]]
a−→ t′ in the higher-order language, then a ≡ α and

t′ ≡ [[P ′]] for some α, P ′ such that P
α−→ P ′ according to CCS.

Proof: For each HOPLA definition of the CCS operations, the corresponding
CCS rules can be derived in HOPLA (Exercise!). 2

It follows that the translations of two CCS terms are bisimilar in the general
language iff they are strongly bisimilar in CCS.

We can recover the expansion law for general reasons. Write P |Q for the
application Par P Q, where P and Q are terms of type P. Suppose

P ∼ ΣαΣi∈I(α)α.Pi and Q ∼ ΣαΣj∈J(α)α.Qj .

CHAPTER 8. MOBILE PROCESSES 123

Using especially the derived properties of Exercise 8.8 1-4 (plus some basic
bisimilarities of Proposition 8.7), we get

P |Q ∼ Σα[P > α.x′ ⇒ α.(x′|Q)] +
Σα[Q > α.y′ ⇒ α.(P |y′)] +
Σl[P > l.x′ ⇒ [Q > l̄.y′ ⇒ τ.(x′|y′)]]

∼ ΣαΣi∈I(α)α.(Pi|Q) +
ΣαΣj∈J(α)α.(P |Qj) +
ΣlΣi∈I(l),j∈J(l̄)τ.(Pi|Qj) .

Exercise 8.14 Spell out the details in the derivation of the expansion law
above. 2

8.6.2 CCS with value passing

It’s easy to encode CCS with value passing of the kind introduced early in the
course. Assume values form the set V . Define

P = τ.P + Σn∈Nn?Σv∈V v.P + Σn∈Nn!Σv∈V v.P .

Exercise 8.15 Give a translation of the earlier CCS with value passing. To
avoid using the datatype of numbers (itself requiring a recusive definition), cut
down from general boolean tests to just tests for equality. You’ll need first to
invent HOPLA operators for parallel composition and restriction for CCS with
value passing. 2

In fact there is a choice in how one gives semantics to CCS with value passing.
That we’ve used is called early value passing and is essentially that originally
given by Milner. There is an alternative late value passing. The idea here is that
a?x.t represents a process which first synchronises on the a-channel and then
resumes as a function v 7→ t[v/x]. We can achieve late value passing through
the type:

P = τ.P + Σn∈Nn?.(Σv∈V vP) + Σn∈Nn!Σv∈V v.P .

The sum (Σv∈V vP) is like a function space; for f : (Σv∈V vP), a given value v
selects a process πv(f).

Exercise 8.16 Describe the bisimilarity relations inherited for the two value-
passing calculi, paying special attention to when two input processes are bisim-
ilar. Exhibit two CCS terms which are bisimilar with respect to the early
semantics and yet not bisimilar with respect to the late semantics. [Hint: Let
one term have the form α?X.t and the other the form α?X.t1 + α?X.t2.] 2

8.6.3 Higher-Order CCS

In [6], Hennessy considers a language like CCS but where processes are passed at
channels C. For a translation into our language, we follow Hennessy in defining
types that satisfy the equations

P = τ.P + Σc∈Cc!.C + Σc∈Cc?.F C = P & P F = P→ P .

CHAPTER 8. MOBILE PROCESSES 124

We are chiefly interested in the parallel composition of processes, ParP,P of type
P & P → P. But parallel composition is really a family of mutually dependent
operations also including components such as ParF,C of type F & C → P to
say how abstractions compose in parallel with concretions etc. All these com-
ponents can be tupled together in a product and parallel composition defined
as a simultaneous recursive definition whose component at P & P→ P satisfies

P |Q = Σα[P > α.x⇒ α.(x|Q)] +
Σα[Q > α.y ⇒ α.(P |y)] +
Σc[P > c?.f ⇒ [Q > c!.z ⇒ τ.((f fst z)|snd z)]] +
Σc[P > c!.z ⇒ [Q > c?.f ⇒ τ.(snd z|(f fst z))]] ,

where, e.g., P |Q abbreviates ParP,P (P,Q). In the summations c ∈ C and α
ranges over c!, c?, τ .

Exercise 8.17 Describe bisimilarity inherited for the process-passing calculus.
(Make use of Proposition 8.10.) 2

8.6.4 Mobile Ambients with Public Names

The Calculus of Mobile Ambients [1] invented by Luca Cardelli and Andy Gor-
don in the late 1990’s has been very influential as it sought to cover an important
aspect of distributed compution, not previously addressed well by process cal-
culi. This was the aspect of administrative domains. For example, the internet
is partitioned into administrative domains by firewalls which isolate domains
except for strictly contolled pathways.

Roughly an ambient n[P] consists of a process term P enclosed within an
ambient named n. The process term has capabilities which specify the enclosing
ambient’s movement into and out of other ambients, as well as the powerful
capability of opening an ambient by removing its boundary.

The simplest way to explain the behaviour of ambients is via reduction rules
showing how compound ambient terms execute. The central capabilities of
ambients are given by the following reductions:
An ambient entering another ambient:

n[in m.P |Q]|m[R] → m[n[P |Q]|R]

An ambient exiting another ambient:

m[n[out m.P |Q]|R] → n[P |Q]|m[R]

A process opening an ambient:

open m!.P |m[Q] → P |Q

Note the reduction rules do not give a compositional account of ambient be-
haviour.

CHAPTER 8. MOBILE PROCESSES 125

The full Ambient Calculus allows name generation in the manner of the Pi-
Calculus. We can translate the Ambient Calculus with public names [2] into
the higher-order language, following similar lines to the process-passing language
above. This is a way to give an compositional semantics to Ambient Calculus.
Assume a fixed set of ambient names n,m, . . . ∈ N . The syntax of ambients
is extended beyond processes (P) to include concretions (C) and abstractions
(F):

P ::= nil | P |P | repP | n[P] | in n.P | out n.P | open n!.P |
τ.P | mvin n!.C | mvout n!.C | open n?.P | mvin n?.F | x

C ::= (P, P) F ::= λxP .

The notation for actions departs a little from that of [1]. Here some actions are
marked with ! and others with ?—active (or inceptive) actions are marked by
! and passive (or receptive) actions by ?. We say actions α and β are comple-
mentary iff one has the form open n! or mvin n! while the other is open n? or
mvin n? respectively. Complementary actions can synchronise together to form
a τ -action. We adopt a slightly different notation for concretions ((P,R) instead
of 〈P 〉R) and abstractions (λxP instead of (x)P) to make their translation into
the higher-order language clear.

Types for ambients are given recursively by (n ranges over N):

P = τ.P + Σnin n.P + Σnout n.P + Σnopen n!.P + Σnmvin n!.C +
Σnmvout n!.C + Σnopen n?.P + Σnmvin n?.F

C = P & P F = P→ P .

The eight components of the prefixed sum in the equation for P correspond to
the eight forms of ambient actions τ , in n, out n, open n!, mvin n!, mvout n!,
open n? and mvin n?. We obtain the prefixing operations as injections into the
appropriate component of the prefixed sum P.

Parallel composition is really a family of operations, one of which is a binary
operation between processes but where in addition there are parallel composi-
tions of abstractions with concretions, and even abstractions with processes and
concretions with processes. The family of operations

(−|−) : F & C→ P, (−|−) : F & P→ F, (−|−) : C & P→ C,
(−|−) : C & F→ P, (−|−) : P & F→ F, (−|−) : P & C→ C

are defined in a simultaneous recursive definition:

Processes in parallel with processes:

P |Q = Σα[P > α.x⇒ α.(x|Q)] + Σα[Q > α.y ⇒ α.(P |y)] +
Σn[P > open n!.x⇒ [Q > open n?.y ⇒ τ.(x|y)]] +
Σn[P > open n?.x⇒ [Q > open n!.y ⇒ τ.(x|y)]] +
Σn[P > mvin n?.f ⇒ [Q > mvin n!.z ⇒ τ.((f fst z)|snd z)]] +
Σn[P > mvin n!.z ⇒ [Q > mvin n?.f ⇒ τ.(snd z|(f fst z))]] .

CHAPTER 8. MOBILE PROCESSES 126

Abstractions in parallel with concretions: F |C = (F (fst C))|(snd C).

Abstractions in parallel with processes: F |P = λx ((F x)|P).

Concretions in parallel with processes: C|P = (fst C, (snd C)|P).

The remaining cases are given symmetrically. Processes P , Q of type P will—up
to bisimilarity—be sums of prefixed terms, and by Proposition 8.7, their parallel
composition satisfies the obvious expansion law.

Ambient creation can be defined recursively in the higher-order language:

m[P] = [P > τ.x⇒ τ.m[x]] +
Σn[P > in n.x⇒ mvin n!.(m[x],nil)] +
Σn[P > out n.x⇒ mvout n!.(m[x],nil)] +
[P > mvout m!.y ⇒ τ.(fst y|m[snd y])] +
open m?.P + mvin m?.λy.m[P |y] .

The denotations of ambients are determined by their capabilities: an ambi-
ent m[P] can perform the internal (τ) actions of P , enter a parallel ambient
(mvin n!) if called upon to do so by an in n-action of P , exit an ambient n
(mvout n!) if P so requests through an out n-action, be exited if P so requests
through an mvout m!-action, be opened (open m?), or be entered by an ambient
(mvin m?); initial actions of other forms are restricted away. Ambient creation
is at least as complicated as parallel composition. This should not be surpris-
ing given that ambient creation corresponds intuitively to putting a process
behind (so in parallel with) a wall or membrane which if unopened mediates
in the communications the process can do, converting some actions to others
and restricting some others away. The tree-containment structure of ambients
is captured in the chain of open m?’s that they can perform.

By the properties of prefix match (Exercise 8.8, items 1-4), there is an expan-
sion theorem for ambient creation. For a process P with P ∼ ΣαΣi∈I(α)α.Pi,
where α ranges over atomic actions of ambients,

m[P] ∼ Σi∈I(τ)τ.m[Pi] +
ΣnΣi∈I(in n)mvin n!.(m[Pi],nil) +
ΣnΣi∈I(out n)mvout n!.(m[Pi],nil) +
Σi∈I(mvout m!)τ.(fst Pi|m[snd Pi]) +
open m?.P + mvin m?.(λy.m[P |y]) .

8.6.5 Message Passing

HOPLA is a new language and the range of its expressivity is not yet fully
explored. Presumably it can express message passing as found in SPL and
LINDA. But this has not been done yet.

Exercise 8.18 * Simplify SPL to a simple message-passing language, so it has a
fixed set of names, no new-name generation, and messages which do not involve
encryption. Can you encode this simplified SPL in HOPLA? [I’d be interested
in seeing any (partial) successes.] 2

CHAPTER 8. MOBILE PROCESSES 127

8.7 Name generation

Process languages often follow the pioneering work on the Pi-Calculus and allow
name generation. HOPLA can be extended to encompass such languages—work
with Francesco Zappa Nardelli on new-HOPLA; the extensions are to add a
type of names N , a function space N → P as well as a type δP supporting new-
name generation through the abstraction new x t. The denotational semantics
of the extension to name generation of HOPLA seems best carried out in the
Nominal Sets of Andrew Pitts or the broader framework of Fraenkel-Mostowski
Set Theory—work with Dave Turner on “Nominal HOPLA”. An extension of
the operational semantics is more easily accessible; it is like that of HOPLA but
given at stages indexed by the current set of names.

Bibliography

[1] Cardelli, L., and Gordon,A. D. “Mobile ambients.” Proc. ETAPS, 1998.

[2] Cardelli, L., and Gordon,A. D. “Anytime, anywhere. Modal logics for
mobile ambients.” In Proc. POPL’00.

[3] Clarke, E., Grumberg, O., and Peled, D., “Model checking.” MITPress,
1999.

[4] Dijkstra, E.W., “A discipline of programming.” Prentice-Hall, 1976.

[5] Emerson, A. and Lei, C., “Efficient model checking in fragments of the
propositional mu-calculus.” Proc. of Symposium on Logic in Computer
Science, 1986.

[6] Hennessy, M. “A fully abstract denotational model for higher-order pro-
cesses.” Information and Computation, 112(1):55–95, 1994.

[7] Hoare, C.A.R., “Communicating sequential processes.” CACM, vol.21,
No.8, 1978.

[8] Hoare, C.A.R., “Communicating sequential processes.” Prentice-Hall,
1985.

[9] Howe, D.J. “Proving congruence of bisimulation in functional programming
languages.” Information and Computation, 124(2):103–112, 1996.

[10] Kozen, D., “Results on the propositional mu-calculus,” Theoretical Com-
puter Science 27, 1983.

[11] Milner, A.J.R.G., “Communication and concurrency.” Prentice Hall,
1989.

[12] Milner, A.J.R.G., “Communicating and mobile systems: the Pi-
Calculus.” Cambridge University Press, 1999.

[13] inmos, “Occam programming manual.” Prentice Hall, 1984.

[14] Nygaard, M., and Winskel, G. “Linearity in process languages.” Proc. of
LICS’02, 2002.

128

BIBLIOGRAPHY 129

[15] Nygaard, M., and Winskel, G. “HOPLA—A Higher Order Process Lan-
guage.” Proc. of CONCUR’02, 2002.

[16] Nygaard, M., and Winskel, G., “Domain theory for concurrency.” Theo-
retical Computer Science special edition on the occasion of Dana Scott’s
70th birthday, Theoretical Computer Science, Volume 316, Issues 1-3, pp.
153-190, 2004.

[17] Parrow, J., “Fairness properties in process algebra.” PhD thesis, Uppsala
University, Sweden, 1985.

[18] Reisig, W., “Petri nets: an introduction.” EATCS Monographs on
Theoretical Computer Science, Springer-Verlag, 1985.

[19] Stirling, C. and Walker D., “Local model checking the modal mu-calculus.”
Proc.of TAPSOFT, 1989.

[20] Tarski, A., “A lattice-theoretical fixpoint theorem and its applications.”
Pacific Journal of Mathematics, 5, 1955.

[21] Winskel, G., and Nielsen, M., “Models for concurrency.” A chapter in vol.IV
of the Handbook of Logic and the Foundations of Computer Sci-
ence, Oxford University Press, 1995.

