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CST-II SoC D/M Lecture Notes 2014/15

• (1) Basic SoC Components

• (2) Power, Performance and Technology

• (3) Architectural Design: Partition and Exploration

• (4) Verilog RTL: Modules, Protocols and Interfaces

• (5) Formal Methods and Assertion-Based Design

• (6) SystemC: Hardware Modelling Library

• (7) ESL: Electronic System Level Modelling

0.0.1 SoC Design : 2014/15: Twelve Lectures for CST Part II

A current-day system on a chip (SoC) consists of several different microprocessor subsystems together with
memories and I/O interfaces. This course covers SoC design and modelling techniques with emphasis on
architectural exploration, assertion-driven design and the concurrent development of hardware and embedded
software. This is the “front end” of the design automation tool chain. (Back end material, such as design of
individual gates, layout, routing and fabrication of silicon chips is not covered.)

0.0.2 Recommended Reading

Subscribe for webcasts from ‘Design And Reuse’: www.design-reuse.com

Embedded Systems Hardware for Software Engineers Ed Lipiansky. McGraw-Hill Professional (1 Feb. 2012)

Mishra K. (2014) Advanced Chip Design - Practial Examples in Verilog. Pub Amazon Martson Gate.

Multicore field-programmable SoC: Xilinx Zync Product Brief

Atmel, ARM-based Embedded MPU AT91SAM Datasheet

OSCI. SystemC tutorials and whitepapers . Download from OSCI www.accelera.org or copy from course web
site.

Brian Bailey, Grant Martin. ESL Models and Their Application: Electronic System Level Design. Springer.

Ghenassia, F. (2006). Transaction-level modeling with SystemC: TLM concepts and applications for embedded
systems . Springer.

Eisner, C. & Fisman, D. (2006). A practical introduction to PSL . Springer (Series on Integrated Circuits and
Systems).

Foster, H.D. & Krolnik, A.C. (2008). Creating assertion-based IP . Springer (Series on Integrated Circuits and
Systems).

Grotker, T., Liao, S., Martin, G. & Swan, S. (2002). System design with SystemC . Springer.

Wolf, W. (2002). Modern VLSI design (System-on-chip design) . Pearson Education. LINK.

0.0.3 Example: A Cellphone.

A modern mobile phone contains eight or more radio tranceivers, counting the various cellphone standards,
GPS, WiFi, near-field and Bluetooth. For the Apple iPhones, all use off-SoC mixers and some use on-SoC
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Figure 1: One of the two main PCBs of an Apple iPhone. Main SoC is top, left-centre.

ADC/DAC. Another iPhone teardown link

Figure 2: An Apple SOC - Two ARM and 3 GPU cores. Made by arch rival Samsung.

Further examples: iFixit Teardowns iPhone Dissected

Samsung GalaxyNumonyx Flash DatasheetCellphone physical components - bill of materials:

• Main SoC - Application Processor, Caches and DRAM

• Display (touch sensitive) + Keypad + Misc buttons

• Audio ringers and speakers, microphone(s) (noise cancelling),

• Infra-red IRDA port
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0.1. HARDWARE DESIGN FLOW

• Multi-media codecs (A/V capture and replay in several formats)

• Radio Interfaces: GSM (three or four bands), BlueTooth, 802.11, GPS, Nearfield, .... plus antennas.

• Power Management: Battery Control, Processor Speed, on/off/flight modes.

• Front and Rear Cameras, Flash/Torch and ambient light sensor,

• Memory card slot,

• Physical connectors: USB, Power, Headset,

• Case, Battery and PCBs

• Java VM and Operating System.

0.0.4 Introduction: What is a SoC 1/2 ?

Figure 3: Block diagram of a multi-core ‘platform’ chip, used in a number of networking products.

A System On A Chip: typically uses 70 to 140 mm2 of silicon.

Multicore field-programmable SoC Xilinx Product Brief: PDFAtmel ARM-Based Platform Chip: PDF

0.0.5 Introduction: What is a SoC 2/2 ?

A SoC is a complete system on a chip. A ‘system’ includes a microprocessor, memory and peripherals. The
processor may be a custom or standard microprocessor, or it could be a specialised media processor for sound,
modem or video applications. There may be multiple processors and also other generators of bus cycles, such as
DMA controllers. DMA controllers can be arbitrarily complex and are only really distinguished from processors
by their complete or partial lack of instruction fetching.

Processors are interconnected using a variety of mechanisms, including shared memories and message-passing
hardware entities such as general on-chip networks and specialised channels and mailboxes.

SoCs are found in every consumer product, from modems, mobile phones, DVD players, televisions and iPods.

0.1 Hardware Design Flow

The hardware design flow is divided by the Structural RTL level into:
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0.1. HARDWARE DESIGN FLOW

Figure 4: Platform Chip Example: Atmel SAM Series 9645.

• Front End: specify, explore, design, capture, synthesise  Structural RTL

• Back End: Structural RTL  place, route, mask making, fabrication.

There is a companion software design flow that must mesh perfectly with the hardware if the final product is
to work first time.

Figure 5 shows a typical design and maufacturing flow that leads from design capture to SoC fabrication.

0.1.1 Front End

The design must be specified in terms of high-level requirements, such as function, throughput and power
consumption.

Design capture: it is transferred from the marketing person’s mind, back of envelope or or wordprocessor
document into machine-readable form.

Architectural exploration will try different combinations of processors, memories and bus structures to find an
implementation with good power and load balancing. A loosely-timed high-level model is sufficient to compute
the performance of an architecture.

Detailed design will select IP (interlectual property) providers for all of the functional blocks, or else they will
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0.1. HARDWARE DESIGN FLOW

Figure 5: Design and Manufacturing Flow for SoC.

exist from previous in-house designs and can be used without license fees, or else freshly written.

Logic synthesis will convert from behavioural RTL to structural RTL. Synthesis from formal high-level forms,
including C,C++, SysML statecharts, formal specifications of interfaces and behaviour is beginning to be used.

Instruction set simulators (ISS) for embedded processors are needed: purchased from third parties such as ARM
and MIPS, or as a by-product of custom processor design.

The interface specifications (register maps and other APIs) between components need to be stored: the IP-
XACT format may be used.

High-level models that are never intended to be synthesisable and test bench components will also be coded,
typically using SystemC.

0.1.2 Back End

After RTL synthesis using a target technology library, we have a structural netlist that has no gate delays.
Place and route gives 2-D co-ordinates to each component, adds external I/O pads and puts wiring between the
components. RTL annotated with actual implementation gate delays gives a precise power and performance
model. If performance is not up to par, design changes are needed.

Fabrication of masks is commonly the most expensive single step (e.g. one million pounds), so must be correct
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0.1. HARDWARE DESIGN FLOW

first time.

Fabrication is performed in-house by certain large companies (e.g. Intel, Samsung) but most companies use
foundaries (UMC, TSMC).

At all stages (front and back end), a library of standard tests will be run every night and any changes that
cause a previously-passing test to fail (regressions) will be automatically reported to the project manager.

0.1.3 Levels of Modelling Abstraction

Our modelling system must support all stages of the design process, from design entry to fabrication. We need
to mix components using different levels of abstraction in one simulation setup.

Levels commonly used are:

• Functional Modelling: The ‘output’ from a simulation run is accurate.

• Memory Accurate Modelling: The contents and layout of memory is accurate.

• Untimed TLM: No time stamps recorded on transactions.

• Loosely-timed TLM: The number of transactions is accurate, but order may be wrong.

• Approximately-timed TLM: The number and order of transactions is accurate.

• Cycle-Accurate Level Modelling: The number of clock cycles consumed is accurate.

• Event-Level Modelling: The ordering of net changes within a clock cycle is accurate.

Other terms in use are:

• Programmer View Accurate: The contents of visible memory and registers is as per the real hardware,
but timing may be inaccurate and other registers or combinational nets that are not designated as part
of the ‘programmers view’ may not be modelled accurately.

• Behavioural Modelling: Using a threads package, or other library (e.g. SystemC), hand-crafted
programs are written to model the behaviour of each component or subsystem. Major hardware items
such as busses, caches or DRAM controllers may be neglected in such a model.

The Programmer’s View is often abbreviated as ‘PV’ and if timing is added it is called ‘PV+T’.

The Programmer’s View contains only architecturally-significant registers such as those that the software pro-
grammer can manipulate with instructions. Other registers in a particular hardware implementation, such as
pipeline stages and holding registers to overcome structural hazards, are not part of the PV.
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0.1. HARDWARE DESIGN FLOW

Figure 6: An inverter viewed at various levels of abstraction.
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SG 1 — Basic SoC Components

This section is a tour of actual hardware components (IP blocks) found on chips, presented with schematics and
illustrative RTL fragments, and connected using a simple bus. Later we will look at other busses and networks
on chip.

In the old-fashioned approach, we notice that the hand-crafted RTL used for the hardware implementation has
no computerised connection with the firmware, device drivers or non-synthesisable models used for architectural
exploration. Today, XML representations of IP-block metainfo resolve this (IP-XACT and OVM/UVM will be
mentioned in the last lecture if time permits).

1.1 Simple Microprocessor: Bus Connection and Internals

Figure 1.1: Schematic symbol and internal structure for a microprocessor (CPU).

This device is a bus master or initiator of bus transactions. It makes a load/read by asserting host read enable:
hren. It writes to addess space (a store) by asserting host write enable hwen. In this course we are concerned
with the external connections only.

A central processor unit (CPU) is an execution unit and a control unit. A microprocessor (MPU) is a processor
(CPU) on a chip. Early microprocessors such as the original Intel 8080 device had a 16 bit address bus and an
8 bit data bus so can address 64 Kbytes of memory. We say it had an A16/D8 memory architecture. Modern
MPUs commonly have on-chip caches and an MMU for virtual memory.

It executes a handshake with external devices using the hren/hwen signals as requests and the ack signal as an
acknowledge. In the following slides every device can respond immediately and so no ack signal is shown. In
practice, contention, cache misses and operations on slow busses will cause wait states for the processor. Simple
processors stall entirely during this period, whereas advanced cores carry on with other work and can receive
responses out of order.

The interrupt input makes it save the current PC and load an agreed value that is the entry point for an
interrupt service routine.

The high-order address bits are decoded to create chip enable signals for each of the connected peripherals, such
as the RAM, ROM and UART.

As we shall see, perhaps the first SoCs, as such, were perhaps the microcontrollers. The Intel 8051 used in the
mouse shipped with the first IBM PC is a good example. For the first time, RAM, ROM, Processor and I/O
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1.1. SIMPLE MICROPROCESSOR: BUS CONNECTION AND INTERNALSSG 1. BASIC SOC COMPONENTS

devices are all on one piece of silicon. We all now have many of these such devices : one in every card in our
wallet or purse. Today’s SoC are the same, just much more complex.

1.1.1 A canonical D8/A16 Micro-Computer

Figure 1.2: Early microcomputer structure, using a bidirectional/tri-state data bus.

Figure 1.2 shows the inter-chip wiring of a basic microcomputer (i.e. a computer based on a microprocessor).

------- ----- -------------------------
Start End Resource
------- ----- -------------------------
0000 03FF EPROM (1 K bytes)
0400 3FFF Unused images of EPROM
4000 7FFF RAM (16 K bytes)
8000 BFFF Unused
C000 C007 Registers (8) in the UART
C008 FFFF Unused images of the UART
------- ----- -------------------------

The following RTL describes the required glue logic for the memory map:

module address_decode(abus, rom_cs, ram_cs, uart_cs);
input [15:14] abus;
output rom_cs, ram_cs, uart_cs;
assign rom_cs = (abus == 2’b00); // 0x0000
assign ram_cs = (abus == 2’b01); // 0x4000
assign uart_cs = !(abus == 2’b11);// 0xC000

endmodule

The 64K memory map of the processor has been allocated to the three addressable resources as shown in the
table. The memory map must be allocated without overlapping the resources. The ROM needs to be at address
zero if this is the place the processor starts executing from when it is reset. The memory map must be known
at the time the code for the ROM is compiled. This requires agreement between the hardware and software
engineers concerned.

Lent Term 2014/15 Rev 1a 9 System-On-Chip D/M



1.1. SIMPLE MICROPROCESSOR: BUS CONNECTION AND INTERNALSSG 1. BASIC SOC COMPONENTS

In the early days, the memory map was written on a blackboard where both teams could see it. For a modern
SoC, there could be hundreds of items in the memory map. An XML representation called IP-XACT is being
adopted by the industry and the glue logic may be generated automatically.

1.1.2 ROM - Read Only Memory

The switches cannot be switched! ROM is either mask programmed at manufacture or field-programmable.

Figure 1.3: ROM Structure - the ‘switches’ have various implementation technologies.

This is a tiny ROM: four words of four bits.

An addressed row causes the column wires to become one or zero according to whether the diodes are installed
(or connected) at the crosspoints. FLASH is a common type of ROM used in USB-sticks and SD cards. The
‘switches’ in FLASH are transistors with floating gates that are charged and discharged using electron tunnelling
when ten or more volts are applied, but which retain their static charge for many years under normal conditions.
By ‘floating’ we mean totally insulated from the rest of the electronic circuit (an envelope of silicon dioxide
surrounds each floating gate).

Figure 1.4: FLASH ROM structure (not examinable).

Flash circuit-level details not examinable for part II CST

1.1.3 A Basic Micro-Controller

A microcontroller has all of the system parts on one piece of silicon. First introduced in 1979-85 (e.g. Intel
80C51). Such a microcontroller has an internal D8/A16 architecture and is used in things like a door lock,
mouse or smartcard.
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1.1. SIMPLE MICROPROCESSOR: BUS CONNECTION AND INTERNALSSG 1. BASIC SOC COMPONENTS

Figure 1.5: A typical single-chip microcomputer (microcontroller).

Figure 1.6: Contact plate for a smartcard - Reader suppies VCC power, clock and reset. I/O is via the one-bit,
bidirectional data pin .

1.1.4 Switch/LED Interfacing

Figure 1.7 shows an example wiring structure for hardwired functionality with switches and LEDs. Figure 1.8
shows an example of memory address decode and simple LED and switch interfacing for programmed I/O (PIO)
using a microprocessor. When the processor generates a read of the appropriate address, the tri-state buffer
places the data from the switches on the data bus. When the processor writes to the appropriate address, the
broadside latch captures the data for display on the LEDs until the next write.

1.1.5 UART Device

The RS-232 serial port was widely used in the 20th century for character I/O devices (teletype, printer, dumb
terminal). A pair of simplex channels (output and input) make it full duplex. Additional wires are sometimes
used for hardware flow control, or a software Xon/Xoff protcol can be used. Baud rate and number of bits per
words must be pre-agreed.

The request signal is called strobe. The other signals on the connector are not important.

Figure 1.7: Connecting LEDs and switches to digital logic.
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1.1. SIMPLE MICROPROCESSOR: BUS CONNECTION AND INTERNALSSG 1. BASIC SOC COMPONENTS

Figure 1.8: Connecting LEDs and switches for CPU programmed I/O (PIO)

Figure 1.9: Typical Serial and Parallel Ports of 20th Century

We’ll cover this under the protocol and interface part of the course.

1.1.6 Programmed I/O

Programmed Input and Output (PIO). Input and output operations are made by a program running on the
processor. The program makes read or write operations to address the device as though it was memory.
Disadvantage: Inefficient - too much polling for general use. Interrupt driven I/O is more efficient.

Here is C preprocessor code to define the I/O locations in use by a simple UART device (universal asynchronous
receiver/transmitter).
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1.1. SIMPLE MICROPROCESSOR: BUS CONNECTION AND INTERNALSSG 1. BASIC SOC COMPONENTS

Figure 1.10: Typical Configuration of a Serial Port with UART

Figure 1.11: Serial Port Connector (9 pin instead of original 25 pin).

//Macro definitions for C preprocessor
//Enable a C program to access a hardware
//UART using PIO or interrupts.

#define IO_BASE 0xFFFC1000 // or whatever

#define U_SEND 0x10
#define U_RECEIVE 0x14
#define U_CONTROL 0x18
#define U_STATUS 0x1C

#define UART_SEND() \
(*((volatile char *)(IO_BASE+U_SEND)))

#define UART_RECEIVE() \
(*((volatile char *)(IO_BASE+U_RECEIVE)))

#define UART_CONTROL() \
(*((volatile char *)(IO_BASE+U_CONTROL)))

#define UART_STATUS() \
(*((volatile char *)(IO_BASE+U_STATUS)))

#define UART_STATUS_RX_EMPTY (0x80)
#define UART_STATUS_TX_EMPTY (0x40)

#define UART_CONTROL_RX_INT_ENABLE (0x20)
#define UART_CONTROL_TX_INT_ENABLE (0x10)

The receiver spins until the empty flag
in the status register goes away. Read-
ing the data register makes the status
register go empty again. The actual
hardware device might have a receive
FIFO, so instead of going empty, the
next character from the FIFO would be-
come available straightaway:

char uart_polled_read()
{

while (UART_STATUS() &
UART_STATUS_RX_EMPTY) continue;

return UART_RECEIVE();
}

The output function is exactly the same
in principle, except it spins while the
device is still busy with any data writ-
ten previously:

uart_polled_write(char d)
{

while (!(UART_STATUS()&
UART_STATUS_TX_EMPTY)) continue;

UART_SEND() = d;
}
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1.2. TYPICAL IP BLOCKS SG 1. BASIC SOC COMPONENTS

Figure 1.12: Teletype/teleprinter: These devices were almost entirely mechanical with the electric circuit being
little more than one switch activated by cams for transmit and one solenoid for receive.

Interrupt driven UART device driver:

char rx_buffer[256];
volatile int rx_inptr, rx_outptr;

void uart_reset()
{ rx_inptr = 0; tx_inptr = 0;

rx_output = 0; tx_outptr = 0;
UART_CONTROL() |= UART_CONTROL_RX_INT_ENABLE;

}
// Here we call wait() instead of ’continue’
// in case the scheduler has something else to run.
char uart_read() // called by application
{ while (rx_inptr==rx_outptr) wait(); // Spin

char r = buffer[rx_outptr];
rx_outptr = (rx_outptr + 1)&255;
return r;

}

char uart_rx_isr() // interrupt service routine
{ while (1)

{
if (UART_STATUS()&UART_STATUS_RX_EMPTY) return;
rx_buffer[rx_inptr] = UART_RECEIVE();
rx_inptr = (rx_inptr + 1)&255;

}
}

uart_write(char c) // called by application
{ while (tx_inptr==tx_outptr) wait(); // Block if full

buffer[tx_inptr] = c;
tx_inptr = (tx_inptr + 1)&255;
UART_CONTROL() |= UART_CONTROL_TX_INT_ENABLE;

}

char uart_tx_isr() // interrupt service routine
{ while (tx_inptr != tx_outptr)

{
if (!(UART_STATUS()&UART_STATUS_TX_EMPTY)) return;
UART_SEND() = tx_buffer[tx_outptr];
tx_outptr = (tx_outptr + 1)&255;

}
UART_CONTROL() &= 255-UART_CONTROL_TX_INT_ENABLE;

}

This second code fragment illustrates
the complete set of five software rou-
tines needed to manage a pair of circu-
lar buffers for input and output to the
UART using interrupts. If the UART
has a single interrupt output for both
send and receive events, then two of
the five routines are combined with a
software dispatch between their bodies.
Not shown is that the ISR must be pre-
fixed and postfixed with code that saves
and restores the processor state (this is
normally written in assembler).

1.2 Typical IP Blocks

In this section, we tour a number of IP (intellectual property) blocks. All will be targets, most will also
generate interrupts and some will also be initiators. For capacitance reasons, and owing to the small area use
of transistors compared with the area used by busses, we normally do not use bi-directional (tri-state) busses
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1.2. TYPICAL IP BLOCKS SG 1. BASIC SOC COMPONENTS

Figure 1.13: (Centronix) Parallel Port Pin Connections

Figure 1.14: Timing diagram for an asynchronous, four-phase handshake.

within our SoC: instead we use dedicated busses and multiplexor trees. In this section we use the following RTL
net names:

• addr[31:0]: Input. Selection of internal address - not all 32 bits will be used,

• hwen: Input. Asserted during a write from host to target,

• hren: Input. Asserted during a read from target to host,

• wdata[31:0]: Input. Data to a target when writing/storing,

• rdata[31:0]: Output. Data read from target is reading/loading,

• interrupt: Output. Asserted by target when wanting attention.

On an initiator the net directions will be reversed. For simplicity, in this section, we assume a synchronous bus
with no acknowledgement signal, meaning that every addressed target must respond in one clock cycle with no
exceptions. Hence a cycle acknowledge handshake signal is not needed. Also we assume only complete words
are ever stored, so no byte lane qualifiers for bytes and halfwords are shown.

Figure 1.15 shows such a bus with one initiator and three targets. No tri-states are used: on a modern SoC
address and write data outputs use wire joints or buffers; read data uses multiplexors. There is only one
initiator, so no bus arbitration is needed.
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1.2. TYPICAL IP BLOCKS SG 1. BASIC SOC COMPONENTS

Figure 1.15: A basic SoC bus structure where one initiator addresses three targets (macroview and detailed
wiring).

Max throughput is unity (i.e. one word per clock tick). Typical SoC bus capacity: 32 bits × 200 MHz = 6.4
Gb/s.

The most basic bus has one initiator and several targets. The initiator does not need to arbitrate for the bus
since it has no competitors. Bus operations are just reads or writes of single 32-bit words. In reality, most
on-chip busses support burst transactions, whereby multiple consecutive reads or writes can be performed as a
single transaction with subsequent addresses being implied as offsets from the first address.

Interrupt signals are not shown in these figures. In a SoC they do not need to be part of the shared bus standard
as such: they can just be dedicated wires running from device to device.

Un-buffered wiring can potentially serve for the write and address busses, whereas multiplexors are needed for
read data. Buffering is needed in all directions for busses that go a long way over the chip.

1.2.1 RAM - on chip memory (Static RAM).

Figure 1.16: Static RAM with single port.

RAMs vary in their size and number of ports. Single-ported SRAM is the most important and most simple
resource to connect to our bus. It is a target only. Today’s SoC designs have more than fifty percent of their
silicon area devoted to SRAM for various purposes.

The ‘hren’ signal is not shown since the RAM is reading at all times when it is not writing. However, this
wastes power, so it would be better to hold the address input stable when not needing to read the RAM.

Owing to RAM fabrication overheads, RAMs below a few hundred bits should typically be implemented as
register files made of flip-flops. But larger RAMs have better density and power consumption than arrays of
flip-flops. Commonly, synchronous RAMs are used, requiring one clock cycle to read at any address. The same
address can be written with fresh data during the same clock cycle, if desired.

RAMs for SoCs were normally supplied by companies such as Virage and Artizan (but these are now part of
larger companies). A ‘RAM compiler’ tool is run for each RAM in the SoC. It reads in the user’s size, shape,
access time and port definitions and creates a suite of models, including the physical data to be sent to the
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foundry.

High-density RAM (e.g. for L2 caches) may clock at half the main system clock rate and/or might need error
correction logic to meet the system-wide reliability goal.

On-chip SRAM needs a test mechanism. Various approaches:

• Can test with software running on embedded processor.

• Can have a special test mode, where address and data lines become directly controllable (JTAG or oth-
erwise).

• Can use a built-in hardware self test (BIST) wrapper that implements 0/F/5/A and walking ones typical
tests.

Larger memories and specialised memories are normally off-chip for various reasons:

• Large area: would not be cost-effective on-chip,

• Specialised: proprietary or dense VLSI technology cannot be made on chip,

• Specialised: non-volatile process (such as FLASH)

• Commodity parts: economies of scale (ZBT SRAM, DRAM, FLASH)

But in the last five years DRAM and FLASH have found their way onto the main SoC as maturing technology
shifts the economic sweet spot.

1.2.2 Interrupt Wiring: General Structure

Figure 1.17: Interrupt generation: general structure within a device and at system level.

Nearly all devices have a master interrupt enable control flag that can be set and cleared by under programmed
I/O by the controlling processor. Its output is just ANDed with the local interrupt source. We saw its use in
the UART device driver, where transmit interrupts are turned off when there is nothing to send.

The programmed I/O uses the write enable (hwen) signal to guard the transfer of data from the main data bus
into the control register. A hren signal is used for reading back stored value (shown on later slides).

The principal of programming is (see UART device driver):

• Receiving device: Keep interrupt enabled: device interrupts when data ready.

• Transmit device: Enable interrupt when S/W output queue non-empty: device interrupts when H/W
output queue has space.
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With only a single interrupt wire to the processor, all interrupt sources share it and the processor must poll
around on each interrupt to find the device that needs attention. Enchancement: a vectored interrupt makes
the processor branch to a device-specific location. Interrupts can also be associated with priorities, so that
interrupts of a higher level than currently being run preempt.

1.2.3 GPIO - General Purpose Input/Output Pins

RTL implementation of 32 GPIO pins:

// Programming model
reg [31:0] ddr; // Data direction reg
reg [31:0] dout; // output register
reg [31:0] imask; // interrupt mask
reg [31:0] ipol; // interrupt polarities
reg [31:0] pins_r; // register’d pin data

reg int_enable;// Master int enable (for all bits)

always @(posedge clk) begin
pins_r <= pins;
if (hwen && addr==0) ddr <= wdata;
if (hwen && addr==4) dout <= wdata;
if (hwen && addr==8) imask <= wdata;
if (hwen && addr==12) ipol <= wdata;
if (hwen && addr==16) int_enable <= wdata[0];
end

// Tri-state buffers.
bufif b0 (pins[0], dout[0], ddr[0]);
.. // thirty others here
bufif b31 (pins[31], dout[31], ddr[31]);

// Generally the programmer can read all the
// programming model registers but here not.
assign rdata = pins_r;

// Interrupt masking
wire int_pending = (|((pins_r ^ ipol)&imask));
assign interrupt = int_pending && int_enable;

Microcontrollers have a large number of GPIO pins (see earlier slide).

Exercise: Show how to wire up a push button and sketch out the code for a device driver that returns how
many times it has so far been pressed. Sketch polled and interrupt driven code.

Some state registers inside an I/O block are part of the programmer’s model in that they can be directly
addressed with software (read and/or written), whereas other bits of state are for internal implementation
purposes.

The general structure of GPIO pins has not changed since the 6821 controller chip designed in about 1972 that
provided 20 such pins. A number of pins are provided that can either be input or output. A data direction
register sets the direction on a per-pin basis. If an output, data comes from a data register. Interrupt polarity
and masks are available on a per-pin basis for received events. A master interrupt enable mask is also provided.

The slide illustrates the schematic and the Verilog RTL for such a device. All of the registers are accessed by
the host using programmed I/O.

1.2.4 Scan Multiplexing

Resistive switches shown (most keyboards and touch screens now use capacitive rather than resistive).
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output [3:0] scankey;
input pressed;
reg int_enable, pending;
reg [3:0] scankey, pkey;

always @(posedge clk) begin
if (!pressed) pkey <= scankey;
else scankey <= scankey + 1;

if (hwen) int_enable <= wdata[0]
pressed1 <= pressed;
if (!pressed1 && pressed) pending <= 1;
if (hren) pending <= 0;
end

assign interrupt = pending && int_enable;
assign rdata = { 28’b0, pkey };

This simple keyboard scanner scans each key until it finds one pressed. It then loads the scan code into the
pkey register where the host finds it when it does a programmed I/O read.

The host will know to do a read when it gets an interrupt. The interrupt occurs when a key is pressed and is
cleared when the host does a read hren.

The details of this simple sketch are a little unrealistic. In practice, one would not scan at the speed of the
processor clock. One would scan more slowly to stop the wires in the keyboard generating radio-frequency
interference (RFI). Also, one should use extra register on asynchronous input pressed (see crossing clock
domains) to avoid metastability. Finally, one would put the keys in a close to square grid, with as many
‘pressed’ column outputs form the array as row wires feeding the array.

And today, typically, one might use a dedicated microcontroller to scan the keyboard rather than design a
hardware circuit.

Note, a standard PC keyboard generates an output byte on press and release and implements a short FIFO
internally.

Not lectured or examinable in 2014/15.

When a large number of leds or switches need to connected, as in a display or keyboard, the number of
connections can normally reduced by connecting them in a matrix. Figure ?? shows how 25 LEDs can be
connected to just ten signals.

Because of persistence of vision (for displays) and slowness of fingers (for keyboards and touchpads) we do not
need to drive/sample every element continuously.

The matrix gives a scan-multiplexed display or keyboard. In the display, one vertical column line can be
driven to logic one at a time and a zero placed on the horizontal lines that should be illuminated in that column.
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A circuit to repeatedly read out the contents of a RAM and display it is shown in figure ??. Clearly, the desired
LEDs are not all on at once, but by scanning the display faster than the human eye can detect flashes (about 50
Hz) and by using sufficiently large currents, so that the elements are brighter than would otherwise be required,
this is overcome. The current is set by the value of a series current limiting resistor that is not shown.

For a scan-multiplexed keyboard, the switches take the place of the LEDs. Push-to-make, normally open
switches must be used and the user should not press two at once. The scanning circuit must take one row line
low in turn. Pull-up resistors keep the column lines at logic one unless a switch to a low row line is pressed.

1.2.5 Counter/Timer Block

// RTL for one channel of a typical timer

//Programmers’ Model
reg int_enable, int_pending;

reg [31:0] prescalar;
reg [31:0] reload;

//Internal state
reg ovf’
reg [31:0] counter, prescale;

// Host write operations
always @(posedge clk) begin

if (hwen && addr==0) int_enable <= wdata[0];
if (hwen && addr==4) prescalar <= wdata;
if (hwen && addr==8) reload <= wdata; //FIXED
// Write to addr==12 to clear interrupt
end

// Host read operations
assign rdata =

(addr==0) ? {int_pending, int_enable}:
(addr==4) ? prescalar:
(addr==8) ? reload: 0;

// A timer counts system clock cycles.
// A counter would count transitions from external input.
always @(posedge clk) begin

ovf <= (prescale == prescalar);
prescale <= (ovf) ? 0: prescale+1;
if (ovf) counter <= counter -1;
if (counter == 0) begin

int_pending <= 1;
counter <= reload;
end

if (host_op) int_pending <= 0;
end

wire host_op = hwen && addr == 12;

// Interrupt generation
assign interrupt = int_pending && int_enable;

The counter/timer block is essentially a counter that counts internal clock pulses or external events and which
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interrupts the processor on a certain count value. An automatic re-load register accommodates poor interrupt
latency, so that the processor does not need to re-load the counter before the next event.

Timer (illustrated in the RTL) : counts pre-scaled system clock, but a counter has external inputs as shown on
the schematic (e.g. car rev counter). Four to eight, versatile, configurable counter/timers generally provided in
one block. All registers also configured as bus slave read/write resources for programmed I/O. In this example,
the interrupt is cleared by host programmed I/O (during host op).

1.2.6 Video Controller: Framestore

Figure 1.18: Super video graphics adaptor (SVGA) analog framestore output port.

reg [2:0] framestore[32767:0];
reg [7:0] hptr, vptr;
output reg [2:0] rgb_video;
output reg hsynch, vsynch;

always @(posedge clk) begin
hptr <= (hsynch) ? 0: hptr + 1;
hsynch <= (hptr >= 230)
if (hsynch) vptr <= (vsynch) ? 0: vptr + 1;
vsynch <= (vptr == 110)

if (hwen) framestore[haddr]<= wdata[2:0];
/*else*/ rgb_video <= framestore[{vptr[6:0], hptr}];

end

The framestore reads out the contents of its frame buffer again and again. The device driver needs to know
the mapping of RAM addresses to screen pixels and has zeroed the locations read out during horizontal and
vertical synchronisation.

No DAC is needed to render the basic saturated 8 colours, black, white, magenta, cyan, red etc.. To show other
colours a DAC (digital to analog convertor) drives the R G and B signals. Modern DVI ports put the DACs at
the display end of the monitor cable which is then digital.

The memory is implemented in a Verilog array and this has two address ports. Another approach is to have a
single address port and for the RAM to be simply ‘stolen’ from the output device when the host makes a write
to it. This will cause noticeable display artefacts if writes are at all frequent.

This framestore has fixed resolution and frame rate, but real ones have programmable values read from registers
instead of the fixed numbers 230 and 110 (see the linux Modeline tool for example numbers). It is an output
only device that never goes busy, so it generates no interrupts.

The framestore in this example has its own local RAM. This reduces RAM bandwidth costs on the main RAM
but uses more silicon area. A delicate trade off! A typical compromise, also used on audio and other DSP
I/O, is to have a small staging RAM or FIFO in the actual device but to keep as much as possible in the main
memory.

Video adaptors in PC computers have their own local RAM or DRAM and also a local processor that performs
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polygon shading and so on (GPU).

1.2.7 Basic bus: Multiple Initiators.

Figure 1.19: SoC bus structure where one of the targets is also an initiator (e.g. a DMA controller).

The basic bus may have multiple initiators, so additional multiplexors select the currently active initiator. This
needs arbitration between initiators: static priority, round robin, etc.. With multiple initiators, the bus may
be busy when a new initiator wants to use it, so there are various arbitration policies that might be used.
Preemptive and non-preemptive with static priority, round robin, and others mentioned above.

The maximum bus throughput of unity is now shared among initiators.

Since cycles now take a variable time to complete we need acknowledge signals for each request and each
operation (not shown). How long to hold bus before re-arbitration ? Commonly re-arbitrate after every burst.
Practical busses support bursts of up to, say, 256 words, transferred to/from consecutive addresses. Our simple
bus for this section does not support bursts. The latency in a non-preemptive system depends on how long the
bus is held for. Maximum bus holding times affect response times for urgent and real-time requirements.
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1.2.8 DMA Controller

This controller just block copies: may need
to keep src and/or dest constant for device
access.
DMA controllers may be built into devices:
SoC bus master ports needed.

// Programmers’ Model
reg [31:0] count, src, dest;
reg int_enable, active;

// Other local state
reg [31:0] datareg;
reg intt, rwbar;

always @(posedge clk) begin // Target
if (hwen && addr==0) begin

{ int_enable, active } <= wdata[1:0];
intt <= 0; rwbar <= 1;
end

if (hwen && addr==4) count <= wdata;
if (hwen && addr==8) src <= wdata;
if (hwen && addr==12) dest <= wdata;
end

assign rdata = ...// Target readbacks

always @(posedge clk) begin // Initiator
if (active && rwbar && m_ack) begin

datareg <= m_rdata;
rwbar <= 0;
src <= src + 4;
end

if (active && !rwbar && m_ack) begin
rwbar <= 1;
dest <= dest + 4;
count <= count - 1;
end

if (count==1 && active && !rwbar) begin
active <= 0;
intt <= 1;
end

end
assign m_wdata = datareg;
assign m_ren = active && rwbar;
assign m_wen = active && !rwbar;
assign m_addr = (rwbar) ? src:dest;
assign interrupt = intt && int_enable;

The DMA controller is the first device we have seen that is a bus initiator as well as a bus target. It has two
complete sets of bus connections. Note the direction reversal of all nets on the initiator port.

This controller just makes block copies from source to destination with the length being set in a third register.
Finally, a status/control register controls interrupts and kicks of the procedure.

The RTL code for the controller is relatively straightforward, with much of it being dedicated to providing the
target side programmed I/O access to each register.

The active RTL code that embodies the function of the DMA controller is contained in the two blocks qualified
with the active net in their conjunct.

Typically, DMA controllers are multi-channel, being able to handle four or so concurrent or pending transfers.
Many devices have their own DMA controllers built in, rather than relying on dedicated external controllers.
However, this is not possible for devices connected the other side of bus bridges that do not allow mastering
(initiating) in the reverse directions. An example of this is an IDE disk drive in a PC.

Rather than using a DMA controller one can just use another processor. If the processor runs out of (i.e.
fetches its instructions from) a small, local instruction RAM or cache it will not impact on main memory bus
bandwidth with code reads and it might not be much larger in terms of silicon area.

An enhancement might be to keep either of the src or destination registers constant for streaming device access.
For instance, to play audio out of a sound card, the destination address could be set to the programmed I/O
address of the output register for audio samples and set not to increment.

For streaming media with hard real-time characteristics, such as audio, video and modem devices, a small
staging FIFO is likely to be needed in the device itself because the initiator port may experience latency when
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it is serviced. The DMA controller then initiates the next burst of its transfer when the local FIFO reaches a
trigger depth.

1.2.9 Network and Streaming Media Devices

Figure 1.20: Connections to a DMA-capable network device.

Network devices, such as Ethernet, USB, Firewire, 802.11 are similar to streaming media devices, such as audio,
and modem devices, and commonly have embedded DMA controllers. Only low throughput devices like the
UART are likely not to use DMA.

DMA offloads work from the main processor, but, equally importantly, using DMA requires less staging RAM
or data FIFO in device. In the majority of cases, RAM is the dominant cost in terms of SoC area.

Figure 1.21: Extra diagram illustrating satistical muxltiplexing gain [Non-examinable].

Another advantage of a shared RAM pool is statistical multiplexing gain. It is well known in queueing
theory that having a monolithic server performs better than having a number of smaller servers, with same
total capacity, that each are dedicated to one client. If the clients all share one server and jobs arrive more or
less at random, the system can be more efficient in terms of service delay and overall buffer space needed. The
same effect applies to buffer allocation: having a central pool requires less overall RAM, to meet a statistical
peak demand, than having the RAM split around the various devices.

The DMA controller in a network or streaming media device will often have the ability to follow elaborate data
structures set up by the host CPU, linking and de-linking buffer pointers from a central pool.
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Figure 1.22: Bi-directional bus bridge, composed from a pair of back-to-back simplex bridges.

1.2.10 Bus Bridge

The essential behaviour of the bus bridge is that bus operations slaved on one side are mastered on the other.
The bridge need not be symmetric: speeds and data widths may be different on each side.

A bus bridge connects together two busses that are potentially able to operate independently when traffic is
not crossing. However, in some circumstances, especially when bridging down to a slower bus, there may be no
initiator on the other side, so that side never actually operates independently and a unidirectional bridge is all
that is needed.

The bridge need not support a unified or flat address space: addresses seen on one side may be totally
re-organised when viewed on the other side or un-addressable. However, for debugging and test purposes, it
is generally helpful to maintain a flat address space and to implement paths that are not likely to be used in
normal operation.

A bus bridge might implement write posting using an internal FIFO. However it will generally block when
reading. In another LG we cover networks on a chip that go further in that respect.

As noted, the ‘busses’ on each side use multiplexors and not tri-states on a SoC. These multiplexors are different
from bus bridges since they do not provide spatial reuse of bandwidth. Spatial reuse occurs when different
busses are simultaneously active with different transactions.

With a bus bridge, system bandwidth ranges from 1.0 to 2.0 bus bandwidth: inverse proportion to bridge
crossing cycles.

1.2.11 Inter-core Interrupter (Doorbell/Mailbox)

Figure 1.23: Dual-port interrupter (doorbell) or mailbox.

The inter-core interrupter (Doorbell/Mailbox) is a commonly-required component for basic synchronisation
between separate cores. Used, for instance, where one CPU has placed a message in a shared memory region
for another to read. Sometimes the interrupter is part of a central interrupt distributor, such as the ‘GIC’ from
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ARM, that enables any device interrupt to be routed to any core with any priority. Such a device offers multiple
target interfaces, one per client bus. It generates interrupts to one core at the request of another.

Operational sequence: one core writes a register that asserts an interrupt wire to another core. The interrupted
core, in its service routine, reads or writes a register in the interrupter to clear the interrupt.

Mailbox variant allows small data items to be written to a queue in the interrupter. These are read out by the
(or any) core that is (or wants to) handle the interrupt. Link: Doorbell Driver Fragments.

1.2.12 Clock Domain Crossing Bridge

A clock-domain-crossing bridge is needed between clock domains. The basic techniques are the same whether
implemented as part of an asynchronous FIFO, a SoC bus bridge or inside an IP block (e.g. network receive
front end to network core logic). The same techniques apply when receiving asynchronous signals into a clock
domain.

The following figure illustrates the key design aspects for crossing in one direction, but generally these details
will be wrapped up into something like the domain-crossing FIFO shown elsewhere.

Figure 1.24: Generic setup when sending parallel data between clock domains.

Design principle:

• Have a one-bit signal that is a guard or
qualifier signal for all the others going in
that direction.

• Make sure all the other signals are set-
tled in advance of guard.

• Pass the guard signal through two regis-
ters before using it (metastability avoid-
ance).

• Use a wide bus (crossing operations less
frequent).

Receiver side RTL:

input clk; // receiving domain clock

input [31..0] data;
input req;
output reg ack;

reg [31:0] captured_data;
reg r1, r2;
always @(posedge clk) begin

r1 <= req;
r2 <= r1;
ack <= r2;
if (r2 && !ack) captured_data <= data;

Metastability Theory:
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A pencil balancing on a razor blade can be metastable, but normally flops to one side or the other. A bistable
is two inverters connected in a ring. This has two stable states, but there is also a metastable state. If a D-type
is clocked while its input is changing, it might be set close to its metastable state and then drift to one level or
the other. Sometimes, it will take a fair fraction of a clock period to settle. The oscillogram shows metastable
waveforms at the output of a D-type when set/hold times are sometimes violated.

Two quartz crystal oscillators, each of 10 MHz frequency will actually be different by tens of Hz and drift with
temperature. Atomic clocks are better: accuracy is one part in ten to the twelve or better, but infeasible to
incorporate in everyday equipment and still not good enough to avoid rapid metastable failure.

A simplex clock domain crossing bridge carries information in only one direction. Duplex carries in both
directions. Because the saturated symbol rates are not equal on each side, we need a protocol with in-
sertable/deletable padding states or symbols that have no semantic meaning. Or, in higher-level terms, the
protocol must have elidable idle states between transactions.

Clock domain crossing is needed when connecting to I/O devices that operate at independent speeds: for
example, an Ethernet receiver sub-circuit works at the exact rate of the remote transmitter that is sending to
it. Today’s microprocessors also have separated clock domains for their cores viz their DRAM interfaces.

The data signals can also suffer from metastability, but the multiplexer ensures that these metastable values
never propagate into the main logic of the receiving domain.

100 percent utilisation is impossible when crossing clock domains. The four-phase handshake limits utilisation
to 50 percent (or 25 if registered at both sides) Other protocols can get arbitrarily close to saturating one side
or the other provided we know the maximum tolerance in the nominal clock rates. Since clock frequencies are
different, 100 percent of one side is either less than 100 percent of the other or else overloaded.

1.2.13 SoC Example - Raspberry Pi

The Raspberry PI is a SoC with on-chip DRAM. A relatively new development in SoC implementation.

• Original Raspberry Pi Model A : 256 MByte

• Raspberry Pi Model B : 512 MByte

• Raspberry Pi 2 : 1GByte

Die stacking (putting two pieces of silicon in onw package) enables short connections between main memory
and logic. Growing technology maturity allows DRAM to be put on the same silicon die with the SoC logic.
Memory density is still going up, even if CPU core speed has stalled.
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Figure 1.25: Raspberry Pi Photograph.

Figure 1.26: Raspberry Pi (Model B) PCB Layout.

1.2.14 Dynamic RAM : DRAM

DRAMs for use in PCs are mounted on SIMMS or DIMMS, but for embedded applications, often just soldered
to the main PCB. Normally one DRAM chip (or pair of chips to make D=32) is shared over many sub-systems
in, say, a mobile phone. SoC DRAM compatibility might be a generation behind workstation DRAM: e.g. using
DDR2 instead of DDR3 Also, the most recent SoCs embed some DRAM on the main die or flip-chip bond it
right on top of the die in the same package.
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Figure 1.27: DRAM single-in-line memory module (SIMM).

Modern DRAM chip with
8 internal memory banks.

m

Typical DRAM pin connections:

Clk+/- Clock (200MHz)
Ras- Row address strobe
Cas- Column address strobe
We- Write enable

dq[63:0] Data in/out
reset Power on reset

wq[7:0] Write lane qualifiers
ds[7:0] Data strobes

dm[7:0] Data masks
cs- Chip select

addr[15:0] Address input
bs[2:0] Bank select

spd[3:0] Serial presence detect

High bandwidth: 64 bits times 400 MHz giving 25.6 Gb/s peak. High capacity: Example 1 Gbyte DIMM made
of 8 chips. High latency: 20 clock cyles access time to a closed bank. Worse if a bank is already open at the
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wrong place.

Figure 1.28: Single-bank DRAM Chip Internal Block Diagram.

This DRAM has four data I/O pins and four internal planes, so no bank select bits. (Modern, larger capacity
DRAMs have multiple such structures on their die and hence additional bank select inputs select which one is
addressed.)

Dynamic RAM keeps data in capacitors. The data will stay there reliably for up to four milliseconds and hence
every location must be read out and written back (refreshed) within this period. The data does not need to
leave the chip for refresh, just transferred to the edge of its array and then written back again. Hence a whole
row of each array is refreshed as a single operation.

DRAM is not normally put on the main SoC chip(s) owing to its specialist manufacturing steps and large area
needs. Instead a standard part is put down and wired up. (DRAM is traded as a commodity like corn and
gold.)

A row address is first sent to a bank in the DRAM and then one has random access to the columns of that row
using different column addresses. The DRAM cells internally have destructive read out because the capacitors
get discharged into the row wires when accessed. Therefore, whenever finished with a row, the bank containing
it goes busy while it writes back the data and gets ready for the next operation (charing row wires to mid-way
voltage etc.).

DRAM is slow to access and certainly not ‘random access’ compared with on-chip RAM. A modern PC might
take 100 to 300 clock cycles to access a random part of DRAM, but the ratio may not be as severe in embedded
systems with lower system clocks. Nonetheless, we typically put a cache on the SoC as part of the memory
controller. The controller may embody error detection or correction logic using additional bit lanes in the
DRAM.

The cache will access the DRAM in localised bursts, saving or filling a cache line, and hence we arrange for
cache lines to lie within DRAM rows.

The controller may keep multiple banks open at once to exploit tempro-spatial access locality.

DRAM controller is typically coupled with a cache or at least a write buffer.

DRAM: high latency and write-back overhead dictate preference for large burst operations. It is best if clients
make available several operations for processing at once: up to number of banks. It is best if clients can tolerate
responses out of order (hence use bus/NoC structure that supports this).

Controller must

• set up DRAM control register programming,

• set clock frequency and calibrate delay lines,

• implement specific RAS-to-CAS latencies and many other timing details,
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• and ensure refresh happens.

Controller often contains a tiny CPU to interrogate serial device data. DRAM refresh overhead has minimal
impact on bus throughput. For example, if 512 refresh cycles are needed in 4 ms and the cycle rate is 200E6
the overhead is 0.1 percent.

Figure 1.29: Typical structure of a small DRAM subsystem.

Figure 1.29 shows a 32-bit DRAM subsystem. Four CAS wires are used so that writes to individual byte lanes
are possible. For large DRAM arrays, need also to use multiple RAS lines to save power by not sending RAS
to un-needed destinations. [Detailed wiring details non-examinable]

1.2.15 Cache Design

Figure 1.30: Memory blocks and tag comparator needed for a 4-way, set-associative cache.

Implementing 4-way, set-associative cache is relatively straightforward. One does not need an associative RAM
macrocell: just synthesise four sets of XOR gates from RTL using the ‘==’ operator!
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reg [31:0] data0 [0:32767], data1 [0:32767], data2 [0:32767], data3 [0:32767];
reg [14:0] tag0 [0:32767], tag1 [0:32767], tag2 [0:32767], tag3 [0:32767];

always @(posedge clk) begin
miss = 0;
if (tag0[addr[16:2]]==addr[31:17]) dout <= data0[addr[16:2]];
else if (tag1[addr[16:2]]==addr[31:17]) dout <= data1[addr[16:2]];
else if (tag2[addr[16:2]]==addr[31:17]) dout <= data2[addr[16:2]];
else if (tag3[addr[16:2]]==addr[31:17]) dout <= data3[addr[16:2]];
else miss = 1;
end

Of course we also need a write and evict mechanism... (not shown). Rather than implement least-recently-used
(LRU) one tends to do ‘random’ replacement which can be as simple as using keeping a two bit counter to
say which ‘way’ to evict next. Typically an IP company like ARM will provide a high-quality, carefully-tuned
implementation, ready to go.

1.2.16 SoC Example: Helium 210

Figure 1.31: Platform Chip Example: Virata Helium 210

Figure 1.32: Helium chip as part of a home gateway ADSL modem (partially masked by 802.11 module).

A platform chip is the modern equivalent of a microcontroller: it is a flexible chip that be programmed up to serve
in a number of embedded applications. The set of components remains the same as for the microcontroller,
but each has far more complexity: e.g. 32 bit processor instead of 8. In addition, rather than putting a
microcontroller on a PCB as the heart of a system, the whole system is placed on the same piece of silicon as
the platform components. This gives us a system on a chip (SoC).

The example illustrated in figure 1.32 has two ARM processors and two DSP processors. Each ARM has a local
cache and both store their programs and data in the same off-chip DRAM.

Lent Term 2014/15 Rev 1a 32 System-On-Chip D/M



1.2. TYPICAL IP BLOCKS SG 1. BASIC SOC COMPONENTS

The left-hand-side ARM is used as an I/O processor and so is connected to a variety of standard peripherals.
In any typical application, many of the peripherals will be unused and so held in a power down mode.

The right-hand-side ARM is used as the system controller. It can access all of the chip’s resources over various
bus bridges. It can access off-chip devices, such as an LCD display or keyboard via a general purpose A/D local
bus.

The bus bridges map part of one processor’s memory map into that of another so that cycles can be executed
in the other’s space, albeit with some delay and loss of performance. A FIFO bus bridge contains its own
transaction queue of read or write operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such SRAM may dominate the die area of the
chip. If both are fetching instructions from the same port of the same RAM, then they had better be executing
the same program in lock-step or else have some own local cache to avoid huge loss of performance in bus
contention.

The rest of the system is normally swept up onto the same piece of silicon and this is denoted with the ‘special
function peripheral.’ This would be the one part of the design that varies from product to product. The same
core set of components would be used for all sorts of different products, from iPODs, digital cameras or ADSL
modems.

1.2.17 SoC Example: Atmel SAM9645

Figure 1.33: Platform Chip Example: Atmel SAM Series 9645.
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The SAM9645 integrates a 400 MHz ARM core and a large number of DMA-capable peripheral controllers using
a central bus ’matrix’: PDF DataSheet

A platform chip is an SoC that is used in a number of products although chunks of it might be turned off in any
one application: for example, the USB port might not be made available on a portable media player despite
being on the core chip.

At the architectural design stage, to save the cost of a full crossbar matrix interconnect, devices can be allocated
to busses with knowledge of the expected access and traffic patterns. Commonly there is one main bus master
per bus. The bus master is the device that generates the address for the next data movement (read or write
operation).

Busses are connected to bridges, but crossing a bridge has latency and also uses up bandwidth on both busses.
So we should allocate devices to busses so that inter-bus traffic is minimised based on a priori knowledge of
likely access patterns.

Lower-speed busses may go off chip.

DRAM is always an important component that is generally off chip as a dedicated part. Today, some on-chip
DRAM is being used in SoCs.

1.3 Architecture: Bus and Device Structure

In this section we examine the basic anatomy of a SoC.

Transmitting data consumes energy and causes delay. Basic physical parameters:

Figure 1.34: Speed of light is a constant (and in silicon it is lower).

• Speed of light on silicon and on a PCB is 200 metres per microsecond.

• A clock frequency of 2 GHz has a wavelength of 2E8/2E9 = 10 cm.

• Within a synchronous digital clock domain we require connections to be less than (say) 1/10th of a
wavelength.

• Conductor series resistance further slows signal propagation and is dominant source of delay.

• So need to register a signal in several D-types if it passes from one corner of an 8mm chip to the other!
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• Can have several thousand wires per millimetre per layer: fat busses (128 bits or wider) are easily possible.

• Significant DRAM is several centimeters away from the SoC and also has significant internal delay.

Hence we need to use protocols that are tolerant to being registered (passed through D-type pipeline stages).
The four-phase handshake has one datum in flight and degrades with reciprocal of delay. We need something a
bit like TCP that keeps multiple datums in flight. (Die stacking and recent DRAM-on-SoC approaches reduce
wire length to a few mm for up to 500 MB of DRAM.)

But first let’s revist the simple hwen/rwen system used in the ‘socparts’ section.

1.3.1 Basic Bus: One initiator (II).

The bus protocol in the earlier slides that used addr, hwen, hren, wdata and rdata does not tolerate
registering for reads, but if a ready or other acknowledgement signal were added, it would be like the four
phase handshake and work correctly, but poorly for long distances over the chip.

Figure 1.35: Example where one initiator addresses three targets.

Figure 1.35 shows such a bus with one initiator and three targets.

No tri-states are used: on a modern SoC address and write data outputs use wire joints or buffers, read data
uses multiplexors.

Max throughput is unity (i.e. one word per clock tick). Typical SoC bus capacity: 32 bits × 200 MHz = 6.4
Gb/s, but owing to protocol degrades with distance. This figure can be thought of as unity (i.e. one word per
clock tick) in comparisons with other configurations we shall consider.

The most basic bus has one initiator and several targets. The initiator does not need to arbitrate for the bus
since it has no competitors.

Bus operations are reads or writes. In reality, on-chip busses support burst transactions, whereby multiple
consecutive reads or writes can be performed as a single transaction with subsequent addresses being implied
as offsets from the first address.

Interrupt signals are not shown in these figures. In a SoC they do not need to be part of the physical bus
as such: they can just be dedicated wires running from device to device. (For ESL higher-level models and
IP-XACT representation, interrupts need management in terms of allocation and naming in the same way as
the data resources.)

Un-buffered wiring can potentially serve for the write and address busses, whereas multiplexors are needed for
read data. Buffering is needed in all directions for busses that go a long way over the chip.
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1.3.2 Basic bus: Multiple Initiators (II).

Figure 1.36: Example where one of the targets is also an initiator (e.g. a DMA controller).

Basic bus, but now with two initiating devices. Needs arbitration between initiators: static priority, round
robin, etc.. With multiple initiators, the bus may be busy when a new initiator wants to use it, so there are
various arbitration policies that might be used. Preemptive and non-preemptive with static priority, round
robin and so on. The maximum bus throughput of unity is now shared among initiators.

Since cycles now take a variable time to complete, owing to contention, we certainly need acknowledge signals
for each request and each operation (not shown).

How long to hold bus before re-arbitration ? Commonly re-arbitrate after every burst. The latency in a non-
preemptive system depends on how long the bus is held for. Maximum bus holding times affect response times
for urgent and real-time requirements.

1.3.3 Bridged Bus Structures.

Figure 1.37: A system design using three main busses.

To make use of the additional capacity from bridged structures we need at least one main initiator for each bus.
However, a low speed bus might not have its own initiators: it is just a slave to one of the other busses.

Bus bridges provide full or partial connectivity and some may write post. Global address space, non-uniform
access time (NUMA). Some busses might be slower, narrower or in different clock domains from others.
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The maximum throughput is the sum of that of all the busses that have their own initiators, but the achieved
throughput will be lower if the bridges are used a lot: a bridged cycle consumes bandwidth on both sides.

How and where to connect DRAM is always a key design issue. The DRAM may be connected via a cache.
The cache may be dual ported on to two busses, or more.

Bus bridges and top-levels of structural wiring automatically generated. An example tool that does this is
ARChitect2 from ARC International (now part of Virage Logic).

1.3.4 Classes of On-Chip Protocol

Figure 1.38: Timing diagram for an asynchronous, four-phase handshake.

1. Reciprocally-degrading: such as handshake protocols studied earlier: throughput is inversely proprotional
to target latency in terms of clock cycles,

2. Delay-tolerant: such as AMBA-3 (ARM’s AXI) and OCP’s BVCI (below): new commands may be issued
while awaiting responses from earlier,

3. Reorder-tolerant: responses can be returned in a different order from command issue: helpful for DRAM
access and needed for advanced NoC architectures.

4. Virtual-circuit flow controlled: (beyond scope of this course): each source has a credit counter controlling
how many packets it can send and priority mechanisms ensure responses are returned without deadlock.

Lables or tags need to be added to each transaction to match up commands with responses.

The EACD+ARCH part Ib classes use the ’Avalon’ bus on the Altera devices: Avalon Interface Specifications

For those interested in more detail: Comparing AMBA AHB to AXI Bus using System Modelling

Last year you used the Altera Avalon bus in part IB ECAD+Arch workshops. Many real-world IP blocks today
are wired up using OCP’s BVCI and ARM’s AHB. Although the port on the IP block is fixed, in terms of its
protocol, it can be connected to any system of bus bridges and on chip networks. Download full OCP documents
from OCIP.org. See also bus-protocols-limit-design-reuse-of-ip
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OCP BVCI Core Nets:

• All IP blocks can sport this interface.

• Separate request and response ports.

• Data is valid on overlap of req and ack.

• Temporal decoupling of directions:

• Allows pipeline delays for crossing switch fab-
rics or crossing clock domains.

• Sideband signals: interrupts, errors and resets:
vary on per-block basis.

• Two complete instances of the port are neeed
if block is both an initiator and target.

• Arrows indicate signal directions on initiator.
All are reversed on target.

A prominent feature is totally separate request and response ports. This makes it highly tolerant of delays over
the network and amenable to crossing clock domains. Older-style handshake protocols where targets had to
respond within a prescribed number of clock cycles cannot be used in these situations. However BVCI requests
and responses must not get our of order since there is no id token.

For each half of the port there are request and acknowledge signals, with data being transferred on any positive
edge of the clock where both are asserted.

If a block is both an initiator and a target, such as our DMA controller example, then there are two complete
instances of the port.

Figure 1.39: BVCI Protocol, Command Timing Diagram

Operations are qualified with conjunction of
req and ack. Response and acknowledge cy-
cles maintain respective ordering. Bursts are
common. Successive addressing may be im-
plied.

BVCI Response Portion Protocol Timing Di-
agram
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1.3.5 Network on Chip: Simple Ring.

A two-level heirarchy of bridged rings is sometimes a sweetspot for SoC design. For example, IBM Cell Broad-
band Engine uses dual rings. At moderate size, using a fat ring (wide bus links) is better than a thin X-bar
design for same throughput in terms of power consumption and area use.

Figure 1.40: A ring network: a low-complexity network on chip structure.

A two-by-two switch element enables formation of rings (and other NoC structures). The switch element is
registered: hence ring network can span the chip. A higher-radix element allows more devices to be connected
at a ‘station’. Performance: Single ring: throughput=2. Dual counter-rotating rings: throughput=4.

With ring (and certainly with all more complex NoCs) IP block protocol/interface needs to support decoupled
requests and response packets.

Ring has local arbitration in each element, but global policies are required to avoid deadlock and starvation.

Ring gives priority to traffic already on the ring and uses LAN-like buffering at source, hence no requirement
for queuing in element.

Ring does not carry interrupts or other sideband signals.

Switched networks require switching elements. With a 2x2 element it is easy to build a ring network. The
switching element may contain buffering or it may rely on back-pressure to make sources reduce their load.

Single ring: throughput=2. Counter-rotating ring (one ring in each direction): throughput=4 since a packet
only travels 1/4 of the way round the ring on average.

Using a network, the delay may be multiple clock cycles and so a write posting approach is reasonable. If
an initiator is to have multiple outstanding read requests pending it must put a token in each request that is
returned in the response packet for identification purposes.

Although there can be effective local arbitration in each element, a network on a chip can suffer from deadlock.
Some implementations uses separate request and response networks, so that a response is never held up by
new requests, but this just pushes deadlock to the next higher logical level when some requests might not be
servicable without the server issuing a subsidiary request to a third node. Global policies and careful design
are required to avoid deadlock and starvation.
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1.3.6 Network on chip: Switch Fabrics.

A simple ring is not very effective for above small tens of nodes. Instead, richer meshes of elements are used
and the elements can have a higher radix, such as 4x4.

There are a number of well-known switch wiring schemes, whth names such as Benes, Clos, Shuffle, Delta,
Torus, Mesh, Express-Mesh, Butterfly. These vary in terms of the complexity and contention ratios. Note
even a full-crossbar (any input to any output in unit time), which is very costly, still suffers from output
port contention, so rarely justified on performance grounds, but uniform access delays make it easy to provide
sequential consistency (see my Comparative Architecture notes).

Figure 1.41: A more-complex switching fabric: more wiring, more bandwidth and less fabric contention than
ring (but still has output port contention).

Illustrated is using two-by-two switch element connects eight devices in three stages. Using a higher-radix (e.g.
4) is common. The throughput is potentially equal to the number of ports, but the fabric may partially block
and there may be uneven traffic flows leading to receiver contention. These effects reduce throughput. Typically
will not need quite as many initiators as targets, so a symmetric switch system will be over provisioned.

Can be overly complex on the small scale, but scale ups well. See Network On Chip Synthesis Tool: Mullins
NetGen Network Generator. RDM NoC Notes

1.3.7 Network on Chip: Higher Dimensions.

(Not examinable for part II).

Can we consider higher-dimensional interconnect ? The hypercube has lowest diameter for number of customers.
But it has excessive wiring. Chips are two-dimensional so perhaps it’s good to use a 2-D network ? But this
may be overly conservative. Maybe use 2.5-D ? have a small number of ‘multi-hop’ links?

On benign (load-balanced) traffic, the flattened butterfly approaches the cost/performance of a butterfly network
and has roughly half the cost of a comparable performance clos network.

Further details (non examinable): ”The advantage over the clos is achieved by eliminating redundant hops when
they are not needed for load balance.” See ‘Flattened butterfly : a cost-efficient topology for high-radix networks’
by John Kim, William J. Dally, Dennis Abts.

The ARM AXI bus is widely used and can be used with non-ARM products ARM AXI. One ARM AXI protocol
includes tags on each operation for out-of-order request/response association: hence it is suitable for pipelined,
on-chip networks where message sequencing may vary.

Lent Term 2014/15 Rev 1a 40 System-On-Chip D/M

http://www.cl.cam.ac.uk/~rdm34/acs-slides/lec7.pdf
http://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture


1.3. ARCHITECTURE: BUS AND DEVICE STRUCTURE SG 1. BASIC SOC COMPONENTS

Figure 1.42: The ’Flattened Butterfly’ network topology.

Other busses: The Wishbone bus and IBM CoreConnect bus: used by various public domain IP bocks and
various designs (e.g. RTL OpenRISC). The OpenRISC in the practical materials on the course web site uses
Wishbone. Wikipedia Wishbone Core Connect
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SG 2 — Power, Performance and Technology

Battery life is very important for convenience. Saving energy in computing is always a good idea. In this SG
we will examine energy and performance and energy saving techniques.

2.0.8 Basic Physics

Figure 2.1: Ohms Law, Power Law and Battery Capacity.

2.0.9 Chip Dissipation

Figure 2.2: Dynamic energy dissipation mechanism.

Capacitors do not consume energy - they only store it temporarily. Only resistors dissipate energy in logic
circuits, but their resistance does not feature in the energy use formula. The energy in the wiring capacitance
is ‘wasted’ on each logic one to zero transistion.

If the clock frequency is f and a net has activity ratio α (the fraction of clock cycles it transitions from one to
zero) then the energy used is

E = f ∗ α ∗ C ∗ V 2/2

The FO4 delay is the delay through an inverter that
is feeding four other nearby inverters (fan out of
four).

Transistors have a gate threshold voltage around which they switch from off to on. This limits our lowest
possible supply voltage. Above this, logic delay in CMOS is roughly inversely proportional to supply voltage.
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Accordingly, to operate faster, we need a higher supply voltage for a given load capacitance. CMOS Delay
Versus Supply Voltage

Gate Delay ∝ C ∗ V
(V − Vt)2

2.0.10 Detailed Delay Model.

Figure 2.3: Logic net with tracking and input load capacitances illustrated.

Both the power consumption and effective delay of a gate driving a net depend mainly on the length of the net
driven.

device delay = (intrinsic delay) + (output load× derating factor).

The track-dependent output loading is a library constant times the track area. The load-dependent part is the
sum of the input loads of all of the devices being fed. For short, non-clock nets (less than 0.1 wavelength), we
just include propagation delay in the gate derating and assume the signal arrives at all points simultaneously.

Precise track lengths are only known after place and routing (Figure 5). Pre-layout and pre-synthesis we can
predict net lengths from Rent’s Rule and RTL-level heuristics.

Figure 2.3 shows a typical net, driven by a single source. To change the voltage on the net, the source must
overcome the stray capacitance and input loads. The fanout of a gate is the number of devices that its output
feeds. The term fanout is also sometimes used for the maximum number of inputs to other gates a given gate
is allowed to feed, and forms part of the design rules for the technology.

The speed of the output stage of a gate, in terms of its propagation delay, decreases with output load. Normally,
the dominant aspect of output load is capacitance, and this is the sum of:

• the capacitance proportional to the area of the output conductor,

• the sum of the input capacitances of the devices fed.

To estimate the delay from the input to a gate, through the internal electronics of a gate, through its output
structure and down the conductor to the input of the next gate, we must add three things:

• the internal delay of the gate, termed the intrinsic delay

• the reduction in speed of the output stage, owing to the fanout/loading, termed the derating delay,

• the propagation delay down the conductor.
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The propagation delay down a conductor obeys standard transmission line formula and depends on the dis-
tributed capacitance, inductance and resistance of the conductor material and adjacent insulators. For circuit
board traces, resistance can be neglected and the delay is just the speed of light in the circuit board material:
about 7 inches per nanosecond, or 200 metres per microsecond. On the other hand, for shorter nets on chip,
less than one tenth a wavelength long, we commonly assume the signal arrives at all destinations at once and
model the propagation delay as an additional inertial component of the driving gate and include this via the
gate derating.

2.0.11 Detailed Power Model.

Power is measured in Watts and P = V × I = E × f

Gate current I = Static Current (leakage) + Dynamic Current.

Early CMOS (VCC 5 volts): negligible static current, but today at VCC of 1.3 volts it’s up to 30 percent of
consumption.

Dynamic current = Short circuit current + Dynamic charge current.

Dynamic charge current computation:

• All energy in a net/gates is wasted each
time it goes from one to zero.

• The energy in a capacitor is E = CV 2/2.

• Dominant capacitance is proportional to
net length.

• Gate input and output capacitance also
contribute to C.

Note: static power consumption is static current multiplied by supply voltage (P=IV). Page 30 or so of this
cell library has real-word examples: 90nm Cell LibrarySee also the power formula on the 7400A data sheet:
74LVC00A.pdfFurther details: Power Management in CPU Design.

2.0.12 Dynamic Frequency and Voltage Scaling Example (DVFS)

Example: core area 64 mm2; average net length 0.1 mm; 400K gates/mm2, a = 0.25.

Net capacitance = 0.1 mm × 1 fF/mm × 400K × 64 mm2 = 2.5 nF.

Supply Voltage Clock Freq Static Power Dynamic Power Total Power
(V) (MHz) (mW) (mW) (mW)

0.8 100 40 24 64

1.35 100 67 68 135
1.35 200 67 136 204

1.8 100 90 121 211
1.8 200 90 243 333
1.8 400 90 486 576

The table shows example power consumption for a circuit when clocked at different frequencies and voltages.
The important thing to ensure is that the supply voltage must be sufficient for the clock frequency in use: too
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low a voltage means that signals do not arrive at D-type inputs in time to meet set up times.

Power consumption versus frequency is worse than linear: it goes with a power law.

In the past, chips were often core-bound or pad-bound. Pad-bound meant that the chip had too many I/O
signals for its core logic area: the number of I/O’s puts a lower bound on the perimeter of the chip. Today’s
VLSI technology allows I/O pads in the middle of the chip and designs are commonly power-bound.

2.0.13 Semi-Custom Design (repeated slide)

Figure 2.4: Typical cell data sheet from a standard cell library.

Figure 3.7 shows a cell from the data book for a standard cell library. Such libraries are the modern equivalent
of the 7400 range of logic gates and the silicon chip takes over from the breadboard (Figure 3.6). The illustrated
device has twice the ‘normal’ drive power, which indicates one of the compromises implicit in standard cell over
full-custom, which is that the size (driving power) of transistors used in a cell is not tuned on a per-instance
basis.

Historically, there were two types of semi-custom devices:

• standard cell (for high volume)

• gate array (for volume less than 10,000 parts).

but now the mask-programmed gate array has been replaced with the field-programmed FPGA. FPGAs have
also consumed a great portion of the previous standard cell market since the costs of custom masks cannot be
amortised for production runse fewer than 50,000 or so.
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In standard cell designs, cells from the library can freely be placed anywhere on the silicon and the number of
IO pads and the size of the die can be freely chosen. Clearly this requires that all of the masks used for a chip
are unique to that design and cannot be used again. Mask making is one of the largest costs in chip design.
(When) Will FPGAs Kill ASICs?

2.0.14 90 Nanometer Gate Length.

The mainstream VLSI technology in the period 2004-2008 was 90 nm. Now the industry is using 35-45 nanometer
and smaller (but yield problems). Parameters from a 90 nanometer standard cell library:

Parameter Value Unit
Drawn Gate Length 0.08 µm
Metal Layers 6 to 9 layers
Max Gate Density 400K gates/mm2

Finest Track Width 0.25 µm
Finest Track Spacing 0.25 µm
Tracking Capacitance 1 fF/mm
Core Supply Voltage 0.9 to 1.4 V
FO4 Delay 51 ps
Leakage current nA/gate

Typical processor core: 200k gates + 4 RAMs: one square millimeter. Typical SoC chip area is 50-100 mm2

 20-40 million gates (semi-custom/standard cell). Actual gate and transistor counts are higher owing to
full-custom blocks (RAMs mainly).

• 2007: Dual-core Intel Itanium2: 1.6 billion transistors (90 nm).

• 2010: 8-core Intel Nehalem: 2.3 billion transistors (45 nm).

• 2010: Altera Stratix IV FPGA: 2.5 billion transistors (40 nm).

Moore’s Law Transistor Count

The slide shows typical parameters from a 90 nanometer standard cell library. This figure refers to the width of
the gate in the field effect transistors. The smaller this width, the faster than transistor can operate, but also it
will consume more power as static leakage current. The 90 nm figure was the mainstream VLSI technology in
the period 2004-2008, but then 40-45 nanometer technology is widely used with smaller 22 nm now mainstream.

Typical processor core: 200k gates + 4 RAMs: one square millimeter.

A typical SoC chip area is 50-100 mm2 with 20-40 million gates. Actual gate and transistor count would be
higher owing to custom blocks (RAMs mainly), that achieve a better denisty than standard cells.

Moore’s Law has been tracked for the last two plus decades, but have we now reached the Silicon End Point?
That is, can we no longer make things smaller (at the same cost)? Modern workstation processors have certainly
demonstrated a departure from the previous trend of ever rising clock frequencies: instead they have several
cores.

The Power Wall is currently the limiting factor for practical VLSI. As Horowitz points out, the fixed threshold
voltage of transistors means that supply voltages cannot be reduced further as we go to smaller and smaller
geometries, hence the previous technology trajectory will change direction: Scaling, Power, and the Future of
CMOS. The limiting factor for commercial products has become the cost of thermal management. We can put
more-and-more transistors on our chip but we cannot use them all at once - hence Dark Silicon.
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2.0.15 Deep submicron and Dark Silicon

Basic physical parameters for different technologies. Metal and polysilicon resistance are growing (bad) as we
shrink.

Figure 2.5: Technology Scaling (transistor on and off states getting closer!).

Figure 2.6: Schematic of transistor construction on silicon wafer.

2.0.16 Power Saving Techniques

We can save power by controlling power supplies and clock frequencies: Figure 2.9.

2.0.17 Save Power 1: Dynamic Clock Gating

Clock trees consume quite a lot of the power in an ASIC and considerable savings can be made by turning off the
clocks to small regions. A region of logic is idle if all of the flip-flops are being loaded with their current contents,
either through synchronous clock enables or just through the nature of the design. EDA DESIGNLINE

Instead of using synchronous clock enables, current design practice is to use a clock gating insertion tool that
gates the clock instead. One clock control logic gate serves a number of neighbouring flip-flops: state machine
or broadside register.

Problem with AND gate: if CEN changes when clock is high: causes a glitch. Problem with OR gate: if CEN
changes when clock is low: causes a glitch. Hence, care must be taken not to generate glitches on the clock as
it is gated. Transparent latches in the clock enable signal prevent these glitches.

Care needed to match clock skew when crossing to/from non-gated domain: avoid shoot-through by building out
the non-gated parts as well. Shoot-through occurs when a D-type is supposed to register its current D input
value, but this has already changed to its new value before the clock signal arrives.

How to generate clock enable conditions ? One could have software control for complete blocks (additional
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Figure 2.7: Cross section showing stacked wiring metal layers.

Figure 2.8: Thermal management heat pipes in a modern laptop.

control register flags, as per power gating). But today’s designs automatically detect on a finer-grain basis.
Synthesiser tools can automatically insert clock required conditions and insert the additional logic. Automatic
tools compute ‘clock needed’ conditions. A clock is ‘needed’ if any register will change on a clock edge.

A lot of clock needed computation can get expensive, resulting in no net saving, but it can be effective if
computed once at head of a pipeline.

If not a straightforward pipeline, need to be sure there are no ‘oscillating’ stages that retrigger themselves or
an ‘earlier’ stage (add further runtime checks or else statically know their maximum settling time and use a
counter). The maximum settling time, if it exists, is computed in terms of clock cycles using static analysis.
Beyond the settling time, all registers will be being re-loaded with their current data on each clock cycle.

Beyond just turning off the clock or power to certain regions, we can consider further power saving techniques:
dynamic frequency and voltage scaling.

2.0.18 Save Power 2: Dynamic Supply Gating

Increased tendency towards multi-product platform chips means large functional blocks on silicon may be off
for complete product lifetime. The ‘dark silicon’ future scenario implies all chips must be mostly powered off.
Battery powered devices will also use macro-scale block power down (e.g. the audio or video input and output
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Figure 2.9: Terminology and Overview of Power Saving Techniques.

Figure 2.10: Clock enable using multiplexor, AND and OR gate.

subsystems).

Figure 2.11: Illustrating a transparent latch and its use to suppress clock gating glitches.
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Figure 2.12: Using XOR gates to determine whether a clock edge would have any effect.

Figure 2.13: Clock needed computations forwarded down a pipeline.

Dynamic power gating techniques typically re-
quire some sequencing: several clock cycles to
power up/down a region and enable/disable
isolation gates.

Fujitsu Article: Design of low power consumption LSIs

Previously we looked at dynamic clock gating, but we can also turn off power supply to regions of a chip with
fine or coarse gain, creating so-called power islands. We use power gating cells in series with supply rails. These
are large, slow, low-leakage transistors. (Best to disconnect the ground supply since an N-channel transistor
can be used which has smaller area for same resistance.)
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Signal isolation and retention cells (t-latches) on nets that cross in and out of the region are needed. There is
no register and RAM data retention in a block while the power is off. This technique is suitable at coarse grain
for complete sub-systems of a chip that are not in use on a particular product or for quite a long time, such as
a bluetooth tranceiver or audio input ADC. It can also be used on a fine grain with automated control similar
to clock gating.

However, power gating requires some sequencing to activate the enables to the isolation cells in the correct
order and hence several clock cycles or more are needed to power up/down a region. Additionally, gradual
turn on over tens of milli-seconds avoids creating noise on the global power rails. Originally, power off/on was
controlled by software or top-level input pads to the SoC. Today, dedicated microsequencer hardware might
control a hundred power islands within a single subsystem.

A common practice is to power off a whole chip except for a one or two RAMs and register files. This was
particularly common before FLASH memory was invented, when a small battery is/was used to retain contents
using a lower supply (CMOS RAM data holding voltage). Today, most laptops, tablets and PCs have a second,
tiny battery that maintains a small amount of running logic when the main power is off or battery removed.
This runs the real-time clock (RTC).

Another technique that saves power is to half-turn-on a power gating transistor and thereby run an island at a
lower voltage. This is not as efficient as adjusting standard switched-mode power supplies, since the half-turned
on transistor will waste energy itself.

2.0.19 Future Trends

Transistors are being made smaller and leakage current is going up. Dark Silicon: we can no longer turn on
all of the chip: perhaps one tenth maximum for today’s 22 nanometer chips. Even less in the future.

Insights Article

Slow, bulky power transistors will turn thousands of power islands on and off under automated or manual
control.

Conservation cores: use of high-level synthesis (HLS) of standard software kernels into application-specific
hardware coprocessors and putting them on the chip in case they are needed? Afterall, they have negligable
cost if not turned on.
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A collection of algorithms and functional requirements must be implemented using one or more pieces of silicon.
Each major piece of silicon contains one or more custom or standard microprocessors. Some silicon is custom for
a high-volume product, some is shared over several product lines and some is third party or standard parts. The
partition decisions take into account various aspects: fundamental silicon capabilities, stability of requirements,
market forces, ease of reuse ...

Design Partition: Deciding on the number of processors, number of custom processors, and number of custom
hardware blocks. The system architect must make make these decisions. SystemC helps them rapidly explore
various possibilities.

Co-design and co-synthesis: two basic methods (can do different parts of the chip differently):

• Co-design: Manual partition between custom hardware and software for various processors,

• Co-synthesis: Automatic partitioning: simple ‘device drivers’ and inter-core message formats are created
automatically:

Co-synthesis is not in mainstream use (2015). Example algorithm: MPEG compression:

• A-to-D capture to framestore,

• Colour space conversion (RGB->YUV),

• DCT transform and variable Q quantisation,

• Motion detection,

• Huffman encoding.

Can any of this be best done on a general purpose (say ARM) core ?

MPEG Encoding 1MPEG algorithm 2

3.1 H/W to S/W Interfacing Techniques

The system is to be divided into some number of hardware and software blocks with appropriate means of
interconnection. The primary ways of connecting H/W to S/W are:

• CPU coprocessor and/or custom instructions,

• Packet channel connected as coprocessor or mapped to main register file,

• Programmed I/O to pin-level GPIO register,

• Programmed I/O to FIFOs,

• Interrupts (hardwired to one core or dynamically dispatched),

• Pseudo-DMA: processor generates addresses and device snoops data,

• DMA.
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Advert ...

Embedded Systems Hardware for Software Engineers describes the electrical and electronic circuits that are used
in embedded systems, their functions, and how they can be interfaced to other devices.

Basic computer architecture topics, memory, address decoding techniques, ROM, RAM, DRAM, DDR, cache
memory, and memory hierarchy are discussed. The book covers key architectural features of widely used mi-
crocontrollers and microprocessors, including Microchip’s PIC32, ATMEL’s AVR32, and Freescale’s MC68000.
Interfacing to an embedded system is then described. Data acquisition system level design considerations and a
design example are presented with real-world parameters and characteristics. Serial interfaces such as RS-232,
RS-485, PC, and USB are addressed and printed circuit boards and high-speed signal propagation over trans-
mission lines are covered with a minimum of math. A brief survey of logic families of integrated circuits and
programmable logic devices is also contained in this in-depth resource.

Figure 3.1: Embedded Systems Hardware for Software Engineers.

Ed Lipianski’s Book

3.1.1 Conservation Cores Approach

Suppose something like the following fragment of code is a dominant consumer of power in a portable embedded
mobile device:

for (int xx=0; xx<1024; xx++)
{

unsigned int d = Data[xx];
int count = 0;
while (d > 0) { if (d&1) count ++; d >>= 1; }
if (!xx || count > maxcount) { maxcount = count; where = xx; }

}

This kernel tallies the set bit count in each word: such bit-level operations are inefficient using general-purpose
CPU instruction sets.

Dedicated hardware avoids instruction fetch overhead and is generally more power efficient. Analysis using
Amdhal’s law and high-level simulation (SystemC TLM) can establish whether a hardware implementation is
worthwhile. There are several feasible partitions:

1. Extend the CPU with a custom datapath and custom ALU (Figure 3.2a) for the inner tally function
controlled by a custom instruction.
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2. Add a tightly-coupled custom coprocessor (Figure 3.2b) with fast data paths to load and store operands
from/to the main CPU. The main CPU still generates the address values xx and fetches the data as usual.

3. Place the whole kernel in a custom peripheral unit (Figure 3.3) with operands being transferred in
and out using programmed I/O or pseudo-DMA.

4. As 3, but with the new IP block having bus master capabilities so that it can fetch the data itself, with
polled or interrupt-driven synchronisation with the main CPU.

Figure 3.2: A custom ALU operation implemented in two similar ways: as a custom instruction or as a
coprocessor.

Figure 3.3: A custom function implemented as a peripheral IP block, with optional DMA (bus master) capability.

The special hardware in all approaches may be manually coded in RTL or compiled using HLS from the original
C implementation.

In the first two approaches, both the tally and the conditional update of the maxcount variable might be
implemented in the hardware but most of the gain would come from the tally function itself and the detailed
design might be different depending on whether custom instruction or coprocessor were used. The custom
instruction operates on data held in the normal CPU register file. The bit tally function alone reads one
input word and yields one output word, so it easily fits within the addressing modes provided for normal ALU
operations. Performing the update of both the maxcount and word registers in one custom instruction would
require two register file writes and this may not be possible in one clock cycle and hence, if this part of the
kernel is placed in the custom datapath we might lean more towards the co-processor approach.

Whether to use the separate IP block really depends on whether the processor has something better to do in
the meantime and that there is sufficient bus bandwidth for them both to operate.

With increasing available transistor count in the form of dark silicon (ie. switched off most of the time) in
recent and future VLSI, implementing standard kernels as custom hardware cores is a potential major trend for
power conservation: sometimes called conservation cores.
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3.1.2 H/W Design Partition

A number of separate pieces of silicon are combined to form the product. Reasons for H/W design partition:

• Modular Engineering At Large (Revision Control/Lifetime/Sourcing/Reuse),

• Size and Capacity (chips 6-11 mm in size),

• Technology mismatch (Si/GaAs/HV/Analog/Digital/RAM/DRAM/Flash)

• Supply chain: In-house versus Standard Part.

• Isolation of sensitive RF signals,

• Cost: a new chip spin of old IP is still very expensive.

3.1.3 Chip Types and Classifications

This SSD drive uses a microprocessor/microcontroller with off-chip DRAM and twenty FLASH chips.

Figure 3.4: FLASH is can now replace spinning media.

Chips can be classified by function: Analog, Power, RF, Processors, Memories, Commodity: logic, discretes,
FPGA and CPLD, SoC/ASIC, Other high volume (disk drive, LCD, ... ).

Manufacturers can be classified as well:

1. Major chip makers such as IBM and Intel that design, manufacture and sell their chips (Integrated Device
Manufacturers / IDM).

2. Fabless manufacturers such as NVIDIA and Xilinx that design and sell chips but outsource manufacturing
to foundry companies.

3. Foundry companies (such as TSMC and UMC) that manufacture chips designed and sold by their cus-
tomers.

The world’s major foundries are SMC and TSMC: Taiwan Semiconductor Manufacturing Company Limited

Example Standard Cell Project: 8 Bit Adder0.5 Micron Cell Library

Figure 3.5 presents a historical taxonomy of chip design approaches. The top-level division is between stan-
dard parts, ASICs and field-programmable parts. Where a standard part is not suitable the choice between
full-custom and semi-custom and field-programmable approaches has to be made, depending on performance,
production volume and cost requirements.

There are deviations from this taxonomy: Complex PLDs cross between PALs and FPGA with low pin-to-pin
delay. Structured ASICs were mask-programmed FPGAs popular around 2005. Today (2012), super FPGAs
such as Zync are obliterating semi-custom masked ASICs for all but very-high-volume products. (When) Will
FPGAs Kill ASICs?
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Figure 3.5: A rough taxonomy of integrated circuits.

3.1.4 Standard Parts

A standard part is essentially any chip that a chip manufacturer is prepared to sell to someone else along with
a datasheet and EDA (electronic design automation) models. The design may actually previously have been
an ASIC for a specific customer that is now on general release. Many standard parts are general-purpose logic,
memory and microprocessor devices. These are frequently full-custom designs designed in-house by the chip
manufacturer to make the most of in-house fabrication line, perhaps using optimisations not made available to
others who use the line as a foundry. Other standard parts include graphics controllers, digital TV chipsets,
GPS receivers and miscellaneous useful chips needed in high volume.

3.1.5 Masked ASICs.

A masked ASIC (application-specific integrated circuit) is a device manufactured for a customer involving a set
of masks where at least some of the masks are used only for that device. These devices include full-custom and
semi-custom ASICs and masked ROMs.

A full-custom chip (or part of a chip) has had detailed, manual design effort expended on its circuits and the
position of each transistor and section of interconnect. This allows an optimum of speed and density and power
consumption.

Full-custom design is used for devices which will be produced in very large quantities: e.g. millions
of parts where the design cost is justified. Full-custom design is also used when required for performance reasons.
Microprocessors, memories and digital signal processing devices are primary users of full-custom design.

In semi-custom design, each cell has a fixed design and is repeated each time it is used, both within a chip
and across many devices which have used the library. This simplifies design, but drive power of the cell is not
optimised for each instance.

Semi-custom is achieved using a library of logic cells and is used for general-purpose VLSI design.
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Figure 3.6: Discrete Logic Gates: Semicustom design puts them all on one die.

3.1.6 Semi-custom (cell-based) Design Approach

A library of standard logic functions is provided. Cells are placed on the chip and wired up by the user, in the
same way that chips are placed on the PCB.

• Standard Cell - free placement and free routing of nets,

• Gate Array - fixed placement, masked or electrical programmable wiring.

Figure 3.7: Typical cell data sheet from a standard cell library.

Figure 3.7 shows a cell from the data book for a standard cell library. This device has twice the ‘normal’ drive
power, which indicates one of the compromises implicit in standard cell over full-custom, which is that the size
(driving power) of transistors used in a cell is not tuned on a per-instance basis.
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Mask-programmed gate array has been mostly replaced with the field-programmed FPGA except for analog/mixed-
signal niches TRIAD

Figure 3.8: Standard cell layout for a Kogge-Stone adder. Taken from a student project (PDF on course web
site).

In standard cell designs, cells from the library can freely be placed anywhere on the silicon and the number of
IO pads and the size of the die can be freely chosen. Clearly this requires that all of the masks used for a chip
are unique to that design and cannot be used again. Mask making is one of the largest costs in chip design.

3.1.7 Cell Library Tour

In the lecture we will have a look at (some of) the following documents:

Standard Cell Student Project: Kogge Stone Adder

Cell libraries in the public domain: 0.5 Micron Cell LibraryAnother 90nm Cell LibrarySome others: VLSI
TECH

Things to note: there’s a good variety of basic gates, including quite a few multi-level gates, such as AND-OR
gate. There’s also I/O pads, flip-flops and special function cells. Many gates are available with various output
powers.

For each gate there are comprehensive figures that enable one to predict its delay and energy use, taking into
account its track loading, how many other gates it is feeding and the current supply voltage.

3.1.8 Gate Arrays and Field-Programmable Logic.

Figure 3.9 reveals the regular layout of a masked gate array showing bond pads around the edge and wasted
silicon area (white patches). A gate array comes in standard die sizes containing a fixed layout of configurable
cells. Historically, there were two main forms of gate array:
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Figure 3.9: Mask for a Mask-Programmed Gate Array: (Greaves 1995, ECL for Ring Network)

• Mask Programmable,

• Field Programmable (FPGA).

In gate array designs, the silicon vendor offers a range of chip sizes. Each size of chip has a fixed layout and the
location of each transistor, resistor and IO pad is common to every design that uses that size. Gate arrays are
configured for a particular design by wiring up the transistors, gates and other components in the desired way.
Many cells will be unused. For mask-programmed devices, the wiring up was done with the top two or three
layers of metal wiring. Therefore only two or three custom masks were needed be made to make a new design.
In FPGAs the programming is purely electronic (RAM cells control pass transistors).

The disadvantage of gate arrays is their intrinsic low density of active silicon.

Standard cell designs use a set of well-proven logic cells on the chip, much in the way that previous generations
of standard logic have been used as board-level products, such as Texas Instruments’ System 74.

About 25 to 40 percent of chip sale revenue now comes from field-programmable logic devices. These are
chips that can be programmed electronically on the user’s site to provide the desired function. Recall the
Xilinx/Altera FPGA parts used in the Part IB E+A classes. Field-programmable devices may be volatile (need
programming every time after power up), reprogrammable or one-time programmable. This depends on how
the programming information is stored inside the devices, which can be in RAM cells or in any of the ways used
for ROM, such as electrostatic charge storage (e.g. FLASH).

Except for niche applications FPGAs are now always used instead of masked gate arrays and are starting to
kill ASCIs (see link above).

3.1.9 FPGA - Field Programmable Gate Array

Example: The part Ib practical classes use FPGAs from Altera: ECAD and Architecture Practical Classes
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Summary data for recent Xilinx FPGA:

Part number XC5VLX110T-2FFG1136C
Vendor Xilinx Inc
Category Integrated Circuits (ICs)
Number of Gates 110000
Number of I /O 640
Number of Logic Blocks/Elements 8640
Package / Case 1136-FCBGA
Operating Temperature 0C 85C
Voltage - Supply 1.14 V 3.45 V

65 nm technology, 6-input LUT, 64 bit DP RAMs.

Figure 3.10: Field-programmable gate array structure, showing IO blocks around the edge, interconnection
matrix blocks and configurable logic blocks. In recent parts, the regular structure is broken up by custom
blocks, including RAMs and DSP ALUs.

An FPGA (field-programmable gate array) consists of an array of configurable logic blocks (CLBs), as shown in
Figure 3.10. Not shown is that the device also contains a good deal of hidden logic used just for programming
it. Some pins are also dedicated to programming. Such FPGA devices have been popular since about 1990.

Each CLB (configurable logic block) or slice typically contains two or four flip-flops, and has a few (five shown)
general purpose inputs, some special purpose inputs (only a clock is shown) and two outputs. The illustrated
CLB is of the look-up table type, where the logic inputs index a small section of pre-configured RAM memory
that implements the desired logic function. For five inputs and one output, a 32 by 1 SRAM is needed. Some
FPGA families now give the designer write access to this SRAM, thereby greatly increasing the amount of
storage available to the designer. However, it is still an expensive way to buy memory.

FPGAs tend to be slow, achieving perhaps one third of the clock frequency of a masked ASIC, owing to larger
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die area and because the signals pass through hidden logic used only for configuration.

3.1.10 H/W versus S/W Design Partition Principles

The cost of developing an ASIC has to be compared with the cost of using an existing part. The existing part
may not perform the required function exactly, requiring either a design specification change, or some additional
glue logic to adapt the part to the application.

More than one ASIC may be needed under any of the following conditions:

• application-specific functions are physically distant,

• application-specific functions require different technologies,

• application-specific functions are just too big for one ASIC,

• it is desired to split the cost and risk or reuse part of the system later on.

Factors to consider on a per chip basis:

• power consumption limitation (powers above 5 Watts need special attention),

• die size limitation (above 11 mm on a side might escalate cost per mm2),

• speed of operation — clock frequencies above 1 GHz raise issues,

• special considerations :

– special static or dynamic RAM needs

– analogue parts - what is compromised if these are integrated onto the ASIC ?

– high power/voltage output capabilities for load control: e.g. motors.

• availability of a developed module for future reuse.

Many functions can be realised in software or hardware. Decide what to do in hardware:

• physical I/O (line drivers/transducers/media interfaces),

• highly compute-intensive, fixed functions,

what to do on custom processors or with custom instructions/coprocessors on an extensible processor:

• bit-oriented operations,

• highly compute-intensive SIMD,

• other algorithms with custom data paths,

• algorithms that might be altered post tape out.

and what to do in S/W on standard cores:

• highly-complex, non-repetitive functions,

• low-throughput computations of any sort,
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• functions that might be altered post tape out,

• generally, as much as possible.

Custom processor synthesis commercial offerings: See Tensilica

When designing a sub-system we must choose what to have as hardware, what to have as software and whether
custom or standard processors are needed. When designing the complete SoC we must think about sharing of
sub-system load over processors. Example: if we are designing a digital camera, how many processors should
it have and can the steadicam and motion estimation processing be done in software ? Would a hardware
implementation use less silicon and less battery power?

• The functions of a system can be expressed in a programming language or similar form and this can be
compiled fully to hardware or left partly as software

• Choosing what to do in hardware and what to do in software is a key decision. Hardware gives speed
(throughput) but software supports complexity and flexibility.

• Partitioning of logic over chips or processors is motivated by interconnection bandwidth, raw processing
speed, technology and module reuse.

3.1.11 An old partitioning example: An external RS-232/POTS Modem.

Figure 3.11: A POTS modem.

Figure 3.12: Example of a design partition — internal structure of the original modem.

Figure 3.12 shows the block diagram of a typical modem circa 1985. The illustrated device is an external
modem, meaning that it sits in a box beside the computer and has an RS-232 serial connection to the computer.
It also requires its own power supply.

The device contains a few analog components which behave broadly like a standard telephone, but most of it is
digital. A relay is used to connect the device to the line and its contacts mirror the ‘off-hook’ switch which is
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Figure 3.13: PCB of a similar modem - but offchip RAM and ROM for the 80C31 microcontroller.

part of every telephone. It connects a transformer across the line. The relay and transformer provide isolation
of the computer ground signal from the line voltages. Similarly the ringing detector often uses a opto-coupler
to provide isolation. Clearly, these analog aspects of the design are particular to a modem and are designed by
a telephone expert.

Modems from the 1960’s implemented everything in analog circuitry since microprocessors and DSP were not
available. In 1985, two microprocessors were often used.

Note that the non-volatile RAM required (and still does) a special manufacturing processing step and so is not
included as a resource on board the microcontroller. Similarly, the RS-232 drivers need to handle voltages of
+/- 12 volts and so these cannot be included on chip without increasing the cost of the rest of the chip by using
a fabrication process which can handle these voltages. The NV-RAM is used to store the owner’s settings, such
as whether to answer an incoming call and what baud rate to attempt a first connection, etc..

Figure 3.14: Typical structure of the modem product today (using a SoC approach).

A modern implementation would integrate all of the RAM, ROM, ADC and DAC and processors on a single
SoC. The RS-232 remains off chip owing to 24 volt and negative supply voltages whereas the SoC itself may
be run at 3.3 volts. The NV store is a large capacity Flash ROM device with low-bandwidth serial connection.
At system boot, the main code for both processors is copied from the Flash to the two on-chip RAMS by the
small, mask-programmed booter. Keeping the firmware in Flash allows the modem to be upgraded to correct
bugs or encompass new communications standards.

GPIO is used for all of the digital I/O, with the UART transmit and receive paths being set up as special modes
of two of the GPIO connections.

In the next two photos we track the integration of internal modem NICs (network interface cards). These
replace the RS-232 serial port with a UART that is connected to the system bus.
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Figure 3.15: Modem NIC (network interface card) Pre-SoC integration.

Figure 3.16: PCB of a similar modem - Post SoC technology.

3.1.12 Typical Radio/ Wireless Link Structure.

Radio communication above the VHF frequency range (above 150 MHz) uses high-frequency waveforms that
cannot be directly processed by A-to-D or D-to-A technology. Hetrodyning is analogue multiplication with a
sine wave carrier to perform frequency conversion. This exploits the sin(A)*sin(B) = -cos(A+B)/2 part of the
standard trig identity for converting upwards and the other half for converting downwars.

The high frequency circuity is almost always implemented on a separate chip from the digital signal processing
(DSP) for the baseband logic. The radio transmitter is typically 50 percent efficient and will use a about 100
mW for most indoor purposes. A cell phone transmitter has a maximum power of 4W which will be used when
a long distance from the mast. (Discuss: Having a mast in a school playground means the children are beaming
far less radio signal from their own phones into their own heads.) The backlight on a mobile phone LCD may
use 300mW (100 LEDs at 30 mW each).

3.1.13 Partitioning example: A Bluetooth Module.

An initial implementation of the Bluetooth radio was made of three pieces of silicon bonded onto a small
fibreglass substrate...

An initial implementation of the Bluetooth radio was made of three pieces of silicon bonded onto a small
fibreglass substrate with overall area of 4 square centimetres. The module was partitioned into three pieces of
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Figure 3.17: Typical structure of modern simplex radio link.

Figure 3.18: Broadcom (Cambridge Silicon Radio) Bluetooth Module circa 2000.

silicon partly because the overall area required would give a low yield, but mainly because the three sections
used widely different types of circuit structure.

The analog integrated circuit contained amplifiers, oscillators, filters and mixers that operate in the 2.4 GHz
band. This was too fast for CMOS transistors and so bipolar transistors with thin bases were used. The module
amplifies the radio signals and converts them using the mixers down to an intermediate frequency of a few MHz
that can be processed by the ADC and DAC components on the digital circuit.

The digital circuit had a small amount of low-frequency analog circuitry in its ADC and DACs and perhaps in its
line drivers if these are analog (e.g. HiFi). However, it was mostly digital, with random logic implementations
of the modem functions and a microcontroller with local RAM. The local RAM holds a system stack, local
variables and temporary buffers for data being sent or received.

The FLASH chip is a standard part, non-volatile memory array that can hold firmware for the microcontroller,
parameters for the modem and encryption keys and other end application functions. The flash memory is a

Figure 3.19: Example of a design partition — Block diagram of Bluetooth radio module (circa 2000).
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Figure 3.20: WiFi laptop module. Shielding lid, shown left, has been lifted off.

standard 29LV800BE (Fujitsu) - 8m (1m X 8/512 K X 16) Bit

Today, the complete Bluetooth module can be implemented on one piece of silicon, but this still presents a
major technical challenge owing to the diverse requirements of each of the sub-components.

3.1.14 ASIC costing.

The cost of a chip divides into two parts: non-recurring engineering (NRE) and per-device cost.

Item Cost (KUSD) Total (KUSD)

6 months : 10 H/W Engineers 250 pa 1250
12 months : 20 S/W Engineers 200 pa 4000
1 Mask set (45nm) 3000 3000
n 8 inch wafers 5 5n

TOTAL 5 8125 + 5n

For small quantities: share cost of masks with other designs e.g. MOSIS offers multiproject wafer (MPW).

3.1.15 Chip cost versus area

The per-device cost is influenced by the yield — the fraction of working dice. The fraction of wafers where at
least some of the die work is the ‘wafer yield’. Historically yields have been low, but was typically close to 100
percent for mature 90 nm fabrication processes, but has again be a problem with smaller geometries in recent
years.

The fraction of die which work on a wafer (often simply the ‘yield’) depends on wafer impurity density and
die size. Die yield goes down with chip area. The fraction of devices which pass wafer probe (i.e. before the
wafer is diced) and fail post packaging tests is very low. However, full testing of analog sections or other lengthy
operations are typically skipped at the wafer probe stage.

Assume processed wafer sale price might be 5000 dollars: A six inch diameter wafer has area (3.14r2) =
18000 mm2. A chip has area A, which can be anything between 2 to 200 mm2 (including scoring lines). Dies
per wafer is 18000/A.

Probability of working = wafer yield × die yield (assume wafer yield is 1.0 or else included in the wafer cost).

Assume 99.5 percent of square millimetres are defect free. Die yield is then

P (All A squares work) = 0.995A

cost of working dice is
5000

18000
A 0.995A

dollars each.
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Cost of a working die given a six inch wafer with a processing cost of 5000 dollars and a probability of a square
millimetre being defect free of 99.55 percent.

Area Wafer dies Working dies Cost per working die
2 9000 8910 0.56
3 6000 5910 0.85
4 4500 4411 1.13
6 3000 2911 1.72
9 2000 1912 2.62
13 1385 1297 3.85
19 947 861 5.81
28 643 559 8.95
42 429 347 14.40
63 286 208 24.00
94 191 120 41.83
141 128 63 79.41
211 85 30 168.78
316 57 12 427.85
474 38 4 1416.89

3.1.16 Xilinx Zynq Super FPGA

Xilinx Zynq-7000 Product Brief (PDF)

Figure 3.21: Xilinx Zynq 7000 Overview.

The high cost of ASIC masks now makes FPGA suitable for medium volume production. Super FPGAs, like
Zynq emerge: the dark silicon trend means we can put all IP blocks on one chip provided we leave them mostly
turned off. Xilinx Zynq solution has two ARM cores, all the standard IP blocks and an FPGA on one die.
Flexible I/O routing means physical pads can be IP block bond outs, GPIOs or FPGA.
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Figure 3.22: Xilinx Zynq 7000 FPGA Resources.

Figure 3.23: Xilinx Zynq 7000 ARM Cores, RAM, DRAM and DMA summary.
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A hardware design consists of a number of modules interconnected by wires known as ’nets’ (short for networks).
The interconnections between modules are typically structured as mating interfaces. An interface nominally
consists of a number of terminals but these have no physical manifestation.

In a modern design flow, the protocol at an interface is specified once in a master file that is imported for the
synthesis of each module that sports it.

Figure 4.1: Generic (net-level) Module Interconnection Using Protocols and Interfaces.

A clock domain is a set of modules and a clock generator. Within a synchronous clock domain all flip-flops have
their clocks commoned.

4.1 Protocol and Interface

At the electrical/net level, a port consists of an interface and a protocol. The interface is the set of pins or
wires that connect the components. The protocol defines the rules for changing the logic levels and the meaning
of the associated data. For example, an asynchronous interface might be defined in RTL as:

Transmit view of interface: Receive view of interface: // This is a four-phase asynchronous interface
output [7:0] data; input [7:0] data; // where the idle state has strobe and ack
output strobe; input strobe; // deasserted (low) and data is valid while
input ack; output ack; // the strobe signal is asserted (high).

Ports commonly implement flow-control by handshaking. Data is only transferred when both the sender and
receiver are happy to proceed.
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A port generally has an idle state which it returns to between each transaction. Sometimes the start of one
transaction is immediately after the end of the previous, so the transition through the idle state is only nominal.
Sometimes the begining of one transaction is temporaly overlaid with the end of a previous, so the transition
through idle state has no specific duration.

Additional notes:

There are four basic clock strategies for an interface:

Left Side Right Side Name
1. Clocked Clocked Synchronous (such as Xilinx LocalLink)
2. Clocked Different clock Clock Domain Crossing (see later)
3. Clocked Asynchronous Hybrid.
3. Asynchronous Clocked Hybrid (swapped).
4. Asynchronous Asynchronous Asynchronous (such a four-phase parallel port)

4.1.1 Transactional Handshaking

The mainstream RTL languages, Verilog and VHDL, do not provide synthesis of handshake circuits (but this is
one of the main innovations in Bluespec). We’ll use the word transactional for protocol+interface combinations
that support flow-control. If synthesis tools are allowed to adjust the delay through components, all interfaces
between components must be transactional and the tools must understand the protocol semantic.

Figure 4.2: Timing diagram for an asynchronous, four-phase handshake.

Here are two imperative (behavioural) methods (non-RTL) that embody the protocol for Figure 4.2:

//Output transactor:
putbyte(char d)
{

wait_until(!ack); // spin till last complete.
data = d;
settle(); // delay longer than longest data delay
req = 1;
wait_until(ack);
req = 0;

}

//Input transactor:
char getbyte()
{

wait_until(req);
char r = data;
ack = 1;
wait_until(!req);
ack = 0;
return r;

}

Code like this is used to perform programmed IO (PIO) on GPIO pins (see later). It can also be used as an
ESL transactor (see later). It’s also sufficient to act as a formal specification of the protocol.

4.1.2 Transactional Handshaking in RTL (Synchronous Example)

A more complex example is the LocalLink protocol from Xilinx. This is a synchronous packet proctocol (compare
with the asynchronous four-phase handshake just described).

Like the four-phase handshake, LocalLink has contra-flowing request and acknowledge signals. But data is not
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qualified by a request transition: instead it is qualified as valid on any positive clock edge where both
request and acknowledge are asserted. The interface nets for an eight-bit transmitting interface are:

input clk;
output [7:0] xxx_data; // The data itself
output xxx_sof_n; // Start of frame
output xxx_eof_n; // End of frame
output xxx_src_rdy_n; // Req
input xxx_dst_rdy_n; // Ack

Figure 4.3: Timing diagram for the synchronous LocalLink protocol.

Start and end of frame signals delimit the packets. All control signals are active low (denoted with the underscore
n suffix).
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Additional notes:

Here is a data source in Verilog RTL for LocalLink that generates a stream of packets containing
arbitrary data with arbitrary gaps.

module LocalLinkSrc(
input reset,
input clk,
output [7:0] src_data,
output src_sof_n,
output src_eof_n,
output src_src_rdy_n,
input src_dst_rdy_n);

// The source generates ’random’ data using a pseudo random sequence generator (prbs).
// The source also makes gaps in its data using bit[9] of the generator.
reg [14:0] prbs;
reg started;
assign src_data = (!src_src_rdy_n) ? prbs[7:0] : 0;
assign src_src_rdy_n = !(prbs[9]);

// The end of packet is arbitrarily generated when bits 14:12 have a particular value.
assign src_eof_n = !(!src_src_rdy_n && prbs[14:12]==2);

// A start of frame must be flagged during the first new word after the previous frame has ended.
assign src_sof_n = !(!src_src_rdy_n && !started);

always @(posedge clk) begin
started <= (reset) ? 0: (!src_eof_n) ? 0 : (!src_sof_n) ? 1 : started;

prbs <= (reset) ? 100: (src_dst_rdy_n) ? prbs: (prbs << 1) | (prbs[14] != prbs[13]);
end

endmodule

And here is a corresponding data sink:

module LocalLinkSink(
input reset,
input clk,
input [7:0] sink_data,
input sink_sof_n,
input sink_eof_n,
output sink_src_rdy_n,
input sink_dst_rdy_n);

// The sink also maintains a prbs to make it go busy or not on an arbitrary basis.
reg [14:0] prbs;
assign sink_dst_rdy_n = prbs[0];

always @(posedge clk) begin
if (!sink_dst_rdy_n && !sink_src_rdy_n) $display(

"%m LocalLinkSink sof_n=%d eof_n=%d data=0x%h", sink_sof_n, sink_eof_n, sink_data);
// Put a blank line between packets on the console.
if (!sink_dst_rdy_n && !sink_src_rdy_n && !sink_eof_n) $display("\n\n");
prbs <= (reset) ? 200: (prbs << 1) | (prbs[14] != prbs[13]);

end

endmodule // LocalLinkSrc
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Additional notes:

And here is a testbench that wires them together:

module SIMSYS();

reg reset;
reg clk;
wire [7:0] data;
wire sof_n;
wire eof_n;
wire ack_n;
wire req_n;

// Instance of the src
LocalLinkSrc src (.reset(reset),

.clk(clk),

.src_data(data),

.src_sof_n(sof_n),

.src_eof_n(eof_n),

.src_src_rdy_n(req_n),

.src_dst_rdy_n(ack_n));

// Instance of the sink
LocalLinkSink sink (.reset(reset),

.clk(clk),

.sink_data(data),

.sink_sof_n(sof_n),

.sink_eof_n(eof_n),

.sink_src_rdy_n(req_n),

.sink_dst_rdy_n(ack_n)
);

initial begin clk =0; forever #50 clk = !clk; end
initial begin reset = 1; #130 reset=0; end

endmodule // SIMSYS

4.2 RTL: Register Transfer Language

Everybody attending this course is expected to have previously studied RTL coding or at least taught themselves
the basics before the course starts.

The Computer Laboratory has an online Verilog course you can follow: Cambridge SystemVerilog TutorPlease
note that this now covers ‘System Verilog’ whereas most of my examples are in plain old Verilog. There are a
few, unimportant, syntax differences.

4.2.1 RTL Summary View of Variant Forms.

For the sake of this course, Verilog and VHDL are completely equivalent as register transfer languages (RTLs).
Both support simulation and synthesis with nearly-identical paradigms. Of course, each has its proponent’s.

Synthesisable Verilog constructs fall into these classes:

• 1. Structural RTL enables an hierarchic component tree to be instantiated and supports wiring (a
netlist) between components.

• 2. Lists of pure (unordered) register transfers where the r.h.s. expressions describe potentially
complex logic using a rich set of integer operators, including all those found in software languages such
as C++ and Java. There is one list per synchronous clock domain. A list without a clock domain is for
combinational logic (continuous assignments).

• 3. Synthesisable behavioural RTL uses a thread to describe behaviour where a thread may write a
variable more than once. A thread is introduced with the ’always ’ keyword.
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However, standards for synthesisable RTL greatly restrict the allowable patterns of execution: they do not allow
a thread to leave the module where it was defined, they do not allow a variable to be written by more than one
thread and they can restrict the amount of event control (i.e. waiting for clock edges) that the thread performs.

The remainder of the language contains the so-called ‘non-synthesisable’ constructs.

Additional notes:

The numerical value of any time values in RTL are ignored for synthesis. Components are synthe-
sisable whether they have delays in them or not. For zero-delay components to be simulatable in a
deterministic way the simulator core implements the delta cycle mechanism.

One can argue that anything written in RTL that describes deterministic and finite-state behaviour
ought to be synthesisable. However, this is not what the community wanted in the past: they wanted
a simple set of rules for generating hardware from RTL so that engineers could retain good control
over circuit structures from what they wrote in the RTL.

Today, one might argue that the designer/programmer should not be forced into such low-level
expression or into the excessively-parallel thought patterns that follow on. Certainly it is good that
programmers are forced to express designs in ways that can be parallelised, but the tool chain perhaps
should have much more control over the details of allocation of events to clock cycles and the state
encoding.

RTL synthesis tools are not normally expected to re-time a design, or alter the amount of state or
state encodings. Newer languages and flows (such as Bluespec and Kiwi) still encourage the user
to express a design in parallel terms, yet provide easier to use constructs with the expectation that
detailed timing and encoding might be chosen by the tool.

Level 1/3: Structural Verilog: a structural netlist with hierarchy.

module subcircuit(input clk, input rst, output q2);
wire q1, q3, a;
DFFR Ff_1(clk, rst, a, q1, qb1),

Ff_2(clk, rst, q1, q2, qb2),
Ff_3(clk, rst, q2, q3, qb3);

NOR2 Nor2_1(a, q2, q3);
endmodule

Figure 4.4: The circuit described by our structural example (a divide-by-five, synchronous counter).

Just a netlist. There are no assignment statements that transfer data between registers in structural RTL (but
it’s still a form or RTL).

All hardware description languages and RTLs contain some sort of generate statement. A generate statement
is an itereative construct that is executed at compile time to generate multiple instances of a component. In
Bluespec this is a complete, higher-order functional language, but in SystemVerilog we use the following:
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reg[3:0] values[0:4] = {5, 6, 7, 8, 9};

generate
genvar i;
for (i=0; i < 5; i++) begin: M1

MUT mut(
.out,
.in(values[i]),
.clk
);

end
endgenerate

Figure 4.5: Example RTL fragment, before and after flattening.

Figure 4.5 shows structural RTL before and after flattening as well as a circuit diagram showing the component
boundaries.

2a/3: Continuous Assignment: an item from a pure RT list without a clock domain.
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// Continuous assignments define combinational logic circuit:
assign a = (g) ? 33 : b * c;
assign b = d + e;

• Order of continuous assignments is un-important,

• Loop free, otherwise: parasitic level-sensitive latches are formed (e.g. RS latch),

• Right-hand side’s may range over rich operators (e.g. mux ?: and multiply *),

• Bit inserts to vectors are allowed on left-hand sides (but not combinational array writes).

assign d[31:1] = e[30:0];
assign d[0] = 0;

2b/3: Pure RTL: unordered synchronous register transfers.

Two coding styles (it does not matter whether these transfers are each in their own always statement or share
over whole clock domain):

always @(posedge clk) a <= b ? c + d;
always @(posedge clk) b <= c - d;
always @(posedge clk) c <= 22-c;

always @(posedge clk) begin
a <= b ? c + d;
b <= c - d;
c <= 22-c;

end

In System Verilog we would use always ff in the above cases.

Typical example (illustrating pure RT forms):

module CTR16(
input mainclk,
input din,
output o); // Note handout uses older syntax here

reg [3:0] count, oldcount;

// Add a four bit decimal value of one to count
always @(posedge mainclk) begin

count <= count + 1;
if (din) oldcount <= count; // Is ‘if’ pure ?
end

// Note ^ is exclusive-or operator
assign o = count[3] ^ count[1];

endmodule

Registers are assigned in clock domains (one shown called ‘mainclk’). .xi Each register is assigned in exactly
one clock domain. RTL synthesis does .xi not generate special hardware for clock domain crossing (described
later).

In a stricter form of this pure RTL, we cannot use ‘if’, so when we want a register to sometime retain its
current value we must assign this explicitly, leading to forms like this:

oldcount <= (din) ? count : oldcount;

3/3: Behavioural RTL: a thread encounters order-sensitive statements.

In ‘behavioural’ expression, a thread, as found in imperative languages such as C and Java, assigns to variables,
makes reference to variables already updated and can re-assign new values.

For example, the following behavioural code (inside an always block)
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if (k) foo = y;
bar = !foo;

can be compiled down to the following, unordered ‘pure RTL’:

foo <= (k) ? y: foo;
bar <= !((k) ? y: foo);

I found the following exercise book snapshot on Google images. It is trying to demonstrate the crucial difference
between assignment operators, but are the details quite right ?

Figure 4.6: Elementary Synthesisable Verilog Constructs
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Figure 4.6 shows synthesisable Verilog fragments as well as the circuits typically generated.

The ’little circuit’ uses old-style sytnax for input and output designations but this is still valid today.

The RTL languages (Verilog and VDHL) are used both for simulation and synthesis. Any RTL
can be simulated but only a subset is standardised as ‘synthesisable’ (although synthesis tools can generally
handle a slightly larger synthesisable subset).

Simulation uses a top-level test bench module with no inputs.

Synthesis runs are made using points lower in the hierarchy as roots. We should certainly leave out the test-bench
wrapper when synthesising and we typically want to synthesise each major component separately.

4.2.2 Synthesisable RTL

Additional notes:

Abstract syntax for a synthesisable RTL (Verilog/VHDL) without provision for delays:

Expressions:

datatype ex_t = // Expressions:
Num of int // integer constants

| Net of string // net names
| Not of ex_t // !x - logical not
| Neg of ex_t // ~x - one’s complement
| Query of ex_t * ex_t * ex_t // g?t:f - conditional expression
| Diadic of diop_t * ex_t * ex_t // a+b - diadic operators + - * / << >>
| Subscript of ex_t * ex_t // a[b] - array subscription, bit selection.

Imperative commands (might also include a ‘case’ statement) but no loops.

datatype cmd_t = // Commands:
Assign of ex_t * ex_t // a = e; a[x]=e; - assignments

| If1 of ex_t * cmd_t // if (e) c; - one-handed IF
| If2 of ex_t * cmd_t * cmd_t // if (e) c; else c - two-handed IF
| Block of cmd_t list // begin c; c; .. end - block

Our top level will be an unordered list of the following sentences:

datatype s_t = // Top-level forms:
Sequential of edge_t * ex_t * cmd_t // always @(posedge e) c;

| Combinational of ex_t * ex_t // assign e1 = e2;

The abstract syntax tree for synthesisable RTL supports a rich set of expression operators but just the assignment
and branching commands (no loops). (Loops in synthesisable VHDL and Verilog are restricted to so-called
structural generation statements that are fully unwound by the compiler front end and so have no data-dependent
exit conditions).

An example of RTL synthesis:

Example input:

module TC(clk, cen);
input clk, cen;
reg [1:0] count;
always @(posedge clk) if (cen) count<=count+1;

endmodule

Results in structural RTL netlist:

module TC(clk, cen);
wire u10022, u10021, u10020, u10019;
wire [1:0] count;
input cen; input clk;
CVINV i10021(u10021, count[0]);
CVMUX2 i10022(u10022, cen, u10021, count[0]);
CVDFF u10023(count[0], u10022, clk, 1’b1, 1’b0, 1’b0);
CVXOR2 i10019(u10019, count[0], count[1]);
CVMUX2 i10020(u10020, cen, u10019, count[1]);
CVDFF u10024(count[1], u10020, clk, 1’b1, 1’b0, 1’b0);

endmodule

Here the behavioural input was converted to an implementation technology that included inverters, multiplexors,
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D-type flip-flops and XOR gates. For each gate, the output is the first-listed terminal.

Verilog RTL Synthesis Algorithm: 3-Step Recipe:

1. First we remove all of the blocking assignment statements to obtain a ‘pure’ RTL form. For each register
we need exactly one assigment (that becomes one hardware circuit for its input) regardless of however
many times it is assigned, so we need to build a multiplexor expression that ranges over all its sources
and is controlled by the conditions that make the assignment occur.

For example:
if (a) b = c;
d = b + e;
if (q) d = 22;

is converted to b <= (a) ? c : b;
d <= q ? 22 : ((a) ? c : b) + e;

2. For each register that is more than one bit wide we generate separate assignments for each bit. This
is colloquially known as ‘bit blasting’. This stage removes arithmetic operators and leaves only boolean
operators. For example, if v is three bits wide and a is two bits wide: v <= (a) ? 0: (v>>1) is

converted to
v[0] <= (a[0]|a[1]) ? 0: v[1];
v[1] <= (a[0]|a[1]) ? 0: v[2];
v[2] <= 0;

3. Build a gate-level netlist using components from the selected library of gates. (Similar to a software
compiler when it matches operations needed against instruction set.) Sub-expressions are generally reused,
rather than rebuilding complete trees. Clearly, logic minimization (Karnaugh maps and Espresso) and
multi-level logic techniques (e.g. ripple carry versus fast carry) as well as testability requirements affect
the chosen circuit structure. Gate Building, ML fragment

(The details of the algorithms on these links and being able to reproduce them is not examinable but being able
to draw the gate-level circuit for a few lines of RTL is examinable).

Further detail on selected constructs:

Additional notes:

1. How can we make a simple adder ?

The following ML fragment will make a ripple carry adder from lsb-first lists of nets:

fun add c (nil, nil) = [c]
| add c (a::at, b::bt) =

let val s = gen_xor(a, b)
val c1 = gen_and(a, b)
val c2 = gen_and(s, c)
in (gen_xor(s, c))::(add (gen_or(c2, c1)) (at, bt))
end

2. Can general division be bit-blasted ? Yes, and for some constants it is quite simple.

For instance, division by a constant value of 8 needs no gates - you just need wiring! For dynamic
shifts make a barrel shifter using a succession of broadside multiplexors, each operated by a different
bit of the shifting expression. See link Barrel Shifter, ML fragment.

3. Can we do better for constant divisors? To divide by a constant 10 you can use that 8/10 is
0.11001100 recurring, so if n and q are 32 bit unsigned registers, the following computes n/10:

q = (n >> 1) + (n >> 2);
q += (q >> 4);
q += (q >> 8);
q += (q >> 16);
return q>>3;
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4.2.3 Behavioural - ‘Non-Synthesisable’ RTL

Not all RTL is officially synthesisable, as defined by language standards. However, commercial tools tend to
support larger subsets than officially standardised.

RTL with event control in the body of a thread defines a state machine. This is compilable by some tools. This
state machine requires a program counter (PC) register at runtime (implied):

input clk, din;
output reg [3:0] q; // Four bits of state are define here.

always begin
q <= 1;
@(posedge clk) q <= 2;
if (din) @(posedge clk) q <= 3;
q <= 4;
end

How much additional state in the form of PC bits are needed ? Is conditional event control synthesisable ?
Does the output ‘q’ ever take on the value 4 ?

As a second non-synthesisable example, consider the dual-edge-triggered flip-flop in Figure 4.7.

Figure 4.7: Schematic symbol and timing diagram for an edge-triggered RS flop.

reg q;
input set, clear;

always @(posedge set) q = 1;
always @(posedge clear) q = 0;

Here a variable is updated by more than one thread. This component is used mainly in specialist phase-locked
loops. It can be modelled in Verilog, but is not supported for Verilog synthesis. A real implementation typically
uses 8 or 12 NAND gates in a relatively complex arrangement. We do not expect general-purpose logic synthesis
tools to create such circuits: they were hand-crafted by experts of previous decades.

Figure 4.8: Hand-crafted circuit for the edge-triggered RS flop used in practice.

Another common source of non-synthesisable RTL code is testbenches. Testbenches commonly uses delays:
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// Typical RTL testbench contents:

// Set the time in seconds for each clock unit.
‘timescale 1 ns

reg clk, reset;
initial begin clk=0; forever #5 clk = !clk; end // Clock source 100 MHz
initial begin reset = 1; # 125 reset = 0; end // Power-on reset generator

Take away summary: The industry has essentially zeroed-in on a very narrow synthesisable RTL subset
and higher-level input forms are processed with their own compilers that create low-level RTL as their output
language.

4.2.4 Further Synthesis Issues

There are many combinational circuits that have the same functionality. Synthesis tools can accept additional
guiding metrics from the user, that affect

• Power consumption,

• Area use,

• Performance,

• Testability.

(The basic algorithm in the additional material does not consider any guiding metrics.)

Gate libraries have high and low drive stength forms of most gates (see later). The synthesis tool will chose
the appropriate gate depending on the fanout and (estimated) net length during routing. Some leaf cells are
broadside and do not require bit-blasting.

The tool will use Quine/McCluskey, Espresso or similar for logic minimisation. Liberal use of the ‘x’ don’t care
designation in the source RTL allows the synthesis tool freedom to perform this logic minimisation.

reg[31:0] y;
...
if (e1) y <= e2;
else if (e3) y <= e4;
else y <= 32’bx; // Note, assignment of ’x’ permits automated logic minimisation.

Can share sub-expressions or re-compute expressions locally. Reuse of sub-expressions is important for locally-
derived results, but with today’s VLSI, sending a 32 bit addition result more than one millimeter on the chip
may use more power then recomputing it locally! Can re-encode state (see later).

4.2.5 Conventional RTL Compared with Software

Synthesisable RTL looks a lot like software at first glance, but we soon see many differences.

RTL is statically allocated and defines a finite-state machine. Threads do not leave their starting context and all
communication is through shared variables that denote wires. There are no thread synchronisation primitives,
except to wait on a clock edge. Each variable must be updated by at most one thread.

Software on the other hand uses far fewer threads: just where needed. The threads may pass from one module
to another and thread blocking is used for flow control of the data. RTL requires the programmer to think in
a massively-parallel way and leaves no freedom for the execution platform to reschedule the design.
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RTL is not as expressive for algorithms or data structures as most software programming languages.

The concurrency model is that everything executes in lock-step. The programmer keeps all this concurrency in
his/her mind. Users must generate their own, bespoke handshaking and flow control between components.

Verilog and VHDL do not express when a register is live with data - hence automatic refactoring and certain
correctness proofs are impossible.

4.3 Alternatives to RTL

Higher-level entry forms are ideally needed, perhaps schedulling within a thread at compile-time and between
threads at run time ?

High-level Synthesis (HLS) essentially converts software to hardware. Classically it take one thread and a
fixed body of code and it

• unwinds inner loops by some factor,

• generates a custom datapath containing registers, RAMs and ALUs

• and a custom sequencer that implements an efficient, static schedule

that achieves the same behaviour as the original program. It will generally deploy state re-encoding and re-
pipelining to meet timing closure and power budgets.

Greaves wrote an HLS program in around 1990 that was commercially licensed: CTOV Bubble SorterExample.
These ideas are only now being seriously considered by industry, with all major tools providers now offering a
C-to-gates compiler. LegUp from Toronto is a modern equivalent. The Kiwi Compiler uses similar approaches
for acceleration of big data algorithms expressed in concurrent CSharp on FPGA.

For the future, the following two look promising: Chisel: Constructing Hardware in a Scala-Embedded Language
and HardCaml - Register Transfer Level Hardware Design in OCaml

4.3.1 Logic Synthesis from Guarded Atomic Actions (Bluespec)

Using guarded atomic actions is an old and well-loved design paradigm. Recently Bluespec System Verilog has
successfully raised the level of abstraction in RTL design using this paradigm.

Every operation has a guard predicate: says when it CAN be run.

Operations are grouped into rules for atomic execution where the rule takes on the conjunction of its atomic
operation guards and the rule may have its own additional guard predicate. Operations have the expectation
they WILL be run (fairness). A compiler can direct scheduling decisions to span various power/performance
implementations for a given program.

• A Bluespec design is expressed as a list of declarative rules,

• Shared variables are avoided,

• All comunication to and from registers, FIFOs and user modules is via transactional/blocking ’method
calls’ for which argument and handshake wires are synthesised according to a global ready/enable protocol,

• Rules are allocated a static schedule at compile time and some that can never fire are reported,

• The current strict mapping to clock cycles (time/space folding) might be relaxed by future compilation
strategies.
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• The wiring pattern of the whole design is generated using an embedded functional language (like Lava
HDL).

The term ‘wiring’ above is used in the sense of TLM models: binding initiators to target methods.

LINK: Small Examples Toy BSV Compiler (DJG)

First basic example: two rules: one increments, the other exits the simulation. This example looks very much
like RTL: provides an easy entry for hardware engineers.

module mkTb1 (Empty);

Reg#(int) x <- mkReg (23);

rule countup (x < 30);
int y = x + 1; // This is short for int y = x.read() + 1;
x <= x + 1; // This is short for x.write(x.read() + 1);
$display ("x = %0d, y = %0d", x, y);

endrule

rule done (x >= 30);
$finish (0);

endrule

endmodule: mkTb1

Second example uses a pipeline object that could have aribtrary delay. Sending process is blocked by implied
handshaking wires (hence less typing than Verilog) and in the future would allow the programmer or the compiler
to retime the implementation of the pipe component.

module mkTb2 (Empty);

Reg#(int) x <- mkReg (’h10);
Pipe_ifc pipe <- mkPipe;

rule fill;
pipe.send (x);
x <= x + ’h10; // This is short for x.write(x.read() + ’h10);

endrule

rule drain;
let y = pipe.receive();
$display (" y = %0h", y);
if (y > ’h80) $finish(0);

endrule
endmodule

Figure 4.9: Synthesis of the ’pipe’ Bluespec component with handshake nets.
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But, behavioural expression using a conceptual thread is also useful to have, so Bluespec has a behavioural
sub-language compiler built in.

4.4 Simulation

Simulation of real-world systems generally requires quantisation in time and spatial domains.

There are two main forms of simulation modelling:

• FDS: finite-difference time-domain simulation, and

• EDS: event-driven simulation.

Finite-difference simulation is used for analogue and fluid-flow systems. It is rarely used in SoC design (just
for low-level electrical propagation and crosstalk modelling). Variable element size (and variable temporal step
size) can be used to make finite-element simulations approximate even-driven behaviour.

Figure 4.10: Finite Element Grid

Figure 4.11: Baseline finite-difference model for bidirectional propagation in one dimension.

Finite-element difference equations (without midpoint rule correction):
tnow += deltaT;
for (n in ...) i[n] = (v[n-1]-v[n])/R;
for (n in ...) v[n] += (i[n]-i[n+1])*deltaT/C;

Basic finite-difference simulation uses fixed spatial grid (element size is deltaL) and fixed time step (deltaT
seconds). Each grid point holds a vector of instantatious local properties, such as voltage, temperature, stress,
pressure, magnetic flux. Physical quantities are divided over the grid. Three examples:

1. Sound wave in wire: C=deltaL*mass-per-unit-length, R=deltaL*elasticity-per-unit-length
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2. Heat wave in wire: C=deltaL*heat-capacity-per-unit-length, R=deltaL*thermal-conductance-per-unit-
length

3. Electrical wave in wire: C=deltaL*capacitance-per-unit-length, R=deltaL*resistance-per-unit-length

Larger modelling errors with larger deltaT and deltaL, but faster simulation. Keep them less than 1/10th
wavelength for good accuracy.

Generally use a 2D or 3D grid for fluid modelling: 1D ok for electronics. Typically want to model both resistance
and inductance for electrical system. When modelling inductance instead of resistance, then need a ‘+=’ in
the i[n] equation. When non-linear components are present (e.g. diodes and FETs), SPICE simulator adjusts
deltaT dynamically depending on point in the curve.

4.4.1 Digital Logic Modelling

Figure 4.12: Illustratring the four-value logic level encoding for common gates.

In the four value logic system each net (wire or signal), at a particular time, has one of the following logic
values:

• 0 logic zero

• 1 logic one

• Z high impedance — not driven at the moment

• X uncertain — the simulator does not know

In design specification, the letter ‘x’ is also used to denote ‘dont-care’, which allows efficient logic minimisation.
In Verilog, the letter ‘x’ means uncertain during simulation and ‘dont-care’ during logic synthesis.

In this model, nets jump from one value to another in an instant. Real nets have a transit time.

4.4.2 Event Driven Simulation

The following ML fragment demonstrates the main datastructure for an EDS kernel. EDS ML fragments
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Figure 4.13: Event queue, linked list, sorted in ascending temporal order.

// A net has a string name and a width.
// A net may be high z, dont know or contain an integer from 0 up to 2**width - 1.
// A net has a list of driving and reading models.

type value_t = V_n of int | V_z | V_x;

type net_t = {
net_name: string; // Unique name for this net.
width: int; // Width in bits if a bus.
current_value: value_t ref; // Current value as read by others
net_inertia: int; // Delay before changing (commonly zero).
sensitives: model_t list ref; // Models that must be notified if changed.

};

// An event has a time, a net to change, the new value for that net and an
// optional link to the next on the event queue:
type event_t = EVENT of int * net_t * value_t * event_t option ref

This reference implementation of an event-driven simulation (EDS) kernel maintains an ordered queue of events
commonly called the event list . The current simulation time, tnow, is defined as the time of the event at
the head of this queue. An event is a change in value of a net at some time in the future. Operation takes the
next event from the head of the queue and dispatches it. Dispatch means changing the net to that value and
chaining to the next event. All component models that are sensitive to changes on that net then run, potentially
generating new events that are inserted into the event queue.

We will cover two variations on the basic EDS algorithm: intertial delay and delta cycles.

Code fragments (details not examinable):
Create initial, empty event list:

val eventlist = ref [];

Constructor for a new event: insert at correct point in the sorted event list:

fun create_and_insert_event(time, net, value) =
let fun ins e = case !e of

(A as EMPTY) => e := EVENT(time, net, value, ref A)
| (A as EVENT(t, n, v, e’)) => if (t > time)

then e := EVENT(time, net, value, ref A)
else ins e’

in ins eventlist
end

Main simulation: keep dispatching until event list empty:

fun dispatch_one_event() =
if (!eventlist = EMPTY) then print("simulation finished - no more events\n")
else let val EVENT(time, net, value, e’) = !eventlist in
( eventlist := !e’;

tnow := time;
app execute_model (net_setvalue(net, value))

) end
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4.4.3 Inertial and Transport Delay

Consider a simple ‘NOR’ gate model with 250 picosecond delay. It has two inputs, and the behavioural code
inside the model will be something like (in SystemC-like syntax, covered later)

SC_MODULE(NOR2)
{ sc_in < bool > i1, i2; sc_out < bool > y;

void behaviour()
{ y.write(!(i1.read() || i2.read()), SC_TIME(250, SC_PS));
}
SC_CTOR(NOR2) { SC_METHOD(behaviour); sensitive << i1 << i2;

}

The above model is run when either of its inputs change and it causes a new event to be placed in the event
queue 250 picoseconds later. This will result in a pure transport delay, because multiple changes on the
input within 250 picoseconds will potentially result in multiple changes on the output that time later. This is
unrealistic, a NOR gate made of transistors will not respond to rapid changes on its input, and only decisively
change its output when the inputs have been stable for 250 picoseconds. In other words, it exhibits inertia. To
model inertial delay, the event queue insert function must scan for any existing schedulled changes before the
one about to be inserted and delete them. This involves little overhead since we are scanning down the event
queue anyway.

Figure 4.14: RS-latch: behaviour of runt pulse when modelling with transport delay.

Consider the behaviour of the above RS-latch when a very short (runt) pulse or glitch tries to set it. What will
it do with transport models?: the runt pulse will circulate indefinitely. What will it do with inertial models?:
ignore the glitch.

4.4.4 Higher-level Simulation

Simulating RTL is slow. Every net (wire) in the design is modelled as a shared variable. When one component
writes a value, the overheads of waking up the receiving component(s) may be severe. The event-driven simulator
kernel contains an indirect jump instruction which itself is very slow on modern computer architectures since it
will not get predicted correctly.

Much faster simulation is achieved by disregarding the clock and making so-called TLM calls between the
components. Subroutine calls made between objects convey all the required information. Synchronisation is
achieved via the call and its return. This is discussed in the ESL section of this course.

4.4.5 Static Timing Analyser Tool

A static analysis tool does not run a program or simulate a design - instead it ’stares’ at the source code.

A static timing analyser computes the longest event path through logic gates and clock-to-Q paths of edge-
triggered flops. The longest path is generally the critical path that sets the maximum clock frequency. However,
sometimes this is a false result, since this path might never be used during device operation.
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Figure 4.15: An example circuit with static timing annotations

An alternative to simulation is static analysis. For delay, finding the critical path, we can use a static timing
analyser.

Starting with some reference point, taken as D=0, such as the master clock input to a clock domain, we compute
the relative delay on the output of each gate and flop. For a combinational gate, the output delay is the gate’s
propagation time plus the maximum of its input delays. For an edge-triggered flop, such as a D-type or a JK,
there is no event path to the output from the D or JK inputs, so it is just the clock delay plus the flop’s clock-
to-Q delay. There are event paths from asynchronous flop inputs however, such as preset, reset or transparent
latch inputs.

Propagation delays may not be the same for all inputs to a given output and for all directions of transition. For
instance, on deassert of asynchronous preset to a flop there is no event path. Therefore, a tool may typically
keep separate track of high-to-low and low-to-high delays.

4.5 Hazards

Figure 4.16: Some xhazards are dangerous

Definitions (some authors vary slightly):

• Data hazard - when an operand’s address is not yet computed or has not arrived in time for use,

• WaW hazard - write-after-write: the second write must occur after the first otherwise its result is lost,

• RaW or WaR hazard - write and read of a location are accidentally permuted,

• Control hazard - when it is not yet clear whether an operation should be performed,
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• Name Alias hazard - we do not know if two array subscripts are equal,

• Structural hazard - insufficient physical resources to do everything at once.

We have a structural hazard when an operation cannot proceed because a resource is already in use. Resources
that might present structural hazards are:

• Memories and register files with insufficient ports,

• Memories with variable latency, especially DRAM,

• Insufficient number of ALUs for all the arithmetic to be schedulled in current clock tick,

• Anything non-fully pipelined i.e. something that goes busy, such as long multiplication (e.g. Booth
Multiplier or division or a floating point unit).

A non-fully pipelined component cannot start a new operation on every clock cycle. Instead it has handshake
wires that start it and inform the client logic when it is ready.

Synchronous RAMs are generally fully pipelined and fixed-latency.

An example of a component that cannot accept new input data every clock cycle (i.e. something that is non-
fully-pipelined) is a sequential long multiplier, that works as follows:

Figure 4.17: Multiplier schematic symbol.

Behavioural algorithm:

while (1)
{

wait (Start);
RA=A; RB=B; RC=0;
while(RA>0)
{

if odd(RA) RC=RC+RB;
RA = RA >> 1;
RB = RB << 1;

}
Ready = 1;
wait(!Start);
Ready = 0;

}

(Either HLS or hand coding can
give the illustrateddatapath
and sequencer structure:)

This implements conventional long multiplication. It is certainly not fully-pipelined, it goes busy for many
cycles, depening on the log of the A input. The illustration shows a common design pattern consisting of a
datapath and a sequencer. Booth’s algorithm (see additional material) is faster, still using one adder but
needing half the clock ticks.

Exercise: Write out the complete design, including sequencer, for the above multiplier, or that of Booth, or a
long division unit, in Verilog or SystemC.

For today’s VLSI, for 32 bits, a fixed latency multiplier is typically used. This will have 2 or 3 clock cycles
delay and be fully pipelined.
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Fully-pipelined logic with fixed latency is easy to incorporate into static schedules, either by hand or with
automated HLS tools.

Recent email from Dr Mullins: At clock freq 500MHz, I see something like 13.5pJ for a 32-bit multiply (2-stage
pipeline) in a 40nm low power (LP) silicon process. Its area is 8750um.

4.5.1 Hazards From Array Memories

A structural hazard in an RTL design can make it non synthesisable. Consider the following expressions that
make liberal use of array subscription and the multiplier operator:

Structural hazard sources are num-
bered:

always @(posedge clk) begin

q0 <= Boz[e3] // 3

q1 <= Foo[e0] + Foo[e1]; // 1

q2 <= Bar[Bar[e2]]; // 2

q3 <= a*b + c*d; // 4

q4 <= Boz[e4] // 3
end

1. The RAMs or register files Foo Bar and Boz might
not have two read ports.

2. Even with two ports, can Bar perform the double sub-
scription in one clock cycle?

3. Read operations on Boz might be a long way apart in
the code, so hazard is hard to spot.

4. The cost of providing two ‘flash’ multipliers for use in
one clock cycle while they lie idle much of the rest of
the time is likely not warranted.

A multiplier that operates combinationaly in less than one clock cycle is called a ‘flash’ multiplier and it uses
quadratic silicon area.

Expanding blocking assignments can lead to name alias hazards:

Suppose we know nothing about
xx and yy, then consider:

begin
...
if (g) Foo[xx] = e1;
r2 = Foo[yy];

To avoid name alias problems, this must be compiled to
non-blocking pure RTL as:

begin
...
Foo[xx] <= (g) ? e1: Foo[xx];
r2 <= (xx==yy) ? ((g) ? e1: Foo[xx]): Foo[yy];

Quite commonly we do know something about the subscript expressions. If they are compile-time constants,
we can decidedly check the equality at compile time. Suppose that at ... or elsewhere beforehand we had the
line ‘yy = xx+1;’ or equivalent knowledge? Then with sufficient rules we can realise at compile time they will
never alias. However, no set of rules will be complete (decidability).

4.5.2 Overcoming Structural Hazards using Holding Registers

One way to overcome a structural hazard is to deploy more resources. These will suffer correspondingly less
contention. For instance, we might have 3 multipliers instead of 1. This is the spatial solution. For RAMs and
register files we need to add more ports to them or mirror them (i.e. ensure the same data is written to each
copy).

In the temporal solution, a holding register is commonly inserted to overcome a structural hazard (by hand
or by a high-level synthesis tool HLS). Sometimes, the value that is needed is always available elsewhere in the
design (and needs forwarding) or sometimes an extra sequencer step is needed.
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If we know nothing about e0 and
e1:

always @(posedge clk) begin
...
ans = Foo[e0] + Foo[e1];
...
end

then load holding register in additional cycle:

always @(posedge clk) begin
pc = !pc;
...
if (!pc) holding <= Foo[e0];
if (pc) ans <= holding + Foo[e1];
...
end

If we can analyse the pattern of e0 and e1:

always @(posedge clk) begin
...
ee = ee + 1;
...
ans = Foo[ee] + Foo[ee-1];
...
end

then, apart from first cycle, use holding register to
forward value from previous iteration (loop for-
warding):

always @(posedge clk) begin
...
ee <= ee + 1;
holding <= Foo[ee];
ans <= holding + Foo[ee];
...
end

We can implement the program counter and holding registers as source-to-source transformations, that eliminate
hazards, as just illustrated. One algorithm is to first to emit behavioural RTL and then to alternate the
conversion to pure form and hazard avoidance rewriting processes until closure.

For example, the first example can be converted to behavioural RTL that has an implicit program counter (state
machine) as follows:

always @(posedge clk) begin
holding <= Foo[e0];
@(posedge clk) ;
ans <= holding + Foo[e1];
end

The transformations illustrated above are NOT performed by mainstream RTL compilers today: instead they
are incorporated in HLS tools such as Kiwi. KiwiC Structural Hazard ExampleSharing structural resources may
require additional multiplexers and wiring: so not always worth it. A good design not only balances structural
resource use between clock cycles, but also critical path timing delays.

These example fragments handled one hazard and used two clock cycles. They were localised transformations.
When there are a large number of clock cycles, memories and ALUs involved, a global search and optimise
procedure is needed to find a good balance of load on structural components. Although these examples mainly
use memories, other significant structural resources, such as fixed and floating point ALUs also present hazards.

4.6 Folding, Retiming & Recoding

Generally we have to chose between high performance or low power. (We can see this also in the selection of
drive strengths for standard cell gates.) The time/space fold and unfold operations trade execution time
for silcon area. A given function can be computed with fewer clocks by ‘unfolding’ in the the time domain,
typically by loop unwinding (and predication).

LOOPED (time) option: | UNWOUND (space) option:
|

for (i=0; i < 3 and i < limit; i++) | if (0 < limit) sum += data[0] * coef[j];
sum += data[i] * coef[i+j]; | if (1 < limit) sum += data[1] * coef[1+j];

| if (2 < limit) sum += data[2] * coef[2+j];
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The ‘+=’ operator is an associative reduction operator. When the only interactions between loop iterations
are outputs via such an operator, the loop iterations can be executed in parallel. On the other hand, if one
iteration stores to a variable that is read by the next iteration or affects the loop exit condition then unwinding
possibilities are reduced.

We can retime a design with and without changing its state encoding. We will see that adding a pipeline stage
can increase the amount of state without recoding existing state.

4.6.1 Critical Path Timing Delay

Meeting timing closure is the process of manipulating a design to meet its target clock rate.

The maximum clock frequency of a synchronous clock domain is set by its critical path. The longest path of
combinational logic must have settled before the setup time of any flip-flop starts.

Pipelining is a commonly-used technique to boot system performance. Introducing a pipeline stage increases
latency but also the maximum clock frequency. Fortunately, many applications are tolerant to the processing
delay of a logic subsystem. Consider a decoder for a fibre optic signal: the fibre might be many kilometers long
and a few additional clock cycles in the decoder increase the processing delay by an amount equivalent to a few
coding symbol wavelengths: e.g. 20 cm per pipeline stage for a 1 Gbaud modulation.

Pipelining introduces new state but does not require existing state flip-flops to change meaning.

Flip-flop migration does alter state encoding. It exchanges delay in one path for delay in another - aim to
achieve balance. A sequence of such transformations can lead to a shorter critical path overall.

In the following example, the first migration is a local transformation that has no global consequences:

Before: Migration 1: Migration 2 (non causal):
a <= b + c; b1 <= b; c1 <= c; q1 <= (dd) ? (b+c): 0;
q <= (d) ? a:0; q <= (d) ? b1+c1:0; q <= q1;

The second migration, that attempts to perform the multiplexing one cycle earlier will require an earlier version
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Figure 4.18: A circuit before and after insertion of an additional pipeline stage.

Figure 4.19: Flip-flop migration: two circuits of identical behaviour, but different state encoding.

of d, here termed dd that might not be available (e.g. if it were an external input we need knowledge of the
future). An earlier version of a given input can sometimes be obtain by delaying all of the inputs (think of
delaying all the inputs to a bookmakers shop), but this cannot be done for certain applications where system
response time (in-to-out delay) is critical.

Problems arising:

• Circuits containing loops (proper synchronous loops) cannot be pushed very far (for example, the control
hazard in a RISC pipeline).

• External interfaces that do not use transactional handshakes (i.e. those without flow control) cannot
tolerate automatic re-timing since the knowledge about when data is valid is not explicit.

• Many structures, including RAMs and ALUs, have a pipeline delay (or several), so the hazard on their
input port needs resolving in a different clock cycle from hazards involving their result values.

but retiming can overcome structural hazards (e.g. the ‘write back’ cycle in RISC pipeline).

Other rewrites commonly used: automatically introduce one-hot and gray encoding, or invert for reset as preset.

4.6.2 Back Annotation and Timing Closure

Once the system has been placed and routed, the length and type of each conductor is known. These facts allow
fairly accurate delay models of the conductors to be generated (Section 2.0.10).
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The accurate delay information is fed into the main simulator and the functionality of the chip or system is
checked again. This is known as back annotation. It is possible that the new delays will prevent the system
operating at the target clock frequency.

The marketing department have commonly pre-sold the product with an advertised clock frequency. Making
the actual product work at this frequency is known as meeting timing closure.

With low-level RTL, the normal means to achieve timing closure is to migrate logic either side of an existing
register or else to add a new register - but not all protocols are suitable for registering (Section 1.3.4).

With transactional interfaces, a one-place FIFO can help with timing closure.

Figure 4.20: Design and Manufacturing Flow for SoC.

4.6.3 End of Pack
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SG 5 — Formal Methods and Assertion-Based Design

Topics: Declarative expression. Temporal Logic. PSL. Assertion Synthesis to H/W Monitors. Stimulus
generation.

Figure 5.1: An uncaught imperative assertion failure from software dynamic validation.

5.1 Assertions

Declarative programming involves writing assertions that hold for all time. For instance, on an indicator panel
never is light A on at the same time as light B.

Assertion-based design (ABD) is an approach that encourages writing assertions as early as possible, preferably
before coding/implementation starts.

• Writing assertions at design capture time before detailed coding starts.

• Writing further assertions as coding progresses.

• Structuring testing around assertions.

Assertions are (conjunctions of):

• Imperative (aka immediate) safety checks (like assert.h in C++ and expect in SystemVerilog)

• Coverage checks (log that flow of control has passed a point or a property held).

• Declarative safety properties, that always hold, such as ‘Never are both the inner and outer door of the
airlock open at once unless we are on the ground’. Safety properties normally use the keywords never or
always.

• Liveness and deadlock properties (also declarative), such as ‘If the emergency button is pressed, eventually
at least one of the doors will be unlocked.’ Liveness properties normally use keywords such as eventually
or it will always be possible to.

All four can be proved by formal techniques such as pen and paper, theorem provers and model checkers.
Dynamic validation is simulation (or execution) while checking properties. This can sometimes find safety
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violations and, with careful construction detect deadlock, but it cannot prove the liveness or that safety wont
be violated.

Assertions can be imported from previous designs or other parts of the same design for global consistency.
Formal proof shows up corner case problems not encountered in simulation. A formally-verified result may be
required by the customer.

5.1.1 Validation using Simulation

The alternative to formal verification is validation using extensive simulation and overnight testing of the day’s
work using regression testing.

Tests can be unit tests or larger subsystems or complete system (H/W + S/W).

Can either write a RTL or ESL yes/no automaton as part of the test bench, or one can spool the outputs to
file and diff against golden with PERL script.

Downfall of simulation: it’s non-exhaustive and time consuming.

ABD benefits in theory (and challenges in practice):

• We capture what the system is supposed to do,

• Completeness in theory (but how to define/determine this?),

• Scalability (but tools are limited in practice),

• Rare corner situations in the exponential state space (unusual conjunctions of events) are covered.

But: Simulations

• are needed for performance analysis and general design confidence,

• can generate some production test vectors.

• can be partly formal: using bus monitors for dynamic validation and Specman/VERA constrained pattern
generators for stimulus.

Simulation is effective at finding many early bugs in a design. It can sometimes find safety violations and
sometimes find (or accidentally encounter) deadlock but it cannot prove liveness.

Once the early, low-hanging bugs are fixed, formal proof can be more effective at finding the remainder. These
tend to lurk in unusual corner cases, where particular alignment or conjunction of conditions is not handled
correctly.

If a bug has a one in ten million chance of being found by simulation, then it will likely be missed, since fewer
than that number clock cycles might typically be simulated in any run. However, given a clock frequency of
just 10 MHz, the bug might show up in the real hardware in one second!

Simulation is generally easier to understand. Simulation gives performance results. Simulation can give a
golden output that can be compared against a stored result to give a pass/fail result. A large collection of
golden outputs is normally built up and the current version of the design is compared against them every night
to spot regressions.

Simulation test coverage is expressed as a percentage. Given any set of simulations, only a certain subset of
the states will be entered. Only a certain subset of the possible state-to-state transitions will be executed. Only
a certain number of the disjuncts to the guard to an IF statement may hold. Only a certain number of paths
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through the block-structured behavioural RTL may be taken. Medical, defense and aerospace generally require
much higher percentage coverage than commercial products.

There are many ways of defining coverage: for instance do we have to know the reachable state space before
defining the state space coverage, or can we use all possible states as the denominator in the fraction? In general
software, a common coverage metric is the percentage of lines of code that are executed.

Scaling of formal checking is a practical problem: today’s tools certainly cannot check a complete SoC in one
pass. An incremental approach based around individual sub-systems is needed.

5.1.2 Formally Synthesised Bus Monitor

A bus monitor is a typical example of dynamic validation: it is a checker that flags protocol violations:

• safety violations are indicated straightaway,

• for a liveness property the monitor can indicate whether it has been tested at least once and also whether
there is a pending antecedant that is yet to be satisfied.

For implementation in silicon, or if we are using an old simulator (e.g. a Verilog interpreter) that does not
provide PSL or other temporal logic, the assertions can be compiled to an RTL checker automaton.

Figure 5.2: Dynamic validation: Monitoring bus operation with a hardware monitor.

A bus monitor connects to the net-level bus in RTL or silicon. (TLM formal monitoring is also being developed.)

The monitor can keep statistics as well as detect protocol violations.

Example of checker synthesis from a formal spec: www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors
and Bus Monitors
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5.1.3 Is a formal specification complete ?

Additional notes:

Is a formal specification complete ?

• Does it fully-define an actual implementation (this is overly restrictive) ?

• Does it exactly prescribe all allowable, observable behaviours ?

By ‘formal’ we mean a machine-readable description of what is correct or incorrect behaviour.
A complete specification might describe all allowable behaviours and prohibit all remaining be-
haviours, but most formal definitions today are not complete in this sense. For instance, a definition
that consists of a list of safety assertions and a few liveness assertions might still allow all sorts of
behaviours that the designer knows are wrong. He can go on adding more assertions, but when does
he stop ?

One might define a ’complete specification’ as one that describes all observable behaviours. Such
a specification does not restrict or prescribe the internal implementation in black box terms since
this is not observable.

When evaluating an assertion-based test program for an IP block, we can think of various, ad hoc,
coverage metrics: e.g. What percentage of rule disjuncts (terms that are ORed) held as dominators
(a term that makes the disjunction hold) on their own (without any other term in that disjunction
holding) ? Or, e.g. What percentage of reachable state space was spanned? But there are no widely
accepted such metrics in the industry, but the sytem Verilog ’cover property’ is used to some extent.

5.1.4 Assertion forms: State/Path, Concrete/Symbolic.

Many assertions are over concrete state. For instance ‘Never is light A off when light B is on’ . Other
assertions need to refer to symbolic values. For instance ‘The value in register X is always less than the value
in register Y’ .

State properties describe the current state only. For instance ‘Light A is off and light B is on’. Path
properties relate successive state properties to each other. For instance ‘light A always goes off before light B
comes on ’.

We shall see PSL requires the symbolic values be embedded in the bottommost ‘modelling layer’ and that its
temporal layer cannot deal with symbolic values. For instance, we cannot write ‘{A(x);B(y)} | => {C(x, y)}’.

(Note: the internal representation used by a checker tool for a concrete property can commonly use a symbolic
encoding, such as a BDD, to handle an exponentially-large state space using reasonable memory, but that is
another matter.)

The DUT is the device under test. Black Box testing is where tests are phrased only in terms of the externally
visible behaviour of DUT. White Box testing enables assertions to range over internal variables of the DUT.

5.1.5 Property Specification Language (PSL)

PSL is a linear-time temporal algebra designed for RTL engineering. The PSL language is now part of the
System Verilog assertion language.

www.project-veripage.com/psl tutorial 2.php

As in most temporal logics, there are three main directives:

1. always and never,
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Figure 5.3: General structure of a PSL assertion

2. next,

3. eventually!

The always directive is the most frequently used and it specifies that the following property expression should
be checked every clock. The never directive is a shorthand for a negated always.

The next directive relates successive state properties, as qualified by the clocking event and qualifying guard.

The eventually! directive is for liveness properties that relate to the future. The eventually! directive is
suffixed with a bang sign to indicate it is strong property that cannot be (fully) checked with simulation.

For hands-on experience, see a previous ACS exercise: Dynamic validation using Monitors/Checkers and PSL

The general structure of a PSL assertion has the following parts:

• A name or label that can be used for diagnostic output.

• A verification directive, such as assert.

• When to check, such as always or eventually!.

• The property to be checked: a state expression or a temporal logic expression.

• A qualifying guard, such as a clock edge or enable signal at which time we expect the assertion to hold.

The ’assert’ keyword can be replaced with ’cover’ and instead of errors being reported statistics on hold and
fail are accumulated.

5.1.6 ABD - PSL Four-Level Syntax Structure

The abstract syntax of PSL uses for levels:

• Since the language is embedded in the concrete syntax of several other languages, such as Verilog, Sys-
temVerilog and VHDL, its syntactic details vary. In particular, creating state predicates involves expres-
sions that range over the nets and variables of the host language. The precise means for this is defined by
the MODELLING LAYER that allows one to create state properties using RTL.

Non-boolean, symbolic sub-expressions can be used in the modelling layer to generate boolean state
predicates.

assign tempok = temperature < 99;
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• All high-level languages and RTLs have their own syntax for boolean operators and this can be used
within the modelling layer. However boolean combinations can also be formed using the PSL BOOLEAN
LAYER.

not (rd and wr); // rd, wr are nets in the RTL (modelling layer).

• The PSL TEMPORAL LAYER allows one to define named sub-expressions and properties that use
the temporal operators. For example:

// Sequence definition
sequence s1 is {pkt_sop; (not pkt_xfer_en_n [*1 to 100]); pkt_eop};

sequence s2 is {pkt_sop; (not pkt_xfer_en_n [*1 to 100]); pkt_aborted};

// Property definition
property p1 is reset_cycle_ended |=> {s1; s2};

// Property p1 uses previously defined sequences s1 and s2.

• The PSL VERIFICATION LAYER implements the declarative language itself. It includes the main
keywords, such as assert.

PSL has a rich regular expression syntax for pattern matching. These are called SERES or sequences. SERES
stands for Sugar Extended Regular Expression, where Sugar was an older name for PSL.

Sequence elements are state properties from Modelling and Boolean layers. Core operators are (of course):
disjunction, concatenation and arbitrary repetition. As a temporal logic: interpret concatenation as a time
sequencing.

• A;B Semicolon denotes sequence concatenation

• A[*] Postfix asterisk for arbitrary repetition

• A|B Vertical bar (stile) for alternation.

Make easier to use with additional operators defined in terms of primitives:

• A[+] One or more occurrences: A;A[*]

• A[*n] Repeat n times

• A[=n] Repeat n times non-consecutively

• A:B Fusion concatenation (last of A occurs during first of B)

Further repetition operators denote repeat count ranges. Repeat counts must be compile-time constant (for
today’s standard/tools).

5.1.7 ABD - PSL Properties and Macros

PSL defines some simple path to state macros

• rose(X) means !X; X

• fell(X) means X; !X

Others are easy to define:
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• stable(X) can be defined as X; X || !X; !X

• changed(X) can be defined as X; !X || !X; X

• onehot(X) can be defined as X is a power of 2

• onehot0(X) can be defined as onehot(X) || (X==0)

5.1.8 ABD - Naive Path to State Conversion

Compiling regular expressions to RTL is completely straightforward (part of a typical proof that for every RE
there is an FSM).

By converting a path expression to a state expression we can generate an RTL checker for use in dynamic
validation. It can also be used for converting all path expressions to state expressions if the core of a proof tool
can only handle state expressions, such as a raw BDD package or SAT solver.

Additional notes:

The following ML fragment handles the main operators: concatenation, fusion concatenation, alter-
nation, arbitrary repetition and n-times repetition.

fun gen_pattern_matcher g (seres_statexp e) = gen_and2(g, gen_boolean e)

| gen_pattern_matcher g (seres_diop(diop_seres_alternation, l, r)) =
let val l’ = gen_pattern_matcher g l

val r’ = gen_pattern_matcher g r
in gen_or2(l’, r’) end

| gen_pattern_matcher g (seres_diop(diop_seres_catenation, l, r)) =
let val l’ = gen_dff(gen_pattern_matcher g l)

val r’ = gen_pattern_matcher l’ r
in r’ end

| gen_pattern_matcher g (seres_diop(diop_seres_fusion, l, r)) =
let val l’ = gen_pattern_matcher g l

val r’ = gen_pattern_matcher l’ r
in r’ end

| gen_pattern_matcher g (seres_monop(mono_arb_repetition, l)) =
let val nn = newnet()

val l’ = gen_pattern_matcher nn l
val r = gen_or2(l’, g)
val _ = gen_buffer(nn, r)
in r end

| gen_pattern_matcher g (seres_diop(diop_n_times_repetition, l,
seres_statexp(x_num n))) =

let fun f (g, k) = if k=0 then g else
gen_pattern_matcher (f(g, k-1)) l
in f (g, n) end

This generates a simple one-hot automaton and there are far more efficient procedures used in
practice and given in the literature.

A harder operator to compile is the length-matching conjunction (introduced shortly), since care is
needed when each side contains arbitrary repetition and can declare success or failure at a number
of possible times.

5.1.9 ABD - SERES Pattern Matching Example

Suppose four events are supposed to always happen in sequence:

First attempt, we write always true[*]; A; B; C; D Basic pattern matcher applied to A;B;C;D generates:
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Figure 5.4: Desired behaviour of the four nets.

DFF(g0, A, clk);
AND2(g1, g0, B);
DFF(g2, g1, clk);
AND2(g3, g2, C);
DFF(g4, g3, clk);
AND2(g5, g4, D);

// Hmmm D must always hold then ?
// Not what we wanted!

> val it = x_net "g5" : hexp_t

Putting a simple SERES as the body of an always statement normally does not have the desired effect: it does
not imply that the contents occur sequentially. Owing to the overlapping occurrences interpretation, such an
always statement distributes over sequencing and so implies every element of the sequence occurs at all times.

Therefore, it is recommended to always uses an SERES as part of a suffix implication or with some
other temporal layer operator.

5.1.10 PSL: Further Temporal Layer Operators

The disjunction (ORing) of a pair of sequences is already supported by the SERES disjunction operator. But
PSL sequences can also be combined with implication and conjunction operators in the ‘temporal layer’.

• P |-> Q P is followed by Q (one state overlapping),

• P |=> Q P is followed by Q (immediately afterwards),

• P && Q P and Q occur at once (length matching),

• P & Q P and Q succeed at once,

• P within Q P occurred at some point during Q,

• P until Q P held at all times until Q started,

• P before Q P held before Q held.

5.1.11 ABD - Sequence Constraint as a Suffix Implication

Earlier example: add a onehot assertion - that will constrain the state space. Also, consider some phrasing
using suffix implications to constrain the state trajectory:
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// (Verilog concatenation braces, not a PSL sequence).
always onehot ({A,B,C,D});
// expands to

>val it = // holds on error
(((A<<3)|(B<<2)|(C<<1)|D) != 8) &&
(((A<<3)|(B<<2)|(C<<1)|D) != 4) &&
(((A<<3)|(B<<2)|(C<<1)|D) != 2) &&
(((A<<3)|(B<<2)|(C<<1)|D) != 1);

//(ML for expanding above macro not in notes)

// A feasible-looking suffix implication:

always { A;B } |=> { C;D };

// It expands to:

DFF(g0, A, clk);
AND2(g1, g0, B);
DFF(g2, g1, clk);
INV(g3, C);
AND2(g4, g3, g2); // Holds if C missing
DFF(g5, g2, clk);
INV(g6, D);
AND2(g7, g5, g6); // Holds if D missing
OR2(g8, g7, g4);

> val it = x_net "g8" : hexp_t // Holds on error

Even this is not very specific: C and D might occur at other times. It is a good idea to write protocol rules as
suffix implications that range over SERES. Use a separate temporal implication for each sequential step.

What about asserting a requirement of data conservation ? At an interface we commonly want to assert that
data is not lost or duplicated. Is PSL any help? Not really, one needs a language that can range over symbolic
data and tagged streams of data.

5.1.12 Automated Stimulus Generation (Directed-Random Verification)

Commerical products: Verisity’s Specman Elite www.open-vera.com

Simulations and test programs require stimulus. This is a sequence of input signals, including clock and reset,
that exercise the design.

Given that formal specifications for many of the input port protocols might exist, one can consider automatic
generation of the stimulus, from random sources, within the envelope defined by the formal specification. Several
commercial products do this, including Verisity’s Specman Elite, Synopsys Vera.

Here is an example of some code in Specman’s own language, called ‘e’, that defines a frame format used in
networking. Testing will be inside envelope defined by keep statement.

struct frame {
llc: LLCHeader;
destAddr: uint (bits:48);
srcAddr: uint (bits:48);
size: int;
payload: list of byte;
keep payload.size() in [0..size];

};
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Sequences of bits that conform to the frame structure are created and presented at an input port of the design
under test. An heirarchy of specifications and constraints is supported. One can compose and extend one
specification to reduce its possible behaviours:

// Subclass the frame to make it more specialised:
extend frame { keep size == 0; };

5.1.13 OVM/UVM

The Open Verification Methodology (OVM) is a documented methodology with a supporting building-block
library for the verification of semiconductor chip designs.

Doulos: From OVM to UVM

run OVM simulations from a web browser

Verification Methodology Cookbooks

(The OVM/UVM topics are non-examinable for part II CST.)

5.1.14 ABD - A Simple Model Checker

For a small finite state machine we can use a simple model checker for a state safety property:

Algorithm: ‘Find reachable state space’ (add successors of current set until closure):

1. S := { q0 } // initial state

2. S := S ∪ {q′ | ∃ σ ∈ Σ, q ∈ S . NSF (q, σ) = q′ }

3. If safety property does not hold in any q ∈ S then flag error.

4. If S increased in step 2 then goto step 2.

S can be held explicitly in bit map form or symbolically as a BDD.

Variation 1: ignore safety property while finding reachable state space then finally check for all found states.

Variation 2: property to check might be a path property, so either

• Compile it to a checking automaton (becomes a state property of expanded NSF), or

• Expand it as we go (using modal mu calculus).

The PSL strong assertions need to be checked with a formal proof tool. Model checking is normally used because
it is fully automated.

A model checker explores every possible execution route of a finite-state system by exploring the behaviour over
all possible input patterns.

There are two major classes of model checker: explicit state and symbolic. Explicit state checkers actually
visit every possible state and store the history in a very concise bit array. If the bit array becomes too big
they use probabilistic and hashing techniques. The main example is Spin. Symbolic model checkers manipulate
expressions that describe the reachable state space and these were famously implemented as BDDs in the SMV
checker. There are also other techniques, such as bounded model checking, but the internal details of model
checkers is beyond the scope of this course.
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The most basic model checker only checks state properties. To check a path property it can be compiled into
an automaton and included as part of the system itself.

To check liveness formally is beyond the scope of this course, but one algorithm is to repeatedly trim cul-de-sacs
from the state transition graph so that only a core where all states are reachable from all others remains.

5.1.15 ABD - Boolean Equivalence Checker

Boolean equivalence: do the two functions produce the same output?

• For all input combinations ?

• For a subset of input combinations (some input patterns are don’t cares).

Figure 5.5: A mitre compares the outputs from a pair of supposedly-equivalent combinational components.

Often we have two implementations to check for equivalence, for instance, when RTL is turned into a gate-level
netlist by synthesis we have:

• RTL version: pre-synthesis, and

• Gate-level version: post-synthesis.

Sources of difference between the designs might be manual implementation of one of them, manual edits to
synthesiser outputs and EDA tool faults. For instance, after place and route operations, it is common to
extract the netlist out from the masks and check that for correctness, so this is another source of the same
netlist.

The boolean equivalence problem is do two functions produce the same output. However, are we interested
for all input combinations? No, normally we are only interested in a subset of input combinations (because of
don’t care conditions).

The method, shown in Figure 5.5, is to create a mitre of the two designs using a disjunction of XOR gate
outputs. Then, feed negation of mitre to a SAT solver to see if it can find any input condition that produces a
one on the output.
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SAT solving is a matter of trying all input combinations, so has exponential cost in theory and is NP complete.
However, modern solvers such as zChaff essentially exploit the intrinsic structure of the problem so that they
normally are quite quick at finding the answer.

Result: if there are no input combinations that make the mitre indicate a functionality difference, then the
designs are equivalent.

Commercial example: Synopsys Formality

5.1.16 ABD - Sequential Logic Equivalence

Figure 5.6: Two circuits that use different amounts of internal state to achieve the same functionality.

The figure shows implementations of a two-bit shift register. They differ in amount of internal state. They
have equivalent observable behaviour (ignoring glitches). Note, to implement larger delays, the design based on
multiplexors might use more logic and less power then the design based on shifting, since fewer nets toggle on
each clock edge.

Another common question that needs checking is sequential equivalence. Do a pair of designs follow the same
state trajectory ?

• Considering the values of all state variables ?

• Considering a re-encoding of the state variables ?

• For an observable subset of the state (e.g. at an interface) ?

• When interfacing with a given reactive automaton ?

Other freedoms that could be allowed within the notion of equivalence:

• Temporally floating ports - latency independence. With floating ports we do not consider the relative
timing of events between ports, only the relative timing of events within each port.

• Synchronous or asynchronous (turn-taking) composition. If a pair of circuits are combined, do they share
a common clock or take it in turns to move?

• Strong or weak bi-simulation (stuttering equivalence). A stuttering equivalence between a pair of designs
may exist if we disregard the precise number of clock cycles each took to achieve the result (such as
different implementations of a microprocessor).

Practical problem: Designs may only be equivalent in the used portion of the state space. Hence we may need
a number of side conditions that specifiy the required operating conditions.
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5.1.17 ABD - Sequential Logic Simplification

A finite-state machine may have more states than it needs to perform its observable function because some
states are totally equivalent to others in terms of output function and subsequent behaviour. Note that one-hot
coding does not increase the reachable state space and so is not an example of that sort of redundancy.

A Moore machine can be simplified by the following
procedure:

• 1. Partition all of the state space into blocks
of states where the observable outputs are the
same for all members of a block.

• 2. Repeat until nothing changes (i.e. until it
closes) For each input setting:

– 2a. Chose two blocks, B1 and B2.

– 2b. Split B1 into two blocks consisting of
those states with and without a transition
from B2.

– 2c. Discard any empty blocks.

• 3. The final blocks are the new states.

Bisimulation algorithm not examinable in this
course.

Alternative algorithm: start with one partition per state and repeatedly conglomerate. The best algorithms use
a mixture of the two approaches to meet in the middle. Wikipedia: Formal Equivalence Checking

Research example: CADP package: developed by the VASY team at INRIA. Commercial products: Conformal
by Cadence, Formality by Synopsys, SLEC by Calypto.

One future use of this sort of procedure might be to generate an instruction set simulator for a processor from
its full RTL implementation. This sort of de-pipelining would give a non-cycle accurate, higher-level model that
runs much faster in simulation.

There are some good on-line resources. Such as Dulos System Verilog Assertions

5.1.18 ABD - Conclusion

ABD today is often focussed on safety and liveness properties of systems and formal specifications of the
protocols at the ports of a system. However, there are many other useful properties we might want to ensure
or reason about, such as those involving counting and/or data conservation. These are less-well embodied in
contemporary tools.

PSL deals with concrete values rather than symbolic values. Many interesting properties relate to symbolic
data (e.g. specifying the correct behaviour of a FIFO buffer). Using PSL, all symbolic tokens must be wrapped
up in the modelling layer which is not the core language.

Formal methods are taking over from simulation, with the percentage of bugs being found by formal methods
growing. However, there is a lack of formal design entry. Low-level languages such as Verilog do not seamlessly
mix with automatic synthesis from formal specification and so double-entry of designs is common.
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SG 6 — SystemC: Hardware Modelling Library

Topics: SystemC.

6.1 SystemC: Hardware Modelling Library for C++

SystemC is a free library for C++ for hardware SoC modelling. Download from www.accelera.org SystemC was
developed over the last ten years. There have been two major releases, 1.0 and 2.0. Also of importance is the
TLM sub-library, TLM 2.0. (SystemC using transactional-level modelling (TLM/ESL) is covered later).

Greaves developed the TLM POWER3 add-on library for power modelling.

It can be used for detailed net-level modelling, but today its main uses are :

• Architectural exploration: Making a fast and quick, high-level model of a SoC to explore performance
variation against various dimensions, such as bus width and cache memory size.

• Transactional level (TLM) models of systems, where handshaking protocols between components using
hardware nets are replaced with subroutine calls between higher-level models of those components.

• Synthesis: RTL is synthesised from from SystemC source code using a so-called ‘C-to-gates’ compiler.
SystemC Synthesis

SystemC includes (at least):

• A module system with inter-module channels: C++ class instances are instantiated in a hierarchy, follow-
ing the circuit component structure, in the same way that RTL modules instantiate each other.

• An eventing and threading kernel that is non-preemptive and which allows user code inside components
to run either in a trampoline style, returning the thread without blocking, or to keep the thread and hold
state on a stack.

• Compute/commit signals as well as other forms of channel for connecting components together. The
compute/commit signals are needed in a zero-delay model of hardware to avoid ‘shoot-thru’: i.e. the
scenario where one flip-flop in a clock domain changes its output before another has processed the previous
value.

• A library of fixed-precision integers. Hardware typically uses all sorts of different width busses and
counters that wrap accordingly. SystemC provides classes of signed and unsigned variables of any width
that behave in the same way. For instance the user can define an sc int of five bits and put it inside
a signal. The provided library includes overloads of all the standard arithmetic and logic operators to
operate on these types.

• Plotting output functions that enable waveforms to be captured to a file and viewed with a program such
as gtkwave.

• A transactional modelling sub-library: TLM 1.0 provided separate blocking and non-blocking interfaces
prototypes that a user could follow and in TLM 2.0 these are rolled together into ‘convenience sockets’
that can convert between the two forms.

Problem: hardware engineers are not C++ experts but they can be faced with complex or advanced C++ error
messages when they misuse the library.

Benefit: General-purpose behavioural C code, including application code and device drivers, can all be modelled
in a common language.
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SC_MODULE(mycounter) // An example of a leaf module (no subcomponents).
{

sc_in < bool > clk, reset;
sc_out < sc_int<10> > myout;

void m() // Internal behaviour, invoked as an SC_METHOD.
{

myout = (reset) ? 0: (myout.read()+1); // Use .read() since sc_out makes a signal.
}

SC_CTOR(mycounter) // Constructor
{ SC_METHOD(m); //

sensitive << clk.pos();
}

}
// Complete example is on course web site and also on PWF.

SystemC enables a user class to be defined using the the SC MODULE macro. Modules inherit various attributes
appropriate for an hierarchic hardware design including an instance name, a type name and channel binding
capability. The sensitive construct registers a callback with the EDS kernel that says when the code inside
the module should be run. An unattractive feature of SystemC is the need to use the .read() method when
reading a signal.

6.1.1 SystemC Abstracted Data Modelling

Here we raise the modelling abstraction level by passing an abstract datatype along a channel. the abstract
data type must define a few basic methods, such as the equality operator overload this is shown:

sc_signal < bool > mywire; // Rather than a channel conveying just one bit,

struct capsule
{ int ts_int1, ts_int2;

bool operator== (struct ts other)
{ return (ts_int1 == other.ts_int1) && (ts_int2 == other.ts_int2); }

int next_ts_int1, next_ts_int2; // Pending updates
void update()
{ ts_int1 = next_ts_int1; ts_int2 = next_ts_int2;
}

...

... // Also must define read(), write() and value_changed()

};

sc_signal < struct capsule > myast; // We can send two integers at once.

For many basic types, such as bool, int, sc int, the required methods are provided in the SystemC library,
but clearly not for user-defined types.

void mymethod() { .... }
SC_METHOD(mymethod)
sensitive << myast.pos(); // User must define concept of posedge for his own abstract type.

6.1.2 Threads and Methods

SystemC enables a user module to keep a thread and a stack but prefers, for efficiency reasons if user code runs
on its own upcalls in a trampoline style.

• An SC THREAD has a stack and is allowed to block.
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• An SC METHOD is just an upcall from the event kernel and must not block.

Comparing SC THREADs with trampoline-style methods we can see the basis for two main programming TLM
styles to be introduced later: blocking and non-blocking.

The user code in an SC MODULE is run either as an SC THREAD or an SC METHOD.

An SC THREAD has a stack and is allowed to block. An SC METHOD is just an upcall from the event kernel
and must not block. Use SC METHOD wherever possible, for efficiency. Use SC THREAD where important
state must be retained in the program counter from one activation to the next or when asynchronous active
behaviour is needed.

The earlier ‘mycounter’ example used an SC METHOD. Now an example using an SC THREAD: a data source
that provides numbers using a net-level four-phase handshake:

SC_MODULE(mydata_generator)
{ sc_out < int > data;

sc_out < bool > req;
sc_in < bool > ack;

void myloop()
{ while(1)

{ data = data.read() + 1;
wait(10, SC_NS);
req = 1;
do { wait(10, SC_NS); } while(!ack.read());
req = 0;
do { wait(10, SC_NS); } while(ack.read());

}
}

SC_CTOR(mydata_generator)
{

SC_THREAD(myloop);
}

}

A SystemC thread can block for a given amount of time using the wait function in the SystemC library (not
the Posix namesake). NB: If you put ‘wait(4)’ for example, you will invoke the unix system call of that name,
so make sure you supply a SystemC time unit as the second argument.

Additional notes:

Waiting for an arbitrary boolean expression to hold is hard to implement on top of C++ owing to
its compiled nature:

• C++ does not have a reflection API that enables a user’s expression to be re-evaluated by the
event kernel.

• Yet we still want a reasonably neat and efficient way of passing an uninterpreted function.

• Original solution: the delayed evaluation class:

waituntil(mycount.delayed() > 5 && !reset.delayed());

Poor user had to just insert the delayed keyword where needed and then ignore it when reading the
code. It was too unwieldly, now removed. So today (pre C++11) use the less-efficient:

do { wait(10, SC_NS); } while(!((mycount > 5 && !reset)));
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6.1.3 SystemC Plotting and GUI

We can plot to industry standard VCD files and view with gtkwave (or modelsim).

sc_trace_file *tf = sc_create_vcd_trace_file("tracefile");

// Now call:
// sc_trace(tf, <traced variable>, <string>);

sc_signal < int > foo;
float bar;
sc_trace(tf, foo);
sc_trace(tf, bar, "bar"); // Give name if anon constuctor

sc_start(1000, SC_NS); // Simulate for one microsecond
sc_close_vcd_trace_file(tr);
return 0;

Figure 6.1: Waveform view plotted by gtkwave.

VCD can be viewed with gtkwave or in modelsim. There are various other commercial interactive viewer
tools...

Try-it-yourself on PWF
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SG 7 — ESL: Electronic System Level Modelling

Recall the following levels of modelling from the start of this course:

• Functional Modelling: The ‘output’ from a simulation run is accurate.

• Memory Accurate Modelling: The contents and layout of memory is accurate.

• Untimed TLM: No time stamps recorded on transactions.

• Loosely-timed TLM: The number of transactions is accurate, but order may be wrong.

• Approximately-timed TLM: The number and order of transactions is accurate.

• Cycle-Accurate Level Modelling: The number of clock cycles consumed is accurate.

• Event-Level Modelling: The ordering of net changes within a clock cycle is accurate.

An ESL methodology aims:

Aim 1: To model with good performance a complete SoC using full software/firmware.

Aim 2: To allow seamless and successive replacement of high-level parts of the model with low-level mod-
els/implementations when available and when interested in their detail.

So, an ESL methodology must provide:

• Tangible, lightweight rapidly-generated prototype of full SoC architecture.

• Rapid Architectural Evaluation: determine bus bandwidth and memory use for a candidate architec-
ture. Easy to adjust major design parameters.

• Algorithmic Accuracy: Get real output from an early system, hosting the real application/firmware,
possibly in real-time.

• Timing information: Get timing numbers for performance (accurate or loose timing).

• Power information: Get power consumption estimates to evaluate chip temperature and system battery
life.

• Firmware development: Integrate high-level behavioural models of major components with their device
drivers to run test software and applications.

Chosen baseline methodolody: SystemC Transactional Modelling using high-level models in C++. Enhance-
ments:

• Synthesise high-level models to form parts of the fabricated system (see elsewhere notes on HLS)(but
today manual re-coding is mainly used).

• Embed assertions in the high-level models and use these same assertions through to tape out (Section 5).
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Additional notes:

On the course web site, there is information on two sets of practical experiments:

• Simple TLM 1 style: To help investigate the key aspects of the transactional level modelling
(TLM) methodology without using extensive libraries of any sort we use our own processor,
the almost trivial nominalproc, and we cook our own transactional modelling library.

This practical takes an instruction set simulator of a nominal processor and then sub-class it
in two different ways: one to make a conventional net-level model and the other to make an
ESL version. The nominal processor is wired up in various different example configurations,
some using mixed-abstraction modelling.

• TLM 2 style: Using the industry standard TLM 2.0 library and the Open Cores OR1K
processor. This is ultimately easier to use, but has a steeper learning curve.

In this course we shall focus on the loosely-timed, blocking TLM modelling style of ESL model.

7.1 ESL Flow Model: Avoiding ISS/RTL overheads using native
calls.

Figure 7.1: ESL Flow: Avoiding the ISS by cross-compiling the firmware and direct linking with behavioural
models.

Our ESL flow is mainly based on C/C++. This language is used for behavioural models of the peripherals and
for the embedded applications, operating system and device drivers.

For fabrication, the embedded software is compiled with the target compiler (e.g. gcc-arm) and RTL is converted
to gates and polygons using Synopsys Design Compiler.

For ESL simulation, as much as possible, we take the original C/C++ and link it all together, whether it is
hardware or software, and run it over the SystemC event-driven simulation (EDS) kernel.

Variations: sometimes we can import RTL components using a tool such as Verilator or VTOC. Sometimes we
use an ISS to interpret the target processor machine code.
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7.1.1 Using C Preprocessor to Adapt Firmware

We may need to recompile the hardware/software interface when compiling for TLM model as compared to the
device driver installed in an OS or ROM firmware. For a ’mid-level model’, differences might be minor and so
implemented in C preprocessor. Device driver access to a DMA controller might be changed as follows:

#define DMACONT_BASE (0xFFFFCD00) // Or other memory map value.
#define DMACONT_SRC_REG 0
#define DMACONT_DEST_REG 4
#define DMACONT_LENGTH_REG 8 // These are the offsets of the addressable registers
#define DMACONT_STATUS_REG 12

#ifdef ACTUAL_FIRMWARE

// For real system and lower-level models:
// Store via processor bus to DMACONT device register
#define DMACONT_WRITE(A, D) (*(DMACONT_BASE+A*4)) = (D)
#define DMACONT_READ(A) (*(DMACONT_BASE+A*4))

#else

// For high-level TLM modelling:
// Make a direct subroutine call from the firmware to the DMACONT model.
#define DMACONT_WRITE(A, D) dmaunit.slave_write(A, D)
#define DMACONT_READ(A) dmaunit.slave_read(A)

#endif

// The device driver will make all hardware accesses to the unit using these macros.
// When compiled native, the calls will directly invoke the behavioural model, bypassing the bus model.

Behavioural model example (the one-channel DMA controller from earlier):

// Behavioural model of
// slave side: operand register r/w.
uint32 src, dest, length;
bool busy, int_enable;

u32_t status() { return (busy << 31)
| (int_enable << 30); }

u32_t slave_read(u32_t a)
{

return (a==0)? src: (a==4) ? dest:
(a==8) ? (length) : status();

}
void slave_write(u32_t1 a, u32_t d)
{

if (a==0) src=d;
else if (a==4) dest=d;
else if (a==8) length = d;
else if (a==12)
{ busy = d >> 31;

int_enable = d >> 30; }
}

// Bev model of bus mastering portion.
while(1)
{

waituntil(busy);
while (length-- > 0)

mem.write(dest++, mem.read(src++));
busy = 0;

}

We would like to make interrupt output with an RTL-like continuous assignment:

interrupt = int_enable&!busy;

But this will need a thread to run it, so this code must be placed in its own C macro that is inlined at all points
where the supporting expressions might change.

A full example is in the ‘ethercrc.zip’ folder on the course web site (and unzipped on PWF).

Alternatively, it is also possible to use the workstation VM system to trap calls from natively-compiled firmware
to hardware.
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7.2 Transactional Level Modelling (TLM)

Recall our list of three inter-module communication styles, we will now consider the third style:

1. Pin-level modelling: an event is a change of a net or bus,

2. Abstract data modelling: an event is delivery of a complete cache line or other data packet,

3. Transactional-level modelling: avoid events as much as possible: use intermodule software calling.

In general, a transaction has atomicity, with commit or rollback. But in ESL the term means less than that. In
ESL we might just mean that a thread from one component executes a method on another. However, the call
and return of the thread normally achieve flow control and implement the atomic transfer of some datum, so
the term remains relatively intact.

We can have blocking and non-blocking TLM coding styles:

• Blocking: Hardware flow control signals implied by thread’s call and return.

• Non-blocking: Success status returned immediately and caller must poll/retry as necessary.

In SystemC: blocking requires an SC THREAD, whereas non-blocking can use an SC METHOD.

Which is better: a matter of style ? Non-blocking enables finer-grained concurrency and closer to cycle-accurate
timing results. TLM 2.0 sockets will actually map between different styles at caller and callee.

Also, there are two standard methods for timing annotation in TLM modelling, Approximately-timed and
Loosely-timed and in these notes we shall emphasize the latter.

7.2.1 General ESL Interactions with Shortcuts Illustrated

Figure 7.2: Some possible shortcuts through full system model to omit details.

Consider the Ethernet CRC example

Another useful taxonomy over the higher modelling abstractions:

1. Highest-level (vanished) model: Implemented using SystemC or another threads package: device driver
code and device model mostly missing, but the API to the device driver is preserved, for instance,
a single TLM transaction might send a complete packet when in reality multiple bus cycles are needed to
transfer such a packet;
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2. Mid-level model: Implemented using SystemC: the device driver is only slightly modified (using prepro-
cessor directives or otherwise) but the interconnection between the device and its driver may be different
from reality, meaning bus utilisation figures are unobtainable or incorrect;

3. Bus-transaction accurate mode: each bus operation (read/write or burst read/write and interrupt) is
modelled, so bus loading can be established, but timing may be loose and transaction order may be
wrong, again, minor changes in the device driver and native compilation may be used;

4. Low-level model: Implemented in RTL or cycle-accurate SystemC: target device driver firmware and other
code is used unmodifed.

Figure 7.3 is an example protocol implemented at net-level and TLM level:

Figure 7.3: Three views of four-phase handshake between sender and receiver: net-level connection and TLM
push and TLM pull configurations (untimed).

Note that the roles of initiator and target do not necessarily relate to the sources and sinks of the data. In fact,
an initiator can commonly make both a read and a write transaction on a given target and so the direction of
data transfer is dynamic.

7.2.2 Mixing modelling styles: 4/P net-level to TLM transactors.

An aim of ESL modelling was to be able to easily replace parts of the high-level model with greater detail where
necessary. So-called transactors are commonly needed at the boundaries.

Example blocking transactors: convert from transaction to pin-level modelling.

Figure 7.4: Mixing modelling styles using a transactor.
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// Write transactor 4/P handshake
b_putbyte(char d)
{

while(ack) do wait(10, SC_NS);
data = d;
settle();
req = 1;
while(!ack) do wait(10, SC_NS);
req = 0;

}

// Read transactor 4/P handshake
char b_getbyte()
{

while(!req) do wait(10, SC_NS);
char r = data;
ack = 1;
while(req) do wait(10, SC_NS);
ack = 0;
return r;

}

Figure 7.5: Mixing modelling styles using a transactor 2.

‘Toy ESL’practical material.

7.2.3 Transactor Configurations

Four possible transactors are envisonable for a single direction of the 4/P handshake and in general.

Figure 7.6: Possible configurations for simple transactors.
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Additional notes:

An (ESL) Electronic System Level transactor converts from a hardware to a software style of com-
ponent representation. A hardware style uses shared variables to represent each net, whereas a
software style uses callable methods and up-calls. Transactors are frequently required for busses
and I/O ports. Fortunately, formal specifications of such busses and ports are becoming commonly
available, so synthesising a transactor from the specification is a natural thing to do.

There are four forms of transactor for a given bus protocol. Either side may be an initiator or a
target, giving four possibilities.

A transactor tends to have two ports, one being a net-level interface and the other with a thread-
oriented interface defined by a number of method signatures. The thread-oriented interface may be
a target that accepts calls from an external client/initiator or it may itself be an initiator that make
calls to a remote client. The calls may typically be blocking to implement flow control.

The initiator of a net-level interface is the one that asserts the command signals that take the
interface out of its starting or idle state. The initiator for an ESL/TLM interface is the side that
makes a subroutine or method call and the target is the side that provides the entry point to be
called.

Consider a transactor with a ‘Read()’ target port and net-level parallel input. This is an alterna-
tive generalisation of the (a) configuration but for when data is moving in the opposite direction.
Considering the general case of a bi-directional net-level port with separate TLM entry points for
‘Read()’ and ‘Write(d)’ helps clarify.

7.2.4 ESL TLM in SystemC: First Standard TLM 1.0.

NB: Full exam credit can be gained using any of TLM1.0 or TLM2.0 styles or your own pseudo code sketches
in an OO language of your choice.

The OSCI TLM 1.0 standard used conventional C++ concepts of multiple inheritance. As shown in the ‘Toy
ESL’ materials and the example here, an SC MODULE that implements an interface just inherits it.

SystemC 2.0 implemented an extension called sc export that allows a parent module to inherit the interface
of one of its children. This was a vital step needed in the common situation where the exporting module is not
the top-level module of the component being wired-up.

However, TLM 1.0 had no standardised or recommended structure for payloads and no standardised timing
annotation mechanisms.

There was also the problem of how to have multiple TLM ports on a component with same interface: e.g. a
packet router.

However, referring back to the DMA unit behavioural model, we can see that that memory operations are likely
to get well out of synchronisation with the real system since this copying loop just goes as fast as it can without
worrying about the speed of the real hardware. It is just governed by the number of cycles the read and write
calls block for, which could be none. The whole block copy might occur in zero simulation time! This sort
of modelling is useful for exposing certain types of bugs in a design, but it does not give useful performance
results. We shall shortly see how to limit the sequential inconsistencies using a quantum keeper.

A suitable coding style for sending calls ‘along the nets’ (prior to the TLM 2.0 standard):
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//Define the interfaces:
class write_if: public sc_interface
{ public:

virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if: public sc_interface
{ public:

virtual char read() = 0;
};

//Define a component that inherits:
class fifo_dev: sc_module("fifo_dev"),
public write_if, public read_if, ...
{

void write(char) { ... }
void reset() { ... }

...
}

SC_MODULE("fifo_writer")
{

sc_port< write_if > outputport;
sc_in < bool > clk;
void writer()
{

outputport.write(random());
}

SC_CTOR(fifo_writer} {
SC_METHOD(writer);
sensitive << clk.pos();

}
}

//Top level instances:
fifo_dev myfifo("myfifo");
fifo_writer mywriter("mywriter");
// Port binding:
mywriter.outputport(myfifo);

Here a thread passes between modules, but modules are plumbed in Hardware/EDS netlist structural style.

See the slide for full details, but the important thing to note is that the entry points in the interface class are
implemented inside the fifo device and are bound, at a higher level, to the calls made by the writer device. This
kind of plumbing of upcalls to entrypoints formed an essential basis for future transactional modelling styles.

However we soon run in to the well-known OO problem with multiple instances of an interface: not often needed
for S/W but common enough in H/W designs.

7.2.5 ESL TLM in SystemC: TLM 2.0

Although there was a limited capability in SystemC 1.0 to pass threads along channels, and hence do subroutine
calls along what look like wire, this was made much easier SystemC 2.0. TLM2.0 (July 2008) tidies away the
TLM1.0 interface inheritance using convenience sockets and defines the generic payload.

It also defines memory/garbage ownership and transport primitives with timing and backdoor access to RAM
models.

// Filling in the fields or a TLM2.0 generic payload:
trans.set_command(tlm::TLM_WRITE_COMMAND);
trans.set_address(addr);
trans.set_data_ptr(reinterpret_cast<unsigned char*>(&data));
trans.set_data_length(4);
trans.set_streaming_width(4);
trans.set_byte_enable_ptr(0);
trans.set_response_status( tlm::TLM_INCOMPLETE_RESPONSE );

// Sending the payload through a TLM socket:
socket->b_transport(trans, delay);

Other standard payloads (e.g. 802.3 frame or audio sample) might be expected ?

7.2.6 TLM in SystemC: TLM 2.0

This slide non-examinable for part II CST 2014/15.

Rather than having application-specific method names, we standardise on a generic bus operation and demul-
tiplex within various IP blocks based on regsiter address.
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Figure 7.7: The general TLM 2.0 Setup

The generic payload can be extended on a a custom basis and intermediate bus bridges and routers can be
polymorphic about this: not needing to know about all the extensions but able to update timestamps to model
routing delays.

It also defines memory/garbage ownership and transport primitives with timing. Finally, it provides a raft of
useful features, such as automatic conversion between blocking and non-blocking styles.

SRAM example: first define the socket in the .h file:

SC_MODULE(cbgram)
{

tlm_utils::simple_target_socket<cbgram> port0;
...

Here is the constructor:

cbgram::cbgram(sc_module_name name, uint32_t mem_size, bool tracing_on, bool dmi_on): sc_module(name), port0("port0"),
latency(10, SC_NS), mem_size(mem_size), tracing_on(tracing_on), dmi_on(dmi_on)

{
mem = (uint8_t *)malloc(mem_size); // allocate memory
// Register callback for incoming b_transport interface method call
port0.register_b_transport(this, &cbgram::b_access);

}

And here is the guts of b access:

void cbgram::b_access(tlm::tlm_generic_payload &trans, sc_time &delay)
{

tlm::tlm_command cmd = trans.get_command();
uint32_t adr = (uint32_t)trans.get_address();
uint8_t * ptr = trans.get_data_ptr();
uint32_t len = trans.get_data_length();
uint8_t * lanes = trans.get_byte_enable_ptr();
uint32_t wid = trans.get_streaming_width();

if (cmd == tlm::TLM_READ_COMMAND)
{

ptr[0] = mem[adr];
}

else ...

trans.set_response_status( tlm::TLM_OK_RESPONSE);
}

Wire up the ports in the level above:

busmux0.init_socket.bind(memory0.port0);
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The full code is in the OR1K btlm-ref-design folder for those really interested.

(Socket details and types not examinable for Part II CST. The TLM 1.0 style is easier to understand, but not
as convenient for real-world projects.)

Additional notes:

TLM 2.0 Socket Types:

simple initiator socket.h version of an initiator socket that has a default implementation of all
interfaces and allows to register an implementation for any of the interfaces to the socket, either
unique interfaces or tagged interfaces (carrying an additional id)

simple target socket.h version of a target socket that has a default implementation of all inter-
faces and allows to register an implementation for any of the interfaces to the socket, either unique
interfaces or tagged interfaces (carrying an additional id) This socket allows to register only 1 of the
transport interfaces (blocking or non-blocking) and implements a conversion in case the socket is
used on the other interface

passthrough target socket.h version of a target socket that has a default implementation of all
interfaces and allows to register an implementation for any of the interfaces to the socket.

multi passthrough initiator socket.h an implementation of a socket that allows to bind multiple
targets to the same initiator socket. Implements a mechanism to allow to identify in the backward
path through which index of the socket the call passed through

multi passthrough target socket.h an implementation of a socket that allows to bind multiple
initiators to the same target socket. Implements a mechanism to allow to identify in the forward
path through which index of the socket the call passed through

7.2.7 Timed Transactions: Adding delays to TLM calls.

A TLM call does not interact with the SystemC kernel or advance time. To study system performance, however,
we must model the time taken by the real transaction over the bus or network-on chip (NoC).

We continue to use SystemC EDS kernel with its tnow variable defined by the head of the event queue. This is
our main reference time stamp, but we aim not to use the kernel very much, only entering it when inter-module
communication is needed. This reduces context swap overhead (a computed branch that does not get predicted)
and we can run a large number of ISS instructions or other operations before context switching, aiming to make
good use of the caches on the modelling workstation.

Note: In SystemC, we can always print the kernel tnow with:

cout << ‘‘Time now is : ‘‘ << simcontext()->time_stamp() << ‘‘ \n’’;

The naive way to add approximate timing annotations is to block the SystemC kernel in a transaction until the
required time has elapsed:

sc_time clock_period = sc_time(5, SC_NS); // 200 MHz clock

int read(A)
{

int r = 0;
if (A < 0 or A >= SIZE) error(....);
else r = MEM[A];
wait(clock_period * 3); // <-- Directly model memory access time: three cycles say.
return r;

}

The preferred loosely-timed coding style is more efficient: we pass a time accumulator variable called ‘delay’
around for various models to augment where time would pass (clearly this causes far fewer entries to the SystemC
kernel):
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// Preferred coding style
putbyte(char d, sc_time &delay) // The delay variable records how far ahead of kernel time this thread has advanced.
{

...
delay += sc_time(140, SC_NS); // It should be increment at each point where time would pass...

}

The leading ampersand on delay is the C++ denotation for pass by reference. But, at any point, any thread
can resynch itself with the kernel by performing

// Resynch idiomatic form:
sc_wait(delay);
delay = 0;

Important note: Simulation performance is reduced when there are frequent resynchs, but true
transaction ordering will be modelled correctly.

7.2.8 Instruction Set Simulator (ISS)

An Instruction Set Simulator (ISS) is a program that interprets or otherwise models the behaviour of machine
code. Typically implemented as a C++ object:

class mips64iss
{ // Programmer’s view state:

u64_t regfile[32]; // General purpose registers (R0 is constant zero)
u64_t pc; // Program counter (low two bits always zero)
u5_t mode; // Mode (user, supervisor, etc...)
...
void step(); // Run one instruction
...

}

The ISS can be cycle-accurate or just programmer-view accurate, where the hidden registers that overcome
structural hazards or implement pipeline stages are not modelled.

This fragment of a main step function evaluates one instruction, but this does not necessarily correspond to one
clock cycle in hardware (e.g. fetch and execute would be of different instructions owing to pipelining):

void mips64iss::step()
{

u32_t ins = ins_fetch(pc);
pc += 4;
u8_t opcode = ins >> 26; // Major opcode
u8_t scode = ins&0x3F; // Minor opcode
u5_t rs = (ins >> 21)&31; // Registers
u5_t rd = (ins >> 11)&31;
u5_t rt = (ins >> 16)&31;

if (!opcode) switch (scode) // decode minor opcode
{

case 052: /* SLT - set on less than */
regfile_up(rd, ((int64_t)regfile[rs]) < ((int64_t)regfile[rt]));
break;

case 053: /* SLTU - set on less than unsigned */
regfile_up(rd, ((u64_t)regfile[rs]) < ((u64_t)regfile[rt]));
break;

...
...

void mips64iss::regfile_up(u5_t d, u64_t w32)
{ if (d != 0) // Register zero stays at zero

{ TRC(trace("[ r%i := %llX ]", d, w32));
regfile[d] = w32;

}
}
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‘Toy ESL’practical material.

Various forms of ISS are possible, modelling more or less detail:

Type of ISS I-cache traffic D-cache traffic Relative
Modelled Modelled Speed

1. Interpreted RTL Y Y 0.000001
2. Compiled RTL Y Y 0.00001

3. V-to-C C++ Y Y 0.001
4. Hand-crafted cycle accurate C++ Y Y 0.1

5. Hand-crafted high-level C++ Y Y 1.0
6. Trace buffer/JIT C++ N Y 20.0

7. Native cross-compile N N 50.0

A cycle-accurate model of the processor core is normally available in RTL. Using this under an EDS interpreted
simulator will result in a system that typically runs one millionth of real time speed (1). Using compiled RTL,
as is now normal practice, gives a factor of 10 better, but remains hopeless for serious software testing (2).

Using programs such as Tenison VTOC and Verilator, a fast, cycle-accurate C++ model of the core can be
generated, giving intermediate performance (3). A hand-crafted model is generally much better, requiring
perhaps 100 workstation instructions to be executed for each modelled instruction (4). The workstation clock
frequency is generally about 10 times faster than the modelled embedded system.

If we dispense with cycle accuracy, a hand-crafted model (5) gives good performance and is generally throttled
by the overhead of modelling instruction and data operations on the model of the system bus.

A JIT (just-in-time) cross-compilation of the target machine code to native workstation machine code gives
excellent performance (say 20.0 times faster than real time) but instruction fetch traffic is no longer fully
modelled (6). Techniques that unroll loops and concatenate basic blocks, such as used for trace caches in
processor architecture, are applicable.

Finally (line 7), compiling the embedded software using the workstation native compiler (as described later)
exposes the unfettered raw performance of the workstation for cpu-intensive code.

7.2.9 Typical ISS setup with Loose Timing (Temporal Decoupling)

Figure 7.8: Typical setup of thread using loosely-timed modelling with a quantum keeper.

In this reference example, for each CPU core, a single thread is used that passes between components and back
to the originator and only rarely enters the SystemC Kernel.

As explained above, each thread has a variable called delay of how far it has run ahead of kernel simulation
time, and it only yields when it needs an actual result from another thread or because its delay exceeds a
locally-chosen value. Each component increments the delay field in the TLM calls it processes, according to
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how long it would have delayed the client thread under approximate timing.

Each component may have a quantum keeper. Every thread must encounter a quantum keeper at least once in
its outermost loop.

The quantum keeper code is just a conditional resynch:

if (delay > myQ) { sc_wait(delay); delay = 0; }

By calling wait(delay) the simulation time will advance to where the caller has got to while running other
pending processes. The myQuantum could be a system default value or a special value for each thread or
component.

Or where a thread needs to block to wait for a result from some other thread:

while (!condition_of_interest)
{

sc_wait(delay);
delay = 0;

}

Generally, we can choose the quantum according to our current modelling interest:

• Large time quantum: fast simulation,

• Small time quantum: transaction order interleaving is more accurate.

Transactions may execute in a different sequence from reality: sequential consistency compromised ?

7.2.10 RTL Power Estimation Without Simulation

Post RTL synthesis we have a netlist and can use Rent for wire lengths provided sufficent hierachy exists
(perhaps five or more levels). We can either use the natural hierarchy of the RTL input design or we can apply
a clustering/clique finding algorithms to determine a rough placement floorplan without doing a full place and
route.

Pre RTL synthesis we can readily collect the following certainties (and hence the static power (ignoring drive
strength selection))

• Number of flip-flops

• Number and bit widths of arithmetic operators

• Size of RAMs

module CTR16(
input mainclk,
input din, input cen,
output o);

reg [3:0] count, oldcount; // D-types

always @(posedge mainclk) begin
if (cen) count <= count + 1; // ALU
if (din) oldcount <= count; // Wiring
end

assign o = count[3] ^ count[1]; // Combinational

endmodule
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But the following dynamic quantities require heuristic estimates:

• Flip-flop activity (number of enabled cycles/number of flipping bits)

• Number of writes to RAMs

• Glitch energy in combinational logic.

7.2.11 Typical macroscopic performance equations: SRAM example.

It is important to model SRAM accurately. A 45nm SRAM can be modelled simply in terms of Area, Delay
and Power Consumption:

Four rules of thumb (scaling formulae) for single-ported SRAM CACTI at HP labs. Cacti RAM Models

Technology parameters:

• Read width 64 bits. Technology Size (nm):45 Vdd:1.0

• Number of banks:1 Read/Write Ports per bank:1

• Read Ports per bank:0 Write Ports per bank:0

Interpolated equations:

• Area = 13359.26+4.93/8*bits squm: gradient = 0.6 squm/bit.

• Read energy = 5 + 1.2E-4 / 8 * bits pJ.

• Leakage (static power) = 82nW per bit.

• Random access latency = 0.21 + 3.8E-4(sqrt(bits)) nanoseconds * 1.0/supply voltage.

Another rule of thumb: area is about 600 square lambda for an SRAM bit cell, where lambda is the feature size
(45E-9).

Some additional dynamic current is consumed as ‘short-circuit current’ which is current consume when both
the P and N transistors are on at once, during switching, but we ignore that in these notes. Useful article:
POWER MANAGEMENT IN CPU DESIGN

Activity ratio, a: is the percentage of clock cycles that see a transition. The net toggle rate = Operating
frequency of the chip f × a;

• 1 W/cm2 can be dissipated from a plastic package.

• 2-4 W/cm2 required a heat sink.

• more than 8 W/cm2 requires forced cooling.

Workstation and laptop microprocessors dissipate tens of Watts: hence cooling fans and heat pipes. In the past
we were often core-bound or pad-bound. Today’s SoC designs are commonly power-bound.
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7.2.12 RTL Operating Frequency and Power Estimation

RTL synthesis is relatively quick but produces a detailed output which is slow to process for a large chip - hence
pre-synthesis energy and delay models are desirable.

Place and route will give accurate wiring lengths but is a highly time consuming investment in a given design
point.

A simulation of a placed and routed design can give very accurate energy and critical path figures, but is likewise
useless for ’what if’ style design exploration.

A table of possible approaches:

- - Without Simulation - - Using Simulation -

Without Place and Route

Fast - Design exploration. Area and de-

lay heuristics needed.

Can generate indicative activity
ratios to be used instead of sim-
ulation in further runs.

With Place and Route
Static timing analyser will give an ac-
curate clock frequency.

Gold standard: only bettered by
measuring a real chip.

7.2.13 Gold standard: Power Estimation using Simulation Post Layout

Spreadsheet style power modelling from VCD and SAIF logs.

VCD: Verilog Change Dump file - as generated by our net-level SystemC simulations.

SAIF: Switching Activity Interchange Format - the industry standard approach (aka Spatial Archive Inter-
change Format). Quick Tutorial and also TKT Tutorial

Both record the number of changes on each net of circuit from a net-level simulation.

Once we know the capacitance of a net (from layout) we can accurately compute the power consumed.

But, need to design down to the net-level and do a slow low-level simulation to collect adequate data.

Total Energy = Sum over all nets (net activity ratio * net length)

Clearly, if we know the average net length and average activity ratio we get the same precise answer regardless
of design details, hence good prospects exist for power estimation from high-level simulations.

7.2.14 Rent’s Rule Estimate of Wire Length

If we know the physical area of each leaf cell we can estimate the area of each component in a heirarchic design
(sum of parts plus percentage swell).

Rent’s rule pertains to the organization of computing logic, specifically the relationship between the number
of external signal connections to a logic block with the number of logic gates in the logic block, and has been
applied to circuits ranging from small digital circuits to mainframe computers [Wikipedia].

Rent gives a simple power-law relationship for the number of wires to a logic block. Wire length distribution
(with good placement) follows an equally-predictable pattern. With a heirarchic design, where we have the area
use of each leaf cell, even without placement, we can follow a net’s trajectorary up and down the hierarchy
and apply Rent’s Rule. Hence we can estimate a signal’s length by sampling a power law distribution whose
’maximum’ is the square root of the area of the lowest-common-parent component in the hierarchy.
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Figure 7.9: Illustrating Lowest Common Parent of the endpoint logic blocks. (This will always be roughly the
same size for any sensible layout, so having a detailed layout like the one shown is not required).

7.2.15 Macroscopic Phase/Mode Power Estimation Formula

An IP block will tend to have an average power consumption in each of its phases or modes.

Power modes include sleep, idle, off, on etc..

Clock frequency and supply voltage are also subject to step changes and expand the discrete phase/mode
operating space.

Given that blocks switch between energy states a simple energy estimation technique is based percentage of
time in each state.

This was how the TLM POWER2 library for SystemC worked. TLM POWER3 uses this approach for static
power but logs energy quanta for each transaction.

THE END. c© DJG 1995-2015.
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