
Security II: Cryptography

Markus Kuhn

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/teaching/1415/SecurityII/

Lent 2015 – Part II

1

http://www.cl.cam.ac.uk/teaching/1415/SecurityII/

Related textbooks

Main reference:

I Jonathan Katz, Yehuda Lindell:
Introduction to Modern Cryptography
Chapman & Hall/CRC, 2008 (2nd edition: December 2014)

Further reading:

I Christof Paar, Jan Pelzl:
Understanding Cryptography
Springer, 2010

http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/

I Douglas Stinson:
Cryptography – Theory and Practice
3rd ed., CRC Press, 2005

I Menezes, van Oorschot, Vanstone:
Handbook of Applied Cryptography
CRC Press, 1996
http://www.cacr.math.uwaterloo.ca/hac/

2

http://www.cs.umd.edu/~jkatz/imc.html
http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/
http://cacr.uwaterloo.ca/~dstinson/CTAP3/CTAP3.html
http://www.cacr.math.uwaterloo.ca/hac/

Encryption schemes

Encryption schemes are algorithm triples (Gen,Enc,Dec):

Private-key (symmetric) encryption scheme

I K ← Gen key generation

I C ← EncK(M) encryption

I M := DecK(C) decryption

Public-key (asymmetric) encryption scheme

I (PK ,SK)← Gen public/secret key-pair generation

I C ← EncPK (M) encryption using public key

I M := DecSK (C) decryption using secret key

Probabilistic algorithms: Gen and (often also) Enc access a random-bit

generator that can toss coins (uniformly distributed, independent).

Notation: ← assigns the output of a probabilistic algorithm, := that of a deterministic algorithm.

3

Message-integrity schemes

Private key (symmetric):

Message authentication code (MAC)

I K ← Gen private-key generation

I C ← MacK(M) MAC generation

I VrfyK(M ′, C) = 1 MAC verification

⇔M
?
= M ′

Public key (asymmetric):

Digital signature

I (PK ,SK)← Gen public/secret key-pair generation

I S ← SignSK (M) signature generation using secret key

I VrfyPK (M ′, S) = 1 signature verification using public key

⇔M
?
= M ′

4

Secure hash functions

Hash functions

A hash function h : {0, 1}∗ → {0, 1}` efficiently maps arbitrary-length
input bit strings onto (usually short) fixed-length bit strings such that the
output is uniformly distributed.

Typical applications of hash functions:

I hash tables: data structure allowing fast t = O(1) table lookups
where the storage address of a record containing value x is
determined by h(x).

I fast probabilistic string comparisons

I checksums

A good hash function h is one that minimizes the chances of a collision
of the form h(x) = h(y) with x 6= y.

A secure, collision-resistant hash function is designed to make it
infeasible for an adversary who knows the implementation of the hash
function to find any such collision.

5

Collision resistance – a formal definition

Hash function

A hash function is a pair of probabilistic polynomial-time (PPT)
algorithms (Gen, H) where

I Gen reads a security parameter 1n and outputs a key s.

I H reads key s and input string x ∈ {0, 1}∗ and outputs
Hs(x) ∈ {0, 1}`(n) (where n is security parameter implied by s)

A fixed-length hash function (compression function) Hs is only defined for inputs x ∈ {0, 1}`
′(n)

with `′(n) > `(n).

Formally define collision resistance using the following game:

1 Challenger generates a key s = Gen(1n)

2 Challenger passes s to adversary A
3 A replies with x, x′

4 A has found a collision iff Hs(x) = Hs(x′) and x 6= x′

A hash function (Gen, H) is collision resistant if for all PPT adversaries
A there is a negligible function negl such that

P(A found a collision) ≤ negl(n)

6

Unkeyed hash functions

Commonly used collision-resistant hash functions (SHA-256, etc.) do not
use a key s. They are fixed functions of the form h : {0, 1}∗ → {0, 1}`.

Why do we need s in the security definition?

Any fixed function h where the size of the domain (set of possible input
values) is greater than the range (set of possible output values) will have
collisions x, x′. There always exists a constant-time adversary A that just
outputs these hard-wired values x, x′.

Therefore, a complexity-theoretic security definition must depend on a
key s (and associated security parameter 1n). Then H becomes a recipe
for defining ever new collision-resistant fixed functions Hs.

So in practice, s is a publicly known fixed constant, embedded in the
secure hash function h.

7

Weaker properties implied by collision resistance

Second-preimage resistance

For a given s and input value x, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x′) = Hs(x) (except with negligible
probability).

If there existed a PPT adversary A that can break the second-preimage
resistance of Hs, than A can also break its collision resistance.
Therefore, collision resistance implies second-preimage resistance.

Preimage resistance

For a given s and output value y, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x′) = y (except with negligible probability).

If there existed a PPT adversary A that can break the pre-image
resistance of Hs, than A can also break its second-preimage resistance
(with high probability). Therefore, either collision resistance or
second-preimage resistance imply preimage resistance.

How?

8

Weaker properties implied by collision resistance

Second-preimage resistance

For a given s and input value x, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x′) = Hs(x) (except with negligible
probability).

If there existed a PPT adversary A that can break the second-preimage
resistance of Hs, than A can also break its collision resistance.
Therefore, collision resistance implies second-preimage resistance.

Preimage resistance

For a given s and output value y, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x′) = y (except with negligible probability).

If there existed a PPT adversary A that can break the pre-image
resistance of Hs, than A can also break its second-preimage resistance
(with high probability). Therefore, either collision resistance or
second-preimage resistance imply preimage resistance.

How?

8

Weaker properties implied by collision resistance

Second-preimage resistance

For a given s and input value x, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x′) = Hs(x) (except with negligible
probability).

If there existed a PPT adversary A that can break the second-preimage
resistance of Hs, than A can also break its collision resistance.
Therefore, collision resistance implies second-preimage resistance.

Preimage resistance

For a given s and output value y, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x′) = y (except with negligible probability).

If there existed a PPT adversary A that can break the pre-image
resistance of Hs, than A can also break its second-preimage resistance
(with high probability). Therefore, either collision resistance or
second-preimage resistance imply preimage resistance.

How? Give y = Hs(x) to A and hope for output x′ 6= x

8

Merkle–Damg̊ard construction

Wanted: variable-length hash function (Gen, H).

Given: (Gen, C), a fixed-length hash function with
C : {0, 1}2n → {0, 1}n (“compression function”)

Input of H: key s, string x ∈ {0, 1}L with length L < 2n

1 Pad x to length divisible by n by appending “0” bits, then split the
result into B =

⌈
L
n

⌉
blocks of length n each:

x‖0ndL
n e−L = x1‖x2‖x3‖ . . . ‖xB−1‖xB

2 Append a final block xB+1 = 〈L〉, which contains the n-bit binary
representation of input length L = |x|.

3 Set z0 := 0n (initial vector, IV)

4 compute zi := Cs(zi−1‖xi) for i = 1, . . . , B + 1

5 Output Hs(x) := zB+1

9

x‖0ndL
n e−L = x1‖x2‖x3‖ . . . ‖xB−1‖xB

Cs Cs · · · Cs Cs Hs(x)0n

x1 x2 xB 〈L〉

z1 zB−1 zB zB+1z0

x 6= x′

x′‖0n
⌈

L′
n

⌉
−L′ = x′1‖x′2‖x′3‖ . . . ‖x′B′−1‖x′B′

Cs Cs · · · Cs Cs Hs(x)0n

x′1 x′2 x′B′ 〈L′〉

z′1 z′B′−1 z′B′
zB′+1z′0

10

x‖0ndL
n e−L = x1‖x2‖x3‖ . . . ‖xB−1‖xB

Cs Cs · · · Cs Cs Hs(x)0n

x1 x2 xB 〈L〉

z1 zB−1 zB zB+1z0

x 6= x′

x′‖0n
⌈

L′
n

⌉
−L′ = x′1‖x′2‖x′3‖ . . . ‖x′B′−1‖x′B′

Cs Cs · · · Cs Cs Hs(x)0n

x′1 x′2 x′B′ 〈L′〉

z′1 z′B′−1 z′B′
zB′+1z′0

10

Merkle–Damg̊ard construction – security proof

If the fixed-length compression function C is collision resistant, so will be
the variable-length hash function H resulting from the Merkle–Damg̊ard
construction.

Proof outline:

Assume Cs is collision resistant, but H is not, because some PPT
adversary A outputs x 6= x′ with Hs(x) = Hs(x′).

Let x1, . . . , xB be the n-bit blocks of padded L-bit input x, and
x′1, . . . , x

′
B′ be those of L′-bit input x′, and xB+1 = 〈L〉, x′B′+1 = 〈L′〉.

Case L 6= L′: Then xB+1 6= x′B′+1 but Hs(x) = zB+1 =
Cs(zB‖xB+1) = Cs(z′B′‖x′B′+1) = z′B′+1 = Hs(x′), which
is a collision in Cs.

Case L = L′: Now B = B′. Let i ∈ {1, . . . , B + 1} be the largest index
where zi−1‖xi 6= z′i−1‖x′i. (Such i exists as due to
|x| = |x′| and x 6= x′ there will be at least one 1 ≤ j ≤ B
with xj 6= x′j .) Then zk = z′k for all k ∈ {i, . . . , B + 1}
and zi = Cs(zi−1‖xi) = Cs(z′i−1‖x′i) = z′i is a collision in
Cs.

So Cs was not collision resistant, invalidating the assumption.
11

Compression function from block ciphers

Davies–Meyer construction

One possible technique for obtaining a collision-resistant compression
function C is to use a block cipher E : {0, 1}` × {0, 1}n → {0, 1}n in the
following way:

C(K,X) = EK(X)⊕X

EKX C(K,X)⊕

However, the security proof for this construction requires E to be an
ideal cipher, a keyed random permutation. It is not sufficient for E to
merely be a strong pseudo-random permutation.

Warning: use only block ciphers that have specifically been designed to be used this way. Other
block ciphers (e.g., DES) may have properties that can make them unsuitable here (e.g., related
key attacks, block size too small).

12

Random oracle model

Many applications of secure hash functions have no security proof that
relies only on the collision resistance of the function used.

The known security proofs require instead a much stronger assumption,
the strongest possible assumption one can make about a hash function:

Random oracle

I A random oracle H is a device that accepts arbitrary length strings
X ∈ {0, 1}∗ and consistently outputs for each a value
H(X) ∈ {0, 1}` which it chooses uniformly at random.

I Once it has chosen an H(X) for X, it will always output that same
answer for X consistently.

I Parties can privately query the random oracle (nobody else learns
what anyone queries), but everyone gets the same answer if they
query the same value.

I No party can infer anything about H(X) other than by querying X.

13

Ideal cipher model

An random-oracle equivalent can be defined for block ciphers:

Ideal cipher

Each key K ∈ {0, 1}` defines a random permutation EK , chosen
uniformly at random out of all (2n)! permutations. All parties have oracle
access to both EK(X) and E−1

K (X) for any (K,X). No party can infer
any information about EK(X) (or E−1

K (X)) without querying is value for
(K,X).

We have encountered random functions and random permutations
before, as a tool for defining pseudo-random functions/permutations.

Random oracles and ideal ciphers are different:

If a security proof is made “in the random oracle model”, then a hash
function is replaced by a random oracle or a block cipher is replaced by
an ideal cipher.

In other words, the security proof makes much stronger assumptions
about these components: they are not just indistinguishable from random
functions/permutations by any polynomial-time distinguisher, they are
actually assumed to be random functions/permutations.

14

Davies–Meyer construction – security proof

C(K,X) = EK(X)⊕X

If E is modeled as an ideal cipher, then C is a collision-resistant hash
function. Any attacker A making q < 2`/2 oracle queries to E finds a
collision with probability not higher than q2/2`. (negligible)

Proof: Attacker A tries to find (K,X), (K ′, X ′) with
EK(X)⊕X = EK′(X

′)⊕X ′. We assume that, before outputting
(K,X), (K ′, X ′), A has previously made queries to learn EK(X) and
EK′(X

′). We also assume (wlog) A never makes redundant queries, so
having learnt Y = EK(X), A will not query E−1

K (Y) and vice versa.

The i-th query (Ki, Xi) to E only reveals

ci = Ci(Ki, Xi) = EKi(Xi)⊕Xi.

A query to E−1 instead would only reveal E−1(Ki, Yi) = Xi and
therefore

ci = Ci(Ki, Xi) = Yi ⊕ E−1
Ki

(Yi).

A needs to find ci = cj with i > j.
15

For some fixed pair i, j with i > j, what is the probability of ci = cj?

A collision at query i can only occur as one of these two query results:

I EKi
(Xi) = cj ⊕Xi

I E−1
Ki

(Yi) = cj ⊕ Yi

Each query will reveal a new uniformly distributed `-bit value, except that
it may be constrained by (at most) i− 1 previous query results (since
EKi

must remain a permutation).

Therefore, the ideal cipher E will answer query i by uniformly choosing a
value out of at least 2` − (i− 1) possible values.

Therefore, each of the above two possibilities for reaching ci = cj can
happen with probability no higher than 1/(2` − (i− 1)).

With i ≤ q < 2`/2 and ` > 1, we have

P(ci = cj) ≤ 1

2` − (i− 1)
≤ 1

2` − 2`/2
≤ 2

2`

There are
(
q
2

)
< q2/2 pairs j < i ≤ q, so the collision probability after q

queries cannot be more than 2
2` · q

2

2 = q2

2` .

16

Random oracle model – controversy

Security proofs that replace the use of a hash function with a query to a
random oracle (or a block cipher with an ideal cipher) remain controversial.

Cons

I Real hash algorithms are publicly known. Anyone can query them
privately as often as they want, and look for shortcuts.

I No good justification to believe that proofs in the random oracle model
say anything about the security of a scheme when implemented with
practical hash functions (or pseudo-random functions/permutations).

I No good criteria known to decide whether a practical hash function is
“good enough” to instantiate a random oracle.

Pros

I A random-oracle model proof is better than no proof at all.

I Many efficient schemes (especially for public-key crypto) for only have
random-oracle proofs.

I No history of successful real-world attacks against schemes with
random-oracle security proofs.

I If such a scheme were attacked successfully, it should still be fixable by
using a better hash function.

17

Probability of collision / birthday problem

Throw b balls into n bins, selecting each bin uniformly at random.
With what probability do at least two balls end up in the same bin?

number of balls thrown into 10 40 bins
10 0 10 10 10 20 10 30 10 40

co
lli

si
on

 p
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

upper bound
lower bound

number of balls thrown into 10 40 bins
10 0 10 10 10 20 10 30 10 40

co
lli

si
on

 p
ro

ba
bi

lit
y

10 -40

10 -30

10 -20

10 -10

10 0

upper bound
lower bound

Remember: for large n the collision probability

I is near 1 for b�
√
n

I is near 0 for b�
√
n, growing roughly proportional to b2

n

Expected number of balls thrown before first collision:
√

π
2
n (for n→∞)

No simple, efficient, and exact formula for collision probability, but good approximations:
http://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf

18

http://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf

“Birthday attacks”

If a hash function outputs `-bit words, an attacker needs to try only

different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible =⇒ use hash function
that outputs ` = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ` may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each =⇒ 26 pairs of phrases.

With a 64-bit hash over an entire letter, we need only such

sentences for a good chance to find a collision in steps.

19

“Birthday attacks”

If a hash function outputs `-bit words, an attacker needs to try only

2`/2 different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible =⇒ use hash function
that outputs ` = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ` may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each =⇒ 26 pairs of phrases.

With a 64-bit hash over an entire letter, we need only such

sentences for a good chance to find a collision in steps.

19

“Birthday attacks”

If a hash function outputs `-bit words, an attacker needs to try only

2`/2 different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible =⇒ use hash function
that outputs ` = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ` may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each =⇒ 26 pairs of phrases.

With a 64-bit hash over an entire letter, we need only such

sentences for a good chance to find a collision in steps.

19

“Birthday attacks”

If a hash function outputs `-bit words, an attacker needs to try only

2`/2 different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible =⇒ use hash function
that outputs ` = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ` may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each =⇒ 26 pairs of phrases.

With a 64-bit hash over an entire letter, we need only such

sentences for a good chance to find a collision in steps.
19

“Birthday attacks”

If a hash function outputs `-bit words, an attacker needs to try only

2`/2 different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible =⇒ use hash function
that outputs ` = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ` may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each =⇒ 26 pairs of phrases.

With a 64-bit hash over an entire letter, we need only 11 such

sentences for a good chance to find a collision in steps.
19

“Birthday attacks”

If a hash function outputs `-bit words, an attacker needs to try only

2`/2 different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible =⇒ use hash function
that outputs ` = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ` may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each =⇒ 26 pairs of phrases.

With a 64-bit hash over an entire letter, we need only 11 such

sentences for a good chance to find a collision in 234 steps.
19

Low-memory collision search

A normal search for an `-bit collision uses O(2`/2) memory and time.

x0

Algorithm for finding a
collision with O(1) memory
and O(2`/2) time:

Input: H : {0, 1}∗ → {0, 1}`
Output: x 6= x′ with H(x) = H ′(x)

x0 ← {0, 1}`+1

x′ := x := x0

i := 0
loop

i := i + 1
x := H(x) // x = Hi(x0)
x′ := H(H(x′)) // x′ = H2i(x0)

until x = x′

x′ := x, x := x0

for j = 1, 2, . . . , i
if H(x) = H(x′) return (x, x′)
x := H(x) // x = Hj(x0)
x′ := H(x′) // x′ = Hi+j(x0)

Basic idea:

I Tortoise x goes at most once
round the cycle, hare x′ at
least once

I loop 1: ends when x′

overtakes x for the first time
⇒ x′ now i steps ahead of x
⇒ i is now an integer
multiple of the cycle length

I loop 2: x back at start, x′ is i
steps ahead, same speed
⇒ meet at cycle entry point

20

Constructing meaningful collisions

Tortoise-hare algorithm gives no direct control over content of x, x′.

Solution:

Define a text generator function g : {0, 1}` → {0, 1}∗, e.g.

g(0000) = Mallory is a good and honest employee

g(0001) = Mallory is a lazy and lying employee

g(0010) = Mallory is a good and honest worker

g(0011) = Mallory is a lazy and lying worker

g(0100) = Mallory is a good and loyal employee

g(0101) = Mallory is a lazy and malicious employee

· · ·
g(1111) = Mallory is a difficult and malicious worker

Then apply the tortoise-hare algorithm to H(x) = h(g(x)), if h is the
hash function for which a meaningful collision is required.

With probability 1
2 the resulting x, x′ (h(g(x)) = h(g(x′))) will differ in

the last bit ⇒ collision between two texts with different meanings.
21

Secure hash functions: standards

I MD5: ` = 128 (Rivest, 1991)
insecure, collisions were found in 1996/2004, collisions used in
real-world attacks (Flame, 2012) → avoid

http://www.ietf.org/rfc/rfc1321.txt

I SHA-1: ` = 160 (NSA, 1995)
widely used today (e.g., git), but 269-step algorithm to find collisions
found in 2005 → being phased out

I SHA-2: ` = 224, 256, 384, or 512
close relative of SHA-1, therefore long-term collision-resistance
questionable, very widely used standard

FIPS 180-3 US government secure hash standard,
http://csrc.nist.gov/publications/fips/

I SHA-3: Keccak wins 5-year NIST contest in October 2012
no length-extension attack, arbitrary-length output,
can also operate as PRNG, very different from SHA-1/2.
(other finalists: BLAKE, Grøstl, JH, Skein)

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://keccak.noekeon.org/

22

http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://keccak.noekeon.org/

SHA-1 structure

Merkle–Damg̊ard construction, block length n = 512 bits.

Compression function:
I Input = 160 bits =

five 32-bit registers A–E

I each block = 16 32-bit words
W0, . . . ,W15

I LFSR extends that sequence to
80 words: W16, . . . ,W79

I 80 rounds, each fed one Wi

I Round constant Ki and non-linear
function Fi change every 20 rounds.

I four 32-bit additions � and two
32-bit rotations per round, 2–5
32-bit Boolean operations for F .

I finally: 32-bit add round 0 input to
round 79 output (Davies–Meyer)

One round:

A B C D E

A B C D E

<<<
5

<<<
30

F

Wt

Kt

commons.wikimedia.org, CC SA-BY

23

Secure hash applications

Hash and MAC

A secure hash function can be combined with a fixed-length MAC to
provide a variable-length MAC Mack(H(m)). More formally:

Let Π = (Mac,Vrfy) be a MAC for messages of length `(n) and let
ΠH = (GenH , H) be a hash function with output length `(n). Then
define variable-length MAC Π′ = (Gen′,Mac′,Vrfy′) as:

I Gen′: Read security parameter 1n, choose uniform k ∈ {0, 1}n, run
s := GenH(1n) and return (k, s).

I Mac′: read key (k, s) and message m ∈ {0, 1}∗, return tag
Mack(Hs(m)).

I Vrfy′ : read key (k, s), message m ∈ {0, 1}∗, tag t, return
Vrfyk(Hs(m), t).

If Π offers existential unforgability and ΠH is collision resistant, then Π′

will offer existential unforgability.

Proof outline: If an adversary used Mac′ to get tags on a set Q of messages,
and then can produce a valid tag for m∗ 6∈ Q, then there are two cases:

I ∃m ∈ Q with Hs(m) = Hs(m∗) ⇒ Hs not collision resistant

I ∀m ∈ Q : Hs(m) 6= Hs(m∗) ⇒ Mac failed existential unforgability

24

Hash-based message authentication code

Initial idea: hash a message M concatenated with a key K to get

MACK(M) = h(K,M)

This construct is secure in the random oracle model (where h is a
random function). Is is also generally considered secure with fixed-length
m-bit messages M ∈ {0, 1}m or with some modern post-
Merkle–Damg̊ard hash functions, such as SHA-3.

Danger: If h uses the Merkle–Damg̊ard construction, an adversary can
call the compression function again on the MAC to add more blocks to
M , and obtain the MAC of a longer M ′ without knowing the key!

To prevent such a message-extension attack, variants like

MACK(M) = h(h(K,M))

or
MACK(M) = h(K,h(M))

could be used to terminate the iteration of the compression function in a
way that the adversary cannot continue. ⇒ HMAC

25

HMAC

HMAC is a standard technique widely used to form a
message-authentication code using a Merkle–Damg̊ard-style secure hash
function h, such as MD5, SHA-1 or SHA-256:

HMACK(x) = h(K ⊕ opad, h(K ⊕ ipad, x))

Fixed padding values ipad, opad extend the key to the input size of the
compression function, to permit precomputation of its first iteration.

x‖padding(n + |x|) = x1‖x2‖x3‖ . . . ‖xB−1‖xB

Cs Cs · · · Cs0n

Cs Cs0n HMACK(x)

K ⊕ ipad

K ⊕ opad

x1 xB

‖padding(2n)

http://www.ietf.org/rfc/rfc2104.txt

26

http://www.ietf.org/rfc/rfc2104.txt

Secure commitment

Proof of prior knowledge

You have today an idea that you write down in message M . You do not
want to publish M yet, but you want to be able to prove later that you
knew M already today. Initial idea: you publish h(M) today.

Danger: if the entropy of M is small (e.g., M is a simple choice, a PIN,
etc.), there is a high risk that your adversary can invert h successfully via
brute-force search.

Solution: publish h(N,M) where N is a random 128-bit string (like a
key).

When the time comes to reveal M , also reveal N .

You can also commit yourself to message M , without yet revealing it’s
content, by publishing h(N,M).

Applications: online auctions with sealed bids, online games where
several parties need to move simultaneously, etc.

27

Merkle tree

Problem: Untrusted file store, small trusted memory. Solution: hash tree.

Leaves contain hash values of files F0, . . . , Fk−1. Each inner node
contains the hash of its children. Only root h0 (and number k of files)
needs to be stored securely.

Advantages of tree (over naive alternative h0 = h(F0, . . . , Fk−1)):

I Update of a file Fi requires only O(log k) recalculations of hash
values along path from h(Fi) to root (not rereading every file).

I Verification of a file requires only reading O(log k) values in all
direct children of nodes in path to root (not rereading every node).

h0 = h(h1, h2)

h1 = h(h3, h4)

h3 = h(h7, h8)

h7 =
h(F0)

h8 =
h(F1)

h4 = h(h9, h10)

h9 =
h(F2)

h10 =
h(F3)

h2 = h(h5, h6)

h5 = h(h11, h12)

h11 =
h(F4)

h12 =
h(F5)

h6 = h(h13, h14)

h13 =
h(F6)

h14 =
h(F7)

28

Hash chains

A one-time password scheme:

R0 ← random

Ri+1 := h(Ri) (0 ≤ i < n)

or equivalently

Ri := h(h(h(. . . h(︸ ︷︷ ︸
i times

R0) . . .))) = hi(R0)

Store Rn in a host and give list Rn−1, Rn−2, . . . , R0 as one-time
passwords to user.

When user enters password Ri−1, its hash h(Ri−1) is compared with the
password Ri stored on the server.

If they match, the user is granted access and Ri−1 replaces Ri on the
server.

Leslie Lamport: Password authentication with insecure communication. CACM 24(11)770–772,
1981. http://doi.acm.org/10.1145/358790.358797

29

http://doi.acm.org/10.1145/358790.358797

Stream authentication

Alice sends to Bob a long stream of messages M1,M2, . . . ,Mn. Bob
wants to verify Alice’s signature on each packet immediately upon arrival,
but it is too expensive to sign each message individually.

Alice calculates

C1 = h(C2,M1)

C2 = h(C3,M2)

C3 = h(C4,M3)

· · ·
Cn−2 = h(Cn−1,Mn−2)

Cn−1 = h(Cn,Mn−1)

Cn = h(0,Mn)

and then sends to Bob the stream

C1,Sign(C1), (C2,M1), (C3,M2), . . . , (0,Mn).

Only the first check value is signed, all other packets are bound together
in a hash chain that is linked to that single signature.

30

Timed Efficient Stream Loss-tolerant Authentication

TESLA uses a hash chain to authenticate broadcast data, without any
need for a digital signature for each message.

Timed broadcast of data sequence M1,M2, . . . ,Mn:

I t0 : Sign(R0), R0 where R0 = h(R1)

I t1 : (MacR2 (M1),M1, R1) where R1 = h(R2)

I t2 : (MacR3 (M2),M2, R2) where R2 = h(R3)

I t3 : (MacR4 (M3),M3, R3) where R3 = h(R4)

I t4 : (MacR5 (M4),M4, R4) where R4 = h(R5)

I . . .

Each Ri is revealed at a pre-agreed time ti. The MAC for Mi can only
be verified after ti+1 when key Ri+1 is revealed.

By the time the MAC key is revealed, everyone has already received the
MAC, therefore the key can no longer be used to spoof the message.

31

Hashing passwords

Password storage

Avoid saving a user’s password P as plaintext. Saving the hash h(P)
instead helps to protect the passwords after theft of the database. Verify
password by comparing it’s hash with the database record.

Better: hinder dictionary attacks by adding a random salt value S and by
iterating the hash function C times to make it computationally more
expensive. The database record then stores (S, hC(P, S)) or similar.
PBKDF2 iterates HMAC C times for each output bit.

Typical values: S ∈ {0, 1}128, 103 < C < 107

Password-based key derivation

Passwords have low entropy per bit (e.g. only 96 graphical characters
per byte from keyboard) and therefore make bad cryptographic keys.

Preferably use a true random bit generator to generate cryptographic
keys. If you must derive keys from a password, encourage users to choose
passwords much longer than the key length, then hash the password to
generate a uniform key from it. (Dictionary-attack: see above)
Recommendation for password-based key derivation. NIST SP 800-132, December 2010.

32

Other applications of secure hash functions

I deduplication – quickly identify in a large collection of files
duplicates, without having to compare all pairs of files, just compare
the hash of each files content.

I file identification – in a peer-to-peer filesharing network or cluster
file system, identify each file by the hash of its content.

I distributed version control systems (git, mercurial, etc.) – name each
revision via a hash tree of all files in that revision, along with the
hash of the parent revision(s). This way, each revision name securely
identifies not only the full content, but its full revision history.

I key derivation – avoid using the same key K for more than one
purpose. Better use a secure hash function to derive multiple other
keys K1,K2, . . ., one for each application: Ki = h(K, i)

33

Key distribution problem

Key distribution problem

In a group of n participants, there are n(n− 1)/2 pairs who might want
to communicate at some point, requiring O(n2) keys to be exchanged
securely in advance.

This gets quickly unpractical if n� 2 and if participants regularly join
and leave the group.

P1 P2

P3

P4P5P6

P7

P8

TTP

P1 P2

P3

P4P5P6

P7

P8

Alternative 1: introduce an intermediary “trusted third party”

34

Key distribution problem

In a group of n participants, there are n(n− 1)/2 pairs who might want
to communicate at some point, requiring O(n2) keys to be exchanged
securely in advance.

This gets quickly unpractical if n� 2 and if participants regularly join
and leave the group.

P1 P2

P3

P4P5P6

P7

P8

TTP

P1 P2

P3

P4P5P6

P7

P8

Alternative 1: introduce an intermediary “trusted third party”

34

Trusted third party – key distribution centre

Needham–Schroeder protocol

Communal trusted server S shares key KPS with each participant P .

1 A informs S that it wants to communicate with B.

2 S generates KAB and replies to A with
EncKAS

(B,KAB ,EncKBS
(A,KAB))

Enc is a symmetric authenticated-encryption scheme

3 A checks name of B, stores KAB , and forwards the “ticket”
EncKBS

(A,KAB) to B

4 B also checks name of A and stores KAB .

5 A and B now share KAB and communicate via EncKAB
/DecKAB

.

S

AB

1

2

3

35

Kerberos

An extension of the Needham–Schroeder protocol is now widely used in
corporate computer networks between desktop computers and servers, in
the form of Kerberos and Microsoft’s Active Directory. KAS is generated
from A’s password (hash function).

Extensions include:

I timestamps and nonces to prevent replay attacks

I a “ticket-granting ticket” is issued and cached at the start of a
session, replacing the password for a limited time, allowing the
password to be instantly wiped from memory again.

I a pre-authentication step ensures that S does not reply with
anything encrypted under KAS unless the sender has demonstrated
knowledge of KAS , to hinder offline password guessing.

I mechanisms for forwarding and renewing tickets

I support for a federation of administrative domains (“realms”)

Problem: ticket message enables eavesdropper off-line dictionary attack.

36

Key distribution problem: other options

Alternative 2: hardware security modules + conditional access

1 A trusted third party generates a global key K and embeds it
securely in tamper-resistant hardware tokens (e.g., smartcard)

2 Every participant receives such a token, which also knows the
identity of its owner and that of any groups they might belong to.

3 Each token offers its holder authenticated encryption operations
EncK(·) and DecK(A, ·).

4 Each encrypted message EncK(A,M) contains the name of the
intended recipient A (or the name of a group to which A belongs).

5 A’s smartcard will only decrypt messages addressed this way to A.
Commonly used for “broadcast encryption”, e.g. pay-TV, navigation satellites.

Alternative 3: Public-key cryptography

I Find an encryption scheme where separate keys can be used for
encryption and decryption.

I Publish the encryption key: the “public key”

I Keep the decryption key: the “secret key”
Some form of trusted third party is usually still required to certify the correctness of the published
public keys, but it is no longer directly involved in establishing a secure connection.

37

Key distribution problem: other options

Alternative 2: hardware security modules + conditional access

1 A trusted third party generates a global key K and embeds it
securely in tamper-resistant hardware tokens (e.g., smartcard)

2 Every participant receives such a token, which also knows the
identity of its owner and that of any groups they might belong to.

3 Each token offers its holder authenticated encryption operations
EncK(·) and DecK(A, ·).

4 Each encrypted message EncK(A,M) contains the name of the
intended recipient A (or the name of a group to which A belongs).

5 A’s smartcard will only decrypt messages addressed this way to A.
Commonly used for “broadcast encryption”, e.g. pay-TV, navigation satellites.

Alternative 3: Public-key cryptography

I Find an encryption scheme where separate keys can be used for
encryption and decryption.

I Publish the encryption key: the “public key”

I Keep the decryption key: the “secret key”
Some form of trusted third party is usually still required to certify the correctness of the published
public keys, but it is no longer directly involved in establishing a secure connection.

37

Public-key encryption

A public-key encryption scheme is a tuple of PPT algorithms
(Gen,Enc,Dec) such that

I the key generation algorithm Gen receives a security parameter `
and outputs a pair of keys (PK ,SK)← Gen(1`), with key lengths
|PK | ≥ `, |SK | ≥ `;

I the encryption algorithm Enc maps a public key PK and a
plaintext message M ∈M to a ciphertext message
C ← EncPK (M);

I the decryption algorithm Dec maps a secret key SK and a
ciphertext C to a plaintext message M := DecSK (C), or outputs ⊥;

I for all `, (PK ,SK)← Gen(1`): DecSK (EncPK (M)) = M .

In practice, the message space M may depend on PK .

In some practical schemes, the condition DecSK (EncPK (M)) = M may fail with negligible
probability.

38

Security against chosen-plaintext attacks (CPA)
Public-key encryption scheme Π = (Gen, Enc, Dec)

Experiment/game PubKcpa
A,Π(`):

A

adversary

1`

b′b

1`

C

M0,M1

PK

challenger

C ← EncPK (Mb)

b ∈R {0, 1}
(PK , SK)← Gen(1`)

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key pair
(PK ,SK)← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A is given the public key PK

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncPK (Mb) and returns C to A
Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PubKcpa

A,Π(`) = 1

Note that unlike in PrivKcpa we do not need to provide A with any oracle access:
here A has access to the encryption key PK and can evaluate EncPK (·) itself.

39

Security against chosen-ciphertext attacks (CCA)
Public-key encryption scheme Π = (Gen, Enc, Dec)

Experiment/game PubKcca
A,Π(`):

A
Mt, . . . ,M2,M1

C1, C2, . . . , Ct

M0,M1

C

b ∈R {0, 1}
(PK , SK)← Gen(1`)

1`

b′

1`

b
. . . , Mt+2,Mt+1

M i ← DecSK (Ci)

C ← EncPK (Mb) adversaryCt+1 6= C, . . .

Setup:

I handling of `, b, PK , SK as before

Rules for the interaction:

1 The adversary A is given PK and oracle access to DecSK :
A outputs C1, gets DecSK (C1), outputs C2, gets DecSK (C2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncSK (Mb) and returns C to A
4 The adversary A continues to have oracle access to DecSK

but is not allowed to ask for DecSK (C).

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PubKcca
A,Π(`) = 1

40

Security against chosen-plaintext attacks (cont’d)

Definition: A public-key encryption scheme Π has indistinguishable
encryptions under a chosen-plaintext attack (“is CPA-secure”) if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PubKcpa
A,Π(`) = 1) ≤ 1

2
+ negl(`)

Definition: A public-key encryption scheme Π has indistinguishable
encryptions under a chosen-ciphertext attack (“is CCA-secure”) if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PubKcca
A,Π(`) = 1) ≤ 1

2
+ negl(`)

What about ciphertext integrity / authenticated encryption?

Since the adversary has access to the public encryption key PK , there is
no useful equivalent notion of authenticated encryption for a public-key
encryption scheme.

41

Number theory and
group theory

Number theory: integers, divisibility, primes, gcd

Set of integers: Z := {. . . ,−2,−1, 0, 1, 2, . . .} a, b ∈ Z
If there exists c ∈ Z such that ac = b, we say “a divides b” or “a | b”.

I if 0 < a then a is a “divisor” of b

I if 1 < a < b then a is a “factor” of b

I if a does not divide b, we write “a - b”

If integer p > 1 has no factors (only 1 and p as divisors), it is “prime”,
otherwise it is “composite”. Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

I every integer n > 1 has a unique prime factorization n =
∏

i p
ei
i ,

with primes pi and positive integers ei

The greatest common divisor gcd(a, b) is the largest c with c | a and c | b.

I examples: gcd(18, 12) = 6, gcd(15, 9) = 3, gcd(15, 8) = 1

I if gcd(a, b) = 1 we say a and b are “relatively prime”

I gcd(a, b) = gcd(b, a)

I if c|ab and gcd(a, c) = 1 then c|b
I if a|n and b|n and gcd(a, b) = 1 then ab|n

42

Number theory: integers, divisibility, primes, gcd

Set of integers: Z := {. . . ,−2,−1, 0, 1, 2, . . .} a, b ∈ Z
If there exists c ∈ Z such that ac = b, we say “a divides b” or “a | b”.

I if 0 < a then a is a “divisor” of b

I if 1 < a < b then a is a “factor” of b

I if a does not divide b, we write “a - b”

If integer p > 1 has no factors (only 1 and p as divisors), it is “prime”,
otherwise it is “composite”. Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

I every integer n > 1 has a unique prime factorization n =
∏

i p
ei
i ,

with primes pi and positive integers ei

The greatest common divisor gcd(a, b) is the largest c with c | a and c | b.

I examples: gcd(18, 12) = 6, gcd(15, 9) = 3, gcd(15, 8) = 1

I if gcd(a, b) = 1 we say a and b are “relatively prime”

I gcd(a, b) = gcd(b, a)

I if c|ab and gcd(a, c) = 1 then c|b
I if a|n and b|n and gcd(a, b) = 1 then ab|n

42

Number theory: integers, divisibility, primes, gcd

Set of integers: Z := {. . . ,−2,−1, 0, 1, 2, . . .} a, b ∈ Z
If there exists c ∈ Z such that ac = b, we say “a divides b” or “a | b”.

I if 0 < a then a is a “divisor” of b

I if 1 < a < b then a is a “factor” of b

I if a does not divide b, we write “a - b”

If integer p > 1 has no factors (only 1 and p as divisors), it is “prime”,
otherwise it is “composite”. Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

I every integer n > 1 has a unique prime factorization n =
∏

i p
ei
i ,

with primes pi and positive integers ei

The greatest common divisor gcd(a, b) is the largest c with c | a and c | b.

I examples: gcd(18, 12) = 6, gcd(15, 9) = 3, gcd(15, 8) = 1

I if gcd(a, b) = 1 we say a and b are “relatively prime”

I gcd(a, b) = gcd(b, a)

I if c|ab and gcd(a, c) = 1 then c|b
I if a|n and b|n and gcd(a, b) = 1 then ab|n

42

Integer division with remainder

For every integer a and positive integer b there exist unique integers q
and r with a = qb + r and 0 ≤ r < b.

The modulo operator performs integer division and outputs the
remainder:

a mod b = r ⇒ 0 ≤ r < b ∧ ∃q ∈ Z : a− qb = r

Examples: 7 mod 5 = 2, −1 mod 10 = 9

If
a mod n = b mod n

we say that “a and b are congruent modulo n”, and also write

a ≡ b (mod n)

This implies n|(a− b). Being congruent modulo n is an equivalence
relationship:

I reflexive: a ≡ a (mod n)
I symmetric: a ≡ b (mod n)⇒ b ≡ a (mod n)
I transitive: a ≡ b (mod n) ∧ b ≡ c (mod n)⇒ a ≡ c (mod n)

43

Integer division with remainder

For every integer a and positive integer b there exist unique integers q
and r with a = qb + r and 0 ≤ r < b.

The modulo operator performs integer division and outputs the
remainder:

a mod b = r ⇒ 0 ≤ r < b ∧ ∃q ∈ Z : a− qb = r

Examples: 7 mod 5 = 2, −1 mod 10 = 9

If
a mod n = b mod n

we say that “a and b are congruent modulo n”, and also write

a ≡ b (mod n)

This implies n|(a− b). Being congruent modulo n is an equivalence
relationship:

I reflexive: a ≡ a (mod n)
I symmetric: a ≡ b (mod n)⇒ b ≡ a (mod n)
I transitive: a ≡ b (mod n) ∧ b ≡ c (mod n)⇒ a ≡ c (mod n)

43

Modular arithmetic

Addition, subtraction, and multiplication work the same under
congruence modulo n:

If a ≡ a′ (mod n) and b ≡ b′ (mod n) then

a + b ≡ a′ + b′ (mod n)

a− b ≡ a′ − b′ (mod n)

ab ≡ a′b′ (mod n)

Associative, commutative and distributive laws also work the same:

a(b + c) ≡ ab + ac ≡ ca + ba (mod n)

When evaluating an expression that is reduced modulo n in the end, we
can also reduce any intermediate results. Example:

(a− bc) mod n =
(

(a mod n)−
(
(b mod n)(c mod n)

)
mod n

)
mod n

Reduction modulo n limits intermediate values to

Zn := {0, 1, 2, . . . , n− 1},
the “set of integers modulo n”.
Staying within Zn helps to limit register sizes and can speed up computation.

44

Euclid’s algorithm

gcd(21, 15)

45

Euclid’s algorithm

gcd(21, 15) = gcd(15, 21 mod 15)

45

Euclid’s algorithm

gcd(21, 15) = gcd(15, 6)

45

Euclid’s algorithm

gcd(21, 15) = gcd(15, 6) = gcd(6, 15 mod 6)

45

Euclid’s algorithm

gcd(21, 15) = gcd(15, 6) = gcd(6, 3)

45

Euclid’s algorithm

gcd(21, 15) = gcd(15, 6) = gcd(6, 3) = 3

45

Euclid’s algorithm

gcd(21, 15) = gcd(15, 6) = gcd(6, 3) = 3 = −2× 21 + 3× 15

45

Euclid’s algorithm

Euclidean algorithm: (WLOG a ≥ b > 0, since gcd(a, b) = gcd(b, a))

gcd(a, b) =

{
b, if b | a
gcd(b, a mod b), otherwise

For all positive integers a, b, there exist integers x and y such that
gcd(a, b) = ax + by.

Euclid’s extended algorithm also provides x and y: (WLOG a ≥ b > 0)

(gcd(a, b), x, y) :=

egcd(a, b) =


(b, 0, 1), if b | a
(d, y, x− yq), otherwise,

with (d, x, y) := egcd(b, r),

where a = qb + r, 0 ≤ r < b

46

Euclid’s algorithm

Euclidean algorithm: (WLOG a ≥ b > 0, since gcd(a, b) = gcd(b, a))

gcd(a, b) =

{
b, if b | a
gcd(b, a mod b), otherwise

For all positive integers a, b, there exist integers x and y such that
gcd(a, b) = ax + by.

Euclid’s extended algorithm also provides x and y: (WLOG a ≥ b > 0)

(gcd(a, b), x, y) :=

egcd(a, b) =


(b, 0, 1), if b | a
(d, y, x− yq), otherwise,

with (d, x, y) := egcd(b, r),

where a = qb + r, 0 ≤ r < b

46

Euclid’s algorithm

Euclidean algorithm: (WLOG a ≥ b > 0, since gcd(a, b) = gcd(b, a))

gcd(a, b) =

{
b, if b | a
gcd(b, a mod b), otherwise

For all positive integers a, b, there exist integers x and y such that
gcd(a, b) = ax + by.

Euclid’s extended algorithm also provides x and y: (WLOG a ≥ b > 0)

(gcd(a, b), x, y) :=

egcd(a, b) =


(b, 0, 1), if b | a
(d, y, x− yq), otherwise,

with (d, x, y) := egcd(b, r),

where a = qb + r, 0 ≤ r < b

46

Groups

A group (G, •) is a set G and an operator • : G×G→ G that have

closure: a • b ∈ G for all a, b ∈ G
associativity: a • (b • c) = (a • b) • c for all a, b, c ∈ G

neutral element: there exists an e ∈ G such that for all a ∈ G:
a • e = e • a = a

inverse element: for each a ∈ G there exists some b ∈ G such that
a • b = b • a = e

If a • b = b • a for all a, b ∈ G, the group is called commutative (or abelian).

Examples of abelian groups:

I (Z,+), (R,+), (R \ {0}, ·)
I (Zn,+) – set of integers modulo n with addition a + b := (a + b) mod n

I ({0, 1}n,⊕) where a1a2 . . . an ⊕ b1b2 . . . bn = c1c2 . . . cn with
(ai + bi) mod 2 = ci (for all 1 ≤ i ≤ n, ai, bi, ci ∈ {0, 1}) “bit-wise XOR”

If there is no inverse element for each element, (G, •) is a monoid instead.

Examples of monoids:

I (Z, ·) – set of integers under multiplication

I ({0, 1}∗, ||) – set of variable-length bit strings under concatenation

47

Groups

A group (G, •) is a set G and an operator • : G×G→ G that have

closure: a • b ∈ G for all a, b ∈ G
associativity: a • (b • c) = (a • b) • c for all a, b, c ∈ G

neutral element: there exists an e ∈ G such that for all a ∈ G:
a • e = e • a = a

inverse element: for each a ∈ G there exists some b ∈ G such that
a • b = b • a = e

If a • b = b • a for all a, b ∈ G, the group is called commutative (or abelian).

Examples of abelian groups:

I (Z,+), (R,+), (R \ {0}, ·)
I (Zn,+) – set of integers modulo n with addition a + b := (a + b) mod n

I ({0, 1}n,⊕) where a1a2 . . . an ⊕ b1b2 . . . bn = c1c2 . . . cn with
(ai + bi) mod 2 = ci (for all 1 ≤ i ≤ n, ai, bi, ci ∈ {0, 1}) “bit-wise XOR”

If there is no inverse element for each element, (G, •) is a monoid instead.

Examples of monoids:

I (Z, ·) – set of integers under multiplication

I ({0, 1}∗, ||) – set of variable-length bit strings under concatenation

47

Groups

A group (G, •) is a set G and an operator • : G×G→ G that have

closure: a • b ∈ G for all a, b ∈ G
associativity: a • (b • c) = (a • b) • c for all a, b, c ∈ G

neutral element: there exists an e ∈ G such that for all a ∈ G:
a • e = e • a = a

inverse element: for each a ∈ G there exists some b ∈ G such that
a • b = b • a = e

If a • b = b • a for all a, b ∈ G, the group is called commutative (or abelian).

Examples of abelian groups:

I (Z,+), (R,+), (R \ {0}, ·)
I (Zn,+) – set of integers modulo n with addition a + b := (a + b) mod n

I ({0, 1}n,⊕) where a1a2 . . . an ⊕ b1b2 . . . bn = c1c2 . . . cn with
(ai + bi) mod 2 = ci (for all 1 ≤ i ≤ n, ai, bi, ci ∈ {0, 1}) “bit-wise XOR”

If there is no inverse element for each element, (G, •) is a monoid instead.

Examples of monoids:

I (Z, ·) – set of integers under multiplication

I ({0, 1}∗, ||) – set of variable-length bit strings under concatenation

47

Groups

A group (G, •) is a set G and an operator • : G×G→ G that have

closure: a • b ∈ G for all a, b ∈ G
associativity: a • (b • c) = (a • b) • c for all a, b, c ∈ G

neutral element: there exists an e ∈ G such that for all a ∈ G:
a • e = e • a = a

inverse element: for each a ∈ G there exists some b ∈ G such that
a • b = b • a = e

If a • b = b • a for all a, b ∈ G, the group is called commutative (or abelian).

Examples of abelian groups:

I (Z,+), (R,+), (R \ {0}, ·)
I (Zn,+) – set of integers modulo n with addition a + b := (a + b) mod n

I ({0, 1}n,⊕) where a1a2 . . . an ⊕ b1b2 . . . bn = c1c2 . . . cn with
(ai + bi) mod 2 = ci (for all 1 ≤ i ≤ n, ai, bi, ci ∈ {0, 1}) “bit-wise XOR”

If there is no inverse element for each element, (G, •) is a monoid instead.

Examples of monoids:

I (Z, ·) – set of integers under multiplication

I ({0, 1}∗, ||) – set of variable-length bit strings under concatenation

47

Permutations and groups

Permutation groups

A set P of permutations over a finite set S forms a group under
concatenation if

I closure: for any pair of permutations g, h : S ↔ S in P their
concatenation g ◦ h : x 7→ g(h(x)) is also in P .

I neutral element: the identity function x 7→ x is in P

I inverse element: for each permutation g ∈ P , the inverse
permutation g−1 is also in P .

Note that function composition is associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h
The set of all permutations of a set S forms a permutation group called the “symmetric group” on
S. Non-trivial symmetric groups (|S| > 1) are not abelian.

Each group is isomorphic to a permutation group

Given a group (G, •), map each g ∈ G to a function fg : x 7→ x • g.
Since g−1 ∈ G, fg is a permutation, and the set of all fg for g ∈ G forms
a permutation group isomorphic to G. (“Cayley’s theorem”)

Encryption schemes are permutations.
Which groups can be used to form encryption schemes?

Permutations and groups

Permutation groups

A set P of permutations over a finite set S forms a group under
concatenation if

I closure: for any pair of permutations g, h : S ↔ S in P their
concatenation g ◦ h : x 7→ g(h(x)) is also in P .

I neutral element: the identity function x 7→ x is in P

I inverse element: for each permutation g ∈ P , the inverse
permutation g−1 is also in P .

Note that function composition is associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h
The set of all permutations of a set S forms a permutation group called the “symmetric group” on
S. Non-trivial symmetric groups (|S| > 1) are not abelian.

Each group is isomorphic to a permutation group

Given a group (G, •), map each g ∈ G to a function fg : x 7→ x • g.
Since g−1 ∈ G, fg is a permutation, and the set of all fg for g ∈ G forms
a permutation group isomorphic to G. (“Cayley’s theorem”)

Encryption schemes are permutations.
Which groups can be used to form encryption schemes?

Permutations and groups

Permutation groups

A set P of permutations over a finite set S forms a group under
concatenation if

I closure: for any pair of permutations g, h : S ↔ S in P their
concatenation g ◦ h : x 7→ g(h(x)) is also in P .

I neutral element: the identity function x 7→ x is in P

I inverse element: for each permutation g ∈ P , the inverse
permutation g−1 is also in P .

Note that function composition is associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h
The set of all permutations of a set S forms a permutation group called the “symmetric group” on
S. Non-trivial symmetric groups (|S| > 1) are not abelian.

Each group is isomorphic to a permutation group

Given a group (G, •), map each g ∈ G to a function fg : x 7→ x • g.
Since g−1 ∈ G, fg is a permutation, and the set of all fg for g ∈ G forms
a permutation group isomorphic to G. (“Cayley’s theorem”)

Encryption schemes are permutations.
Which groups can be used to form encryption schemes?

Subgroups

(H, •) is a subgroup of (G, •) if

I H is a subset of G (H ⊂ G)

I the operator • on H is the same as on G
I (H, •) is a group, that is

• for all a, b ∈ H we have a • b ∈ H

• each element of H has an inverse element in H

• the neutral element of (G, •) is also in H.

Examples of subgroups

I (nZ,+) with nZ := {ni|i ∈ Z} = {. . . ,−2n,−n, 0, n, 2n, . . .}
– the set of integer multiples of n is a subgroup of (Z,+)

I (R+, ·) – the set of positive real numbers is a subgroup of (R \ {0}, ·)
I (Q,+) is a subgroup of (R,+), which is a subgroup of (C,+)

I (Q \ {0}, ·) is a subgroup of (R \ {0}, ·), etc.

I ({0, 2, 4, 6},+) is a subgroup of (Z8,+)

48

Subgroups

(H, •) is a subgroup of (G, •) if

I H is a subset of G (H ⊂ G)

I the operator • on H is the same as on G
I (H, •) is a group, that is

• for all a, b ∈ H we have a • b ∈ H

• each element of H has an inverse element in H

• the neutral element of (G, •) is also in H.

Examples of subgroups

I (nZ,+) with nZ := {ni|i ∈ Z} = {. . . ,−2n,−n, 0, n, 2n, . . .}
– the set of integer multiples of n is a subgroup of (Z,+)

I (R+, ·) – the set of positive real numbers is a subgroup of (R \ {0}, ·)
I (Q,+) is a subgroup of (R,+), which is a subgroup of (C,+)

I (Q \ {0}, ·) is a subgroup of (R \ {0}, ·), etc.

I ({0, 2, 4, 6},+) is a subgroup of (Z8,+)
48

Notations used with groups

When the definition of the group operator is clear from the context, it is
often customary to use the symbols of the normal arithmetic addition or
multiplication operators (“+”, “×”, “·”, “ab”) for the group operation.

There are two commonly used alternative notations:

“Additive” group: think of group operator as a kind of “+”

I write 0 for the neutral element and −g for the inverse of g ∈ G.

I write g · i := g • g • · · · • g︸ ︷︷ ︸
i times

(g ∈ G, i ∈ Z)

“Multiplicative” group: think of group operator as a kind of “×”

I write 1 for the neutral element and g−1 for the inverse of g ∈ G.

I write gi := g • g • · · · • g︸ ︷︷ ︸
i times

(g ∈ G, i ∈ Z)

49

Rings

A ring (R,�,�) is a set R and two operators � : R× R→ R and
� : R× R→ R such that

I (R,�) is an abelian group

I (R,�) is a monoid

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

If also a� b = b� a, then we have a commutative ring.

Examples for rings:

I (Z[x],+, ·), where

Z[x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ Z, n ≥ 0

}
is the set of polynomials with variable x and coefficients from Z
– commutative

I Zn[x] – the set of polynomials with coefficients from Zn

I (Rn×n,+, ·) – n× n matrices over R – not commutative

50

Rings

A ring (R,�,�) is a set R and two operators � : R× R→ R and
� : R× R→ R such that

I (R,�) is an abelian group

I (R,�) is a monoid

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

If also a� b = b� a, then we have a commutative ring.

Examples for rings:

I (Z[x],+, ·), where

Z[x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ Z, n ≥ 0

}
is the set of polynomials with variable x and coefficients from Z
– commutative

I Zn[x] – the set of polynomials with coefficients from Zn

I (Rn×n,+, ·) – n× n matrices over R – not commutative

50

Rings

A ring (R,�,�) is a set R and two operators � : R× R→ R and
� : R× R→ R such that

I (R,�) is an abelian group

I (R,�) is a monoid

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

If also a� b = b� a, then we have a commutative ring.

Examples for rings:

I (Z[x],+, ·), where

Z[x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ Z, n ≥ 0

}
is the set of polynomials with variable x and coefficients from Z
– commutative

I Zn[x] – the set of polynomials with coefficients from Zn

I (Rn×n,+, ·) – n× n matrices over R – not commutative

50

Rings

A ring (R,�,�) is a set R and two operators � : R× R→ R and
� : R× R→ R such that

I (R,�) is an abelian group

I (R,�) is a monoid

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

If also a� b = b� a, then we have a commutative ring.

Examples for rings:

I (Z[x],+, ·), where

Z[x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ Z, n ≥ 0

}
is the set of polynomials with variable x and coefficients from Z
– commutative

I Zn[x] – the set of polynomials with coefficients from Zn

I (Rn×n,+, ·) – n× n matrices over R – not commutative

50

Rings

A ring (R,�,�) is a set R and two operators � : R× R→ R and
� : R× R→ R such that

I (R,�) is an abelian group

I (R,�) is a monoid

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

If also a� b = b� a, then we have a commutative ring.

Examples for rings:

I (Z[x],+, ·), where

Z[x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ Z, n ≥ 0

}
is the set of polynomials with variable x and coefficients from Z
– commutative

I Zn[x] – the set of polynomials with coefficients from Zn

I (Rn×n,+, ·) – n× n matrices over R – not commutative
50

Fields

A field (F,�,�) is a set F and two operators � : F× F→ F and
� : F× F→ F such that

I (F,�) is an abelian group with neutral element 0F

I (F \ {0F},�) is also an abelian group with neutral element 1F 6= 0F

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

In other words: a field is a commutative ring where each element except
for the neutral element of the addition has a multiplicative inverse.

Field means: division works, linear algebra works, solving equations, etc.

Examples for fields:

I (Q,+, ·)
I (R,+, ·)
I (C,+, ·)

51

Ring Zn

Set of integers modulo n is Zn := {0, 1, . . . , n− 1}

When we refer to (Zn,+) or (Zn, ·), we apply after each addition or
multiplication a reduction modulo n. (No need to write out “mod n”
each time.)

We add/subtract the integer multiple of n needed to get the result back into Zn.

(Zn,+) is an abelian group:

I neutral element of addition is 0

I the inverse element of a ∈ Zn is n− a ≡ −a (mod n)

(Zn, ·) is a monoid:

I neutral element of multiplication is 1

(Zn,+, ·), with its “mod n” operators, is a ring, which means
commutative, associative and distributive law works just like over Z.

From now on, when we refer to Zn, we usually imply that we work with
the commutative ring (Zn,+, ·).

Examples in Z5: 4 + 3 = 2, 4 · 2 = 3, 42 = 1
52

Division in Zn

In ring Zn, element a has a multiplicative inverse a−1 (with aa−1 = 1) if
and only if gcd(n, a) = 1.

In this case, the extended Euclidian algorithm gives us

nx + ay = 1

and since nx = 0 in Zn for all x, we have ay = 1.

Therefore y = a−1 is the inverse needed for dividing by a.

I We call the set of all elements in Zn that have a multiplicative
inverse the “multiplicative group” of Zn:

Z∗n := {a ∈ Zn | gcd(n, a) = 1}

I If p is prime, then (Z∗p, ·) with

Z∗p = {1, . . . , p− 1}

is a group, and (Zp,+, ·) is a (finite) field, that is every element
except 0 has a multiplicative inverse.

Example: Multiplicative inverses of Z∗7 :
1 · 1 = 1, 2 · 4 = 1, 3 · 5 = 1, 4 · 2 = 1, 5 · 3 = 1, 6 · 6 = 1

53

Finite fields (Galois fields)

(Zp,+, ·) is a finite field with p elements, where p is a prime number.
Also written as GF(p), the “Galois field of order p”.

We can also construct finite fields GF(pn) with pn elements:

I Elements: polynomials over variable x with degree less than n and
coefficients from the finite field Zp

I Modulus: select an irreducible polynomial T (x) ∈ Zp[x] of degree n

T (x) = cnx
n + · · ·+ c2x

2 + c1x + c0

where ci ∈ Zp for all 0 ≤ i ≤ n. An irreducible polynomial cannot
be factored into two other polynomials from Zp[x] \ {0, 1}.

I Addition: ⊕ is normal polynomial addition (i.e., pairwise addition of
the coefficients in Zp)

I Multiplication: ⊗ is normal polynomial multiplication, then divide
by T (x) and take the remainder (i.e., multiplication modulo T (x)).

Theorem: any finite field has pn elements (p prime, n > 0)
Theorem: all finite fields of the same size are isomorphic

54

GF(2n)

GF(2) is particularly easy to implement in hardware:

I addition = subtraction = XOR gate

I multiplication = AND gate

I division can only be by 1, which merely results in the first operand

Of particular practical interest in modern cryptography are larger finite
fields of the form GF(2n):

I Polynomials are represented as bit words, each coefficient = 1 bit.

I Addition/subtraction is implemented via bit-wise XOR instruction.

I Multiplication and division of binary polynomials is like binary
integer multiplication and division, but without carry-over bits. This
allows the circuit to be clocked much faster.

Recent Intel/AMD CPUs have added instruction PCLMULQDQ for
64× 64-bit carry-less multiplication. This helps to implement arithmetic
in GF(264) or GF(2128) more efficiently.

55

GF(28) example

The finite field GF(28) consists of the 256 polynomials of the form

c7x
7 + · · ·+ c2x

2 + c1x + c0 ci ∈ {0, 1}

each of which can be represented by the byte c7c6c5c4c3c2c1c0.

As modulus we chose the irreducible polynomial

T (x) = x8 + x4 + x3 + x + 1 or 1 0001 1011

Example operations:

I (x7 + x5 + x + 1)⊕ (x7 + x6 + 1) = x6 + x5 + x
or equivalently 1010 0011⊕ 1100 0001 = 0110 0010

I (x6 + x4 + 1)⊗T (x2 + 1) = [(x6 + x4 + 1)(x2 + 1)] mod T (x) =
(x8 + x4 + x2 + 1) mod (x8 + x4 + x3 + x + 1) =
(x8 + x4 + x2 + 1)	 (x8 + x4 + x3 + x + 1) = x3 + x2 + x
or equivalently
0101 0001⊗T 0000 0101 = 1 0001 0101⊕ 1 0001 1011 = 0000 1110

56

Finite groups

Let (G, •) be a group with a finite number of elements |G|.
Practical examples here: (Zn, +), (Z∗n, ·), (GF(2n),⊕), (GF(2n) \ {0},⊗)

Terminology:

I The order of a group G is its size |G|
I order of group element g in G is

ordG(g) = min{i > 0 | gi = 1}.

Related notion: the characteristic of
a ring is the order of 1 in its
additive group, i.e. the smallest i
with 1 + 1 + · · · + 1︸ ︷︷ ︸

i times

= 0.

Useful facts regarding any element g ∈ G in a group of order m = |G|:
I gm = 1, gi = gi mod m

I gi = gi mod ord(g)

I gx = gy ⇔ x ≡ y (mod ord(g))

I ord(g) | m “Lagrange’s theorem”

I if gcd(e,m) = 1 then g 7→ ge is a permutation, and g 7→ gd its
inverse (i.e., ged = g) if ed mod m = 1

Proofs: Katz/Lindell, sections 7.1 and 7.3

57

Cyclic groups

Let G be a finite (multiplicative) group of order m = |G|.

For g ∈ G consider the set

〈g〉 := {g0, g1, g2, . . .}

Note that |〈g〉| = ord(g) and 〈g〉 = {g0, g1, g2, . . . , gord(g)−1}.

Definitions:

I We call g a generator of G if 〈g〉 = G.

I We call G cyclic if it has a generator.

Useful facts:

I Every cyclic group of order m is isomorphic to (Zm,+). (gi 7→ i)

I 〈g〉 is a subgroup of G (subset, a group under the same operator)

I If |G| is prime, then G is cyclic and all g ∈ G \ {1} are generators.

Recall that ord(g) | |G|. We have ord(g) ∈ {1, |G|} if |G| is prime, which makes g either 1
or a generator.

Proofs: Katz/Lindell, sections 7.3

58

How to find a generator?

Let G be a cyclic (multiplicative) group of order m = |G|.
I If m is prime, any non-neutral element is a generator. Done.

But |Z∗p| = p− 1 is not prime (for p > 3)!

I Directly testing for |〈g〉| ?
= m is infeasible for crypto-sized m.

I Fast test: if m =
∏

i p
ei

i is composite, then g ∈ G is a generator if
and only if gm/pi 6= 1 for all i.

I Sampling a polynomial number of elements of G for the above test
will lead to a generator in polynomial time (of log2 m) with all but
negligible probability.

⇒ Make sure you pick a group of an order with known prime factors.

One possibility for Z∗p (commonly used):

I Chose a “strong prime” p = 2q + 1, where q is also prime
⇒ |Z∗p| = p− 1 = 2q has prime factors 2 and q.

59

(Zp,+) is a cyclic group

For every prime p every element g ∈ Zp \ {0} is a generator:

Zp = 〈g〉 = {g · i mod p | 0 ≤ i ≤ p− 1}

Note that this follows from the last fact on slide 58: Zp is of order p, which is prime.

Example in Z7:

(1 · 0, 1 · 1, 1 · 2, 1 · 2, 1 · 4, 1 · 5, 1 · 6) = (0, 1, 2, 3, 4, 5, 6)

(2 · 0, 2 · 1, 2 · 2, 2 · 2, 2 · 4, 2 · 5, 2 · 6) = (0, 2, 4, 6, 1, 3, 5)

(3 · 0, 3 · 1, 3 · 2, 3 · 2, 3 · 4, 3 · 5, 3 · 6) = (0, 3, 6, 2, 5, 1, 4)

(4 · 0, 4 · 1, 4 · 2, 4 · 2, 4 · 4, 4 · 5, 4 · 6) = (0, 4, 1, 5, 2, 6, 3)

(5 · 0, 5 · 1, 5 · 2, 5 · 2, 5 · 4, 5 · 5, 5 · 6) = (0, 5, 3, 1, 6, 4, 2)

(6 · 0, 6 · 1, 6 · 2, 6 · 2, 6 · 4, 6 · 5, 6 · 6) = (0, 6, 5, 4, 3, 2, 1)

I All the non-zero elements of Z7 are generators

I ord(0) = 1, ord(1) = ord(2) = ord(3) = ord(4) = ord(5) = ord(6) = 7

60

(Z∗p, ·) is a cyclic group

For every prime p there exists a generator g ∈ Z∗p such that

Z∗p = {gi mod p | 0 ≤ i ≤ p− 2}

Note that this does not follow from the last fact on slide 58: Z∗p is of order p− 1, which is usually
even, not prime.

Example in Z∗7 :
(10, 11, 12, 13, 14, 15) = (1, 1, 1, 1, 1, 1)

(20, 21, 22, 23, 24, 25) = (1, 2, 4, 1, 2, 4)

(30, 31, 32, 33, 34, 35) = (1, 3, 2, 6, 4, 5)

(40, 41, 42, 43, 44, 45) = (1, 4, 2, 1, 4, 2)

(50, 51, 52, 53, 54, 55) = (1, 5, 4, 6, 2, 3)

(60, 61, 62, 63, 64, 65) = (1, 6, 1, 6, 1, 6)

I 3 and 5 are generators of Z∗7
Fast generator test (p. 59), using |Z∗7 | = 6 = 2 · 3:

36/2 = 6, 36/3 = 2, 56/2 = 6, 56/3 = 4, all 6= 1.

I 1, 2, 4, 6 generate subgroups of Z∗7 : {1}, {1, 2, 4}, {1, 2, 4}, {1, 6}
I ord(1) = 1, ord(2) = 3,

ord(3) = 6, ord(4) = 3,
ord(5) = 6, ord(6) = 2

The order of g in Z∗p is the size of the subgroup 〈g〉.
Lagrange’s theorem: ordZ∗p (g) | p− 1 for all g ∈ Z∗p

61

Fermat’s and Euler’s theorem

Fermat’s little theorem: (1640)

p prime and gcd(a, p) = 1 ⇒ ap−1 mod p = 1

Recall from Lagrange’s theorem: for a ∈ Z∗p, ord(a)|(p− 1) since |Z∗p| = p− 1.

Euler’s phi function:

ϕ(n) = |Z∗n| = |{a ∈ Zn | gcd(n, a) = 1}|

I Example: ϕ(12) = |{1, 5, 7, 11}| = 4

I primes p, q:
ϕ(p) = p− 1

ϕ(pk) = pk−1(p− 1)

ϕ(pq) = (p− 1)(q − 1)

I gcd(a, b) = 1 ⇒ ϕ(ab) = ϕ(a)ϕ(b)

Euler’s theorem: (1763)

gcd(a, n) = 1 ⇔ aϕ(n) mod n = 1

I this implies that in Zn: ax = ax mod ϕ(n) for any a ∈ Zn, x ∈ Z
Recall from Lagrange’s theorem: for a ∈ Z∗n, ord(a)|ϕ(n) since |Z∗n| = ϕ(n).

62

Chinese remainder theorem

Definition: Let (G, •) and (H, ◦) be two groups. A function f : G→ H
is an isomorphism from G to H if

I f is a 1-to-1 mapping (bijection)

I f(g1 • g2) = f(g1) ◦ f(g2) for all g1, g2 ∈ G

Chinese remainder theorem:
For any p, q with gcd(p, q) = 1 and n = pq, the mapping

f : Zn ↔ Zp × Zq f(x) = (x mod p, x mod q)

is an isomorphism, both from Zn to Zp × Zq and from Z∗n to Z∗p × Z∗q .

Inverse: To get back from xp = x mod p and xq = x mod q to x, we first use Euclid’s extended
algorithm to find a, b such that ap + bq = 1, and then x = (xpbq + xqap) mod n.

Application: arithmetic operations on Zn can instead be done on both
Zp and Zq after this mapping, which may be faster.

Example: n = pq = 3× 5 = 15

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

63

Chinese remainder theorem

Definition: Let (G, •) and (H, ◦) be two groups. A function f : G→ H
is an isomorphism from G to H if

I f is a 1-to-1 mapping (bijection)

I f(g1 • g2) = f(g1) ◦ f(g2) for all g1, g2 ∈ G

Chinese remainder theorem:
For any p, q with gcd(p, q) = 1 and n = pq, the mapping

f : Zn ↔ Zp × Zq f(x) = (x mod p, x mod q)

is an isomorphism, both from Zn to Zp × Zq and from Z∗n to Z∗p × Z∗q .

Inverse: To get back from xp = x mod p and xq = x mod q to x, we first use Euclid’s extended
algorithm to find a, b such that ap + bq = 1, and then x = (xpbq + xqap) mod n.

Application: arithmetic operations on Zn can instead be done on both
Zp and Zq after this mapping, which may be faster.

Example: n = pq = 3× 5 = 15

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

63

Chinese remainder theorem

Definition: Let (G, •) and (H, ◦) be two groups. A function f : G→ H
is an isomorphism from G to H if

I f is a 1-to-1 mapping (bijection)

I f(g1 • g2) = f(g1) ◦ f(g2) for all g1, g2 ∈ G

Chinese remainder theorem:
For any p, q with gcd(p, q) = 1 and n = pq, the mapping

f : Zn ↔ Zp × Zq f(x) = (x mod p, x mod q)

is an isomorphism, both from Zn to Zp × Zq and from Z∗n to Z∗p × Z∗q .

Inverse: To get back from xp = x mod p and xq = x mod q to x, we first use Euclid’s extended
algorithm to find a, b such that ap + bq = 1, and then x = (xpbq + xqap) mod n.

Application: arithmetic operations on Zn can instead be done on both
Zp and Zq after this mapping, which may be faster.

Example: n = pq = 3× 5 = 15

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

63

Quadratic residues in (Z∗p, ·)
In Z∗p, the squaring of an element, x 7→ x2 is a 2-to-1 function:

y = x2 = (−x)2

1 2 3 4 5 6

1 2 3 4 5 6

Example in Z∗7:

(12, 22, 32, 42, 52, 62) = (1, 4, 2, 2, 4, 1)

If y is the square of a number in x ∈ Z∗p, that is if y has a square root in
Z∗p, we call y a “quadratic residue”.

Example: Z∗7 has 3 quadratic residues: {1, 2, 4}.
If p is an odd prime: Z∗p has (p− 1)/2 quadratic residues.
Zp would have one more: 0

Euler’s criterion:

c(p−1)/2 mod p = 1 ⇔ c is a quadratic residue in Z∗p

Example in Z7: (7− 1)/2 = 3, (13, 23, 33, 43, 53, 63) = (1, 1, 6, 1, 6, 6)

c(p−1)/2 is also called the Legendre symbol

64

Taking roots in Z∗p
If xe = c in Zp, then x is the “eth root of c”, or x = c1/e.

Case 1: gcd(e, p− 1) = 1
Find d with de = 1 in Zp−1 (Euclid’s extended), then c1/e = cd in Z∗p.

Proof: (cd)e = cde = cde mod ϕ(p) = cde mod (p−1) = c1 = c.

Case 2: e = 2 (taking square roots)
gcd(2, p− 1) 6= 1 if p odd prime ⇒ Euclid’s extended alg. no help here.

I If p mod 4 = 3 and c ∈ Z∗p is a quadratic residue:
√
c = c(p+1)/4

Proof:
[
c(p+1)/4

]2
= c(p+1)/2 = c

(p−1)/2︸ ︷︷ ︸
=1

·c = c.

I If p mod 4 = 1 this can also be done efficiently (details omitted).

Application: solve quadratic equations ax2 + bx + c = 0 in Zp

Solution: x =
−b±

√
b2 − 4ac

2a
Algorithms:

√
b2 − 4ac as above, (2a)−1 using Euclid’s extended

Taking roots in Z∗n: If n is composite, then we know how to test whether c1/e exists, and how to
compute it efficiently, only if we know the prime factors of n. Basic Idea: apply Chinese
Remainder Theorem, then apply above techniques for Z∗p.

65

Working in subgroups of Z∗p
How can we construct a cyclic finite group G where all non-neutral
elements are generators?

Recall that Z∗p has q = (p− 1)/2 quadratic residues, exactly half of its
elements.
Quadratic residue: an element that is the square of some other element.

Choose p to be a strong prime, that is where q is also prime.

Let G = {g2 | g ∈ Z∗p} be the set of quadratic residues of Z∗p. G with
operator “multiplication mod p” is a subgroup of Z∗p, with order |G| = q.

G has prime order |G| = q and ord(g)|q for all g ∈ G (Lagrange’s theorem):
⇒ ord(g) ∈ {1, q} ⇒ ord(g) = q for all g > 1 ⇒ for all g ∈ G \ {1} 〈g〉 = G.

If p is a strong prime, then each quadratic residue in Z∗p other than 1 is a
generator of the subgroup of quadratic residues of Z∗p.

Generate group(1`):
p ∈R {(` + 1)-bit strong primes}
q := (p− 1)/2
x ∈R Z∗p \ {−1, 1}
g := x2 mod p
return p, q, g

Example: p = 11, q = 5
g ∈ {22, 32, 42, 52} = {4, 9, 5, 3}
〈4〉 = {40, 41, 42, 43, 44} = {1, 4, 5, 9, 3}
〈9〉 = {90, 91, 92, 93, 94} = {1, 9, 4, 3, 5}
〈5〉 = {50, 51, 52, 53, 54} = {1, 5, 3, 4, 9}
〈3〉 = {30, 31, 32, 33, 34} = {1, 3, 9, 5, 4}

66

Modular exponentiation

In cyclic group (G, •) (e.g., G = Z∗p):

How do we calculate ge efficiently? (g ∈ G, e ∈ N)

Naive algorithm: ge = g • g • · · · • g︸ ︷︷ ︸
e times

Far too slow for crypto-size e (e.g., e ≈ 2256)!

Square and multiply algorithm:

Binary representation: e =
n∑

i=0

ei · 2i, n = blog2 ec, ei =
⌊

e
2i

⌋
mod 2

Computation:

g20

:= g, g2i

:=
(
g2i−1

)2

ge :=
n∏

i=0

(
g2i
)ei

Side-channel vulnerability: the if statement leaks the
binary representation of e. “Montgomery’s ladder”
is an alternative algorithm with fixed control flow.

Square and multiply(g, e):
a := g
b := 1
for i := 0 to n do

if be/2ic mod 2 = 1 then
b := b • a ← multiply

a := a • a ← square
return b

67

Discrete logarithm problem

Discrete logarithm problem

Let (G, •) be a given cyclic group of order q = |G| with given generator g
(G = {g0, g1, . . . , gq−1}). The “discrete logarithm problem (DLP)” is
finding for a given y ∈ G the number x ∈ Zq such that

gx = g • g • · · · • g︸ ︷︷ ︸
x times

= y

If (G, •) is clear from context, we can write x = logg y. For any x′ with gx′ = y, we have

x = x′ mod q. Discrete logarithms behave similar to normal logarithms: logg 1 = 0 (if 1 is the

neutral element of G), logg hr = (r · logg h) mod q, and logg h1h2 = (logg h1 + logg h2) mod q.

For cryptographic applications, we require groups with

I a probabilistic polynomial-time group-generation algorithm G(1`)
that outputs a description of G with dlog2 |G|e = `;

I a description that defines how each element of G is represented
uniquely as a bit pattern;

I efficient (polynomial time) algorithms for •, for picking an element
of G uniformly at random, and for testing whether a bit pattern
represents an element of G;

68

Hard discrete logarithm problems

The discrete logarithm experiment DLogG,A(`):

1 Run G(1`) to obtain (G, q, g), where G is a cyclic group of order q
(2`−1 < q ≤ 2`) and g is a generator of G

2 Choose uniform h ∈ G.

3 Give (G, q, g, h) to A, which outputs x ∈ Zq

4 Return 1 if gx = h, otherwise return 0

We say “the discrete-logarithm problem is hard relative to G” if for all
probabilistic polynomial-time algorithms A there exists a negligible
function negl, such that P(DLogG,A(`) = 1) ≤ negl(`).

69

Diffie–Hellman problems

Let (G, •) be a cyclic group of order q = |G| with generator g
(G = {g0, g1, . . . , gq−1}). Given elements h1, h2 ∈ G , define

DH(h1, h2) := glogg h1·logg h2

that is if gx1 = h1 and gx2 = h2, then DH(h1, h2) = gx1·x2 = hx2
1 = hx1

2 .

These two problems are related to the discrete logarithm problem:

I Computational Diffie–Hellman (CDH) problem: the adversary is
given uniformly chosen h1, h2 ∈ G and has to output DH(h1, h2).
The problem is hard if for all PPT A we have P(A(G, q, g, gx, gy) = gxy) ≤ negl(`).

I Decision Diffie–Hellman (CDH) problem: the adversary is given
h1, h2 ∈ G chosen uniformly at random, plus another value h′ ∈ G,
which is either equal to DH(h1, h2), or was chosen uniformly at
random, and has to decide which of the two cases applies.
The problem is hard if for all PPT A and uniform x, y, z ∈ G we have
|P(A(G, q, g, gx, gy, gz) = 1)− P(A(G, q, g, gx, gy, gxy) = 1)| ≤ negl(`).

If the discrete-logarithm problem is not hard for G, then neither will be
the CDH problem, and if the latter is not hard, neither will be the DDH
problem.

70

Diffie-Hellman key exchange

How can two parties achieve message confidentiality who have no prior
shared secret and no secure channel to exchange one?

Select a cyclic group G of order q and a generator g ∈ G, which can be
made public and fixed system wide. A generates x and B generates y,
both chosen uniformly at random out of {1, . . . , q − 1}. Then they
exchange two messages:

A→ B : gx

B → A : gy

Now both can form (gx)y = (gy)x = gxy and use a hash h(gxy) as a
shared private key (e.g. with an authenticated encryption scheme).

The eavesdropper faces the computational Diffie–Hellman problem of
determining gxy from gx, gy and g.

The DH key exchange is secure against a passive eavesdropper, but not against middleperson
attacks, where gx and gy are replaced by the attacker with other values.

W. Diffie, M.E. Hellman: New Directions in Cryptography. IEEE IT-22(6), 1976-11, pp 644–654.

71

Discrete logarithm algorithms

Several generic algorithms are known for solving the discrete logarithm
problem for any cyclic group G of order q:

I Pohlig–Hellman algorithm: if q is not prime, and has a known (or
easy to determine) factorization, then this algorithm reduces the
discrete-logarithm problem for G to discrete-logarithm problems for
prime-order subgroups of G.
⇒ the difficulty of finding the discrete logarithm in a group of order
q is no greater than that of finding it in a group of order q′, where q′

is the largest prime factor dividing q.

I Shank’s baby-step/giant-step algorithm: requires
O(
√
q · polylog(q)) time and O(

√
q) memory.

I Pollard’s rho algorithm: requires O(
√
q · polylog(q)) time and

O(1) memory.

⇒ choose G to have a prime order q, and make q large enough such
that no adversary can be expected to execute

√
q steps (e.g. q � 2200).

72

Discrete logarithm algorithms for Z∗p
The Index Calculus Algorithm computes discrete logarithms in the cyclic
group Z∗p. Unlike the generic algorithms, it has sub-exponential runtime

2O(
√

log p log log p)

Therefore, prime p bit-length in cyclic group Z∗p has to be much longer
than a symmetric key of equivalent attack cost. In contrast, the
bit-length of the order q of the subgroup used merely has to be doubled.

Elliptic-curve groups over Z∗p or GF(pn) exist that are not believed to be
vulnerable to the Index Calculus Algorithm.

Equivalent key lengths: (NIST)

RSA Discrete logarithm problem

private key factoring n = pq in Z∗p in EC
length modulus n modulus p order q order q

80 bits 1024 bits 1024 bits 160 bits 160 bits
112 bits 2048 bits 2048 bits 224 bits 224 bits
128 bits 3072 bits 3072 bits 256 bits 256 bits
192 bits 7680 bits 7680 bits 384 bits 384 bits
256 bits 15360 bits 15360 bits 512 bits 512 bits

73

Elliptic-curve groups

-2 -1 0 1 2
-2

-1

0

1

2

P1

P2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2

elliptic curve over R (A = −1, B = 1) elliptic curve over Z11 (A = −1, B = 1)

Elliptic curves are sets of 2-D coordinates (x, y) with

y2 = x3 + Ax + B

plus one additional “point at infinity” O.

Group operation P1 + P2: draw line through curve points P1, P2, intersect with
curve to get third point P3, then negate the y coordinate of P3 to get P1 + P2.
Neutral element: O – intersects any vertical line. Inverse: −(x, y) = (x,−y)
Curve compression: for any given x, encoding y requires only one bit 74

Elliptic-curve groups

-2 -1 0 1 2
-2

-1

0

1

2

P1

P2

P3

P1+P 2 3

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2

elliptic curve over R (A = −1, B = 1) elliptic curve over Z11 (A = −1, B = 1)

Elliptic curves are sets of 2-D coordinates (x, y) with

y2 = x3 + Ax + B

plus one additional “point at infinity” O.

Group operation P1 + P2: draw line through curve points P1, P2, intersect with
curve to get third point P3, then negate the y coordinate of P3 to get P1 + P2.
Neutral element: O – intersects any vertical line. Inverse: −(x, y) = (x,−y)
Curve compression: for any given x, encoding y requires only one bit 74

Elliptic-curve groups

-2 -1 0 1 2
-2

-1

0

1

2

P1

P2

P3

P1+P 2 3

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2

P3

P1+P 2 3

elliptic curve over R (A = −1, B = 1) elliptic curve over Z11 (A = −1, B = 1)

Elliptic curves are sets of 2-D coordinates (x, y) with

y2 = x3 + Ax + B

plus one additional “point at infinity” O.

Group operation P1 + P2: draw line through curve points P1, P2, intersect with
curve to get third point P3, then negate the y coordinate of P3 to get P1 + P2.
Neutral element: O – intersects any vertical line. Inverse: −(x, y) = (x,−y)
Curve compression: for any given x, encoding y requires only one bit 74

Elliptic-curve group operator

Elliptic curve: (“short Weierstrass equation”)

E(Zp, A,B) := {(x, y) | x, y ∈ Zp and y2 ≡ x3 + Ax + B (mod p)} ∪ {O}

where p > 5 prime, parameters A,B with 4A3 + 27B2 6≡ 0 (mod p).

Neutral element: P +O = O + P = P

For P1 = (x1, y1), P2 = (x2, y2), P1, P2 6= O, x1 6= x2:

m =
y2 − y1

x2 − x1
line slope

y = m · (x− x1) + y1 line equation(
m · (x− x1) + y1

)2
= x3 + Ax + B intersections

x3 = m2 − x1 − x2 third-point solution

y3 = m · (x3 − x1) + y1

(x1, y1) + (x2, y2) = (m2 − x1 − x2,m · (x1 − x3)− y1) (all of this mod p)

If x1 = x2 but y1 6= y2 then P1 = −P2 and P1 + P2 = O.
If P1 = P2 and y1 = 0 then P1 + P2 = 2P1 = O.
If P1 = P2 and y1 6= 0 then use tangent m = (3x2

1 + A)/2y1.

(x, y) = affine coordinates; projective coordinates (X,Y, Z) with X/Z = x, Y/Z = y add faster

75

Elliptic-curve discrete-logarithm problem

The elliptic-curve operation is traditionally written as an additive group,
so the “exponentiation” of the elliptic-curve discrete-logarithm problem
(ECDLP) becomes multiplication:

x ·G = G + G + · · ·+ G︸ ︷︷ ︸
x times

x ∈ Zq

So the square-and-multiply algorithm becomes double-and-add.

Many curve parameters and cyclic subgroups for which ECDLP is
believed to be hard have been proposed or standardised.
NIST FIPS 186-2, RFC 5639, SEC 2, Curve25519, etc.

Example: NIST P-256

p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff

q = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551

A = 3

B = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b

G = (0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,

0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)

Note: the NIST parameters have come under suspicion for potentially having been carefully
selected by the NSA, to embed a vulnerability. http://safecurves.cr.yp.to/rigid.html

76

http://safecurves.cr.yp.to/rigid.html

ElGamal encryption scheme

The DH key exchange requires two messages. This can be eliminated if
everyone publishes their gx as a public key in a sort of phonebook.
Assume ((G, ·), q, g) are fixed for all participants.

A publishes gx as her public key and keeps x as her secret key.
B generates for each message a new nonce y and then sends

B → A : gy, (gx)y ·M

where M ∈ G is the message that B sends to A in this asymmetric
encryption scheme. Then A calculates

[(gx)y ·M] · [(gy)q−x] = M

to decrypt M .

In practice, this scheme is rarely used because of the difficulty of fitting
M into G. Instead, B only sends gy. Then both parties calculate
h(A‖B‖gy‖gxy) and use that as the private session key for an efficient
block-cipher based authenticated encryption scheme that protects the
confidentiality and integrity of the bulk of the message. B digitally signs
gy to establish his identity.

77

Number theory: easy and difficult problems

Easy:

I given integer n, i and x ∈ Z∗n: calculate x−1 ∈ Z∗n or xi ∈ Z∗n
I given prime p and polynomial f(x) ∈ Zp[x]:

find x ∈ Zp with f(x) = 0
runtime grows linearly with the degree of the polynomial

Difficult:

I given safe prime p, generator g ∈ Z∗p (or large subgroup):
• given value a ∈ Z∗p: find x such that a = gx.
→ Discrete Logarithm Problem

• given values gx, gy ∈ Z∗p: find gxy.
→ Computational Diffie–Hellman Problem

• given values gx, gy, z ∈ Z∗p: tell whether z = gxy.
→ Decision Diffie–Hellman Problem

I given a random n = p · q, where p and q are `-bit primes (` ≥ 1024):

• find integers p and q such that n = p · q in N
→ Factoring Problem

• given a polynomial f(x) of degree > 1:
find x ∈ Zn such that f(x) = 0 in Zn

78

RSA trapdoor permutation

“Textbook” RSA encryption

Key generation
I Choose random prime numbers p and q (each ≈ 1024 bits long)

I n := pq (≈ 2048 bits = key length) ϕ(n) = (p− 1)(q − 1)

I pick integer values e, d such that: ed mod ϕ(n) = 1

I public key PK := (n, e)

I secret key SK := (n, d)

Encryption
I input plaintext M ∈ Z∗n, public key (n, e)

I C := Me mod n

Decryption
I input ciphertext C ∈ Z∗n, secret key (n, d)

I M := Cd mod n

In Zn: (Me)d = Med = Med mod ϕ(n) = M1 = M .

Common implementation tricks to speed up computation:
I Choose small e with low Hamming weight (e.g., 3, 17, 216 + 1) for faster modular encryption
I Preserve factors of n in SK = (p, q, d), decryption in both Zp and Zq , use Chinese

remainder theorem to recover result in Zn.
79

“Textbook” RSA is not secure

There are significant security problems with a naive application of the
basic “textbook” RSA encryption function C := P e mod n:

I deterministic encryption: cannot be CPA secure

I malleability:

• adversary intercepts C and replaces it with C′ := Xe · C

• recipient decrypts M ′ = DecSK (C′) = X ·M mod n

I chosen-ciphertext attack recovers plaintext:

• adversary intercepts C and replaces it with C′ := Re · C mod n

• decryption oracle provides M ′ = DecSK (C′) = R ·M mod n

• adversary recovers M = M ′ ·R−1 mod n

I Small value of M (e.g., 128-bit AES key), small exponent e = 3:

• if Me < n then C = Me mod n = Me and then M = 3
√
C can be

calculated efficiently in Z (no modular arithmetic!)

I many other attacks exist . . .
80

Trapdoor permutations

A trapdoor permutation is a tuple of polynomial-time algorithms
(Gen, F, F−1) such that

I the key generation algorithm Gen receives a security parameter `
and outputs a pair of keys (PK ,SK)← Gen(1`), with key lengths
|PK | ≥ `, |SK | ≥ `;

I the sampling function F maps a public key PK and a value x ∈ X
to a value y := FPK (x) ∈ X ;

I the inverting function F−1 maps a secret key SK and a value
y ∈ X to a value x := F−1

SK (y) ∈ X ;

I for all `, (PK ,SK)← Gen(1`), x ∈ X : F−1
SK (FPK (x)) = x.

In practice, the domain X may depend on PK .

This looks almost like the definition of a public-key encryption scheme,
the difference being

I F is deterministic;

I the associated security definition.
81

Secure trapdoor permutations
Trapdoor permutation: Π = (Gen, F, F−1)

Experiment/game TDInvA,Π(`):

A

adversary x′x

1`

challenger

PK , y

(PK , SK)← Gen(1`)

x ∈R X
y := FPK (x)

1 The challenger generates a key pair (PK ,SK)← Gen(1`) and a
random value x ∈R X from the domain of FPK .

2 The adversary A is given inputs PK and y := FPK (x).

3 Finally, A outputs x′.

If x′ = x then A has succeeded: TDInvA,Π(`) = 1.

A trapdoor permutation Π is secure if for all probabilistic polynomial time
adversaries A the probability of success P(TDInvA,Π(`) = 1) is negligible.

While the definition of a trapdoor permutation resembles that of a public-key encryption scheme,
its security definition does not provide the adversary any control over the input (plaintext).

82

Public-key encryption scheme from trapdoor permutation

Trapdoor permutation: ΠTD = (GenTD, F, F
−1) with FPK : X ↔ X

Authentic. encrypt. scheme: ΠAE = (GenAE,Enc,Dec), key space K
Secure hash function h : X → K

We define the private-key encryption scheme Π = (Gen′,Enc′,Dec′):

I Gen′: output key pair (PK ,SK)← GenTD(1`)

I Enc′: on input of plaintext message M , generate random x ∈R X ,
y = F (x), K = h(x), C ← EncK(M), output ciphertext (y, C);

I Dec′: on input of ciphertext message C = (y, C), recover
K = h(F−1(y)), output DecK(C)

Encrypted message: F (x),Ench(x)(M)

The trapdoor permutation is only used to communicate a “session key” h(x), the actual message
is protected by a symmetric authenticated encryption scheme. The adversary A in the PubKcca

A,Π′
game has no influence over the input of F .

If hash function h is replaced with a “random oracle” (something that
just picks a random output value for each input from X), the resulting
public-key encryption scheme Π′ is CCA secure.

83

Using RSA as a CCA-secure encryption scheme

Solution 1: use only as trapdoor function to build encryption scheme

I Pick random value x ∈ Z∗n
I Ciphertext is (xe mod n,Ench(x)(M)), where Enc is from an

authenticated encryption scheme

Solution 2: Optimal Asymmetric Encryption Padding

Make M (with zero padding) the left half,
and a random string R the right half, of the
input of a two-round Feistel cipher, using a
secure hash function as the round function.

Interpret the result (X,Y) as an integer
M ′.

Then calculate C := M ′
e

mod n.

PKCS #1 v2.0

Wikipedia/Ozga

84

http://www.rsa.com/rsalabs/node.asp?id=2125

Practical pitfalls with implementing RSA

I low entropy of random-number generator seed when generating p
and q (e.g. in embedded devices):

• take public RSA modulus n1 and n2 from two devices

• test gcd(n1, n2)
?
= 1 ⇒ if no, n1 and n2 share this number as a

common factor

• February 2012 experiments: worked for many public HTTPS keys

Lenstra et al.: Public keys, CRYPTO 2012
Heninger et al.: Mining your Ps and Qs, USENIX Security 2012.

85

http://link.springer.com/chapter/10.1007/978-3-642-32009-5_37
https://factorable.net/paper.html

Digital signatures

One-time signatures

A simple digital signature scheme can be built using a one-way function h
(e.g., secure hash function):

Secret key: 2n random bit strings Ri,j (i ∈ {0, 1}, 1 ≤ j ≤ n)

Public key: 2n bit strings h(Ri,j)

Signature: (Rb1,1, Rb2,2, . . . , Rbn,n), where h(M) = b1b2 . . . bn

86

Digital Signature Algorithm (DSA)

Let (G, q, g) be system-wide choices of a cyclic group G of order q with
generator g. In addition, we need to functions H : {0, 1}∗ → Zq and
F : G→ Zq where H must be collision resistant.
Both H and F are random oracles in security proofs, but common F not even preimage resistant.

Key generation: uniform secret key x ∈ Zq, then public key y := gx ∈ G.

Signing: On input of a secret key x ∈ Zq and a message m ∈ {0, 1}∗, first
choose (for each message!) uniformly at random k ∈ Z∗q and set r := F (gk).
Then solve the linear equation

k · s− x · r ≡ H(m) (mod q) (1)

for s := k−1 · (H(m) + xr) mod q. If r = 0 or s = 0, restart with a fresh k,
otherwise output Signx(m)← (r, s).

Verification: On input of public key y, message m, and signature (r, s), verify
equation (1) after both sides have been turned into exponents of g:

gks/gxr = gH(m) (2)

(gk)s = gH(m)yr (3)

gk = gH(m)s−1

yrs
−1

(4)

=⇒ actually verify: r
?
= F

(
gH(m)s−1

yrs
−1)

(5)

87

DSA variants

ElGamal signature scheme

The DSA idea was originally proposed by ElGamal with G = Z∗p,
ord(g) = q = p− 1 and F (x) = x.
Unless the p and g are chosen more carefully, ElGamal signatures can be vulnerable to forgery:
D. Bleichenbacher: Generating ElGamal signatures without knowing the secret key.
EUROCRYPT ’96. http://www.springerlink.com/link.asp?id=xbwmv0b564gwlq7a

NIST DSA

In 1993, the US government standardized the Digital Signature
Algorithm, a modification of the ElGamal signature scheme where

I G is a prime-order subgroup of Z∗p
I prime number p (1024 bits), prime number q (160 bits) divides p− 1

I g = h(p−1)/q mod p, with 1 < h < p− 1 so that g > 1 (e.g., h = 2)

I H is SHA-1

I F (x) = x mod q

Generate key: random 0 < x < q, y := gx mod p.
Signature (r, s) := Signx(m): random 0 < k < q,
r := (gk mod p) mod q, s := (k−1(H(m) + x · r)) mod q
Later versions of the DSA standard FIPS 186 added larger values for (p, q, g), as well as ECDSA,
where G is one of several elliptic-curve groups over Zp or GF(2n) and F ((x, y)) = x mod q.

88

http://www.springerlink.com/link.asp?id=xbwmv0b564gwlq7a

Proper generation of k is important

DSA fails catastrophically if the adversary can ever guess k:

s ≡ k−1 · (H(m) + xr) ⇒ x ≡ (k · s−H(m)) · r−1 (mod q)

All that is needed for k to leak is two messages m 6= m′ signed with the
same k = k′ (easily recognized from r = r′ = F (gk)):

s ≡ k−1 · (H(m) + xr)

s′ ≡ k−1 · (H(m′) + xr)

s− s′ ≡ k−1 · (H(m)−H(m′))

k ≡
(
H(m)−H(m′)

)
(s− s′

)−1
(mod q)

Sony used a fixed k in firmware signatures for their PlayStation 3
(fail0verflow, 27th Chaos Communication Conf., Berlin 2010).

Without a good random-bit generator to generate k, use e.g.
k := SHA-3(x‖m) mod q (with hash output longer than q).

Public-key infrastructure I

Public key encryption and signature algorithms allow the establishment of
confidential and authenticated communication links with the owners of
public/private key pairs.

Public keys still need to be reliably associated with identities of owners.
In the absence of a personal exchange of public keys, this can be
mediated via a trusted third party. Such a certification authority C issues
a digitally signed public key certificate

CertC(A) = {A,KA, T, L}K−1
C

in which C confirms that the public key KA belongs to A starting at
time T and that this confirmation is valid for the time interval L, and all
this is digitally signed with C’s private signing key K−1

C .

Anyone who knows C’s public key KC from a trustworthy source can use
it to verify the certificate CertC(A) and obtain a trustworthy copy of A’s
key KA this way.

89

Public-key infrastructure II

We can use the operator • to describe the extraction of A’s public key
KA from a certificate CertC(A) with the certification authority public
key KC :

KC • CertC(A) =

{
KA if certificate valid
failure otherwise

The • operation involves not only the verification of the certificate
signature, but also the validity time and other restrictions specified in the
signature. For instance, a certificate issued by C might contain a
reference to an online certificate revocation list published by C, which
lists all public keys that might have become compromised (e.g., the
smartcard containing K−1

A was stolen or the server storing K−1
A was

broken into) and whose certificates have not yet expired.

90

Public-key infrastructure III

Public keys can also be verified via several trusted intermediaries in a
certificate chain:

KC1 • CertC1 (C2) • CertC2 (C3) • · · · • CertCn−1 (Cn) • CertCn
(B) = KB

A has received directly a trustworthy copy of KC1 (which many
implementations store locally as a certificate CertA(C1) to minimise the
number of keys that must be kept in tamper-resistant storage).

Certification authorities can be made part of a hierarchical tree, in which
members of layer n verify the identity of members in layer n− 1 and
n + 1. For example layer 1 can be a national CA, layer 2 the computing
services of universities and layer 3 the system administrators of individual
departments.

Practical example: A personally receives KC1
from her local system administrator C1, who

confirmed the identity of the university’s computing service C2 in CertC1
(C2), who confirmed the

national network operator C3, who confirmed the IT department of B’s employer C3 who finally
confirms the identity of B. An online directory service allows A to retrieve all these certificates
(plus related certificate revocation lists) efficiently.

91

Outlook

Goals of this part of the course were

I introduce secure hash functions and some of their applications

I introduce some of the number-theory and abstract-algebra concepts
behind the main public-key encryption and signature schemes, in
particular the discrete logarithm problem, the Diffie-Hellman key
exchange and RSA encryption

Modern cryptography is still a young discipline (born in the early 1980s),
but well on its way from a collection of tricks to a discipline with solid
theoretical foundations.

Some important concepts that we did not touch here for time reasons:

I password-authenticated key exchange

I identity-based encryption

I side-channel and fault attacks

I application protocols: electronic voting, digital cash, etc.

I secure multi-party computation
92

	Secure hash functions
	Secure hash applications
	Key distribution problem
	Number theory and group theory
	Discrete logarithm problem
	RSA trapdoor permutation
	Digital signatures

