The IA Computer Science Registration Lecture

for

All Computer Scientists
NST students taking the CS option
PBS Students taking the CS option
Course Outline and Lectures
There are **two** IA CompSci examination papers at the end of the year:

- **Paper 1** – taken by everyone here
- **Paper 2** – **Only** for CST and **not** NST/PBS
Paper Topics

Paper 1

Foundations of CS
Object Oriented Programming
Algorithms
Numerical Methods

Paper 2

Digital Electronics
Discrete Maths
Operating Systems
Software and Interface Design
We do **not** use moodle for lecture material. Instead you will find everything on our website, www.cl.cam.ac.uk/teaching

- Syllabus
- Books
- Lecturer contact details
- Electronic copies of notes
- Electronic copies of examples sheets
- Errata
- Additional material from the lecturer
Lectures

Paper 1 (All)
- **MWF 10-11**
- **Arts School Room A, New Museums Site**

Paper 2 (CST)
- **MWF 12-1**
- **Arts School Room A (Mon) New Museums Site**
 - **Biffen Lecture Theatre (Wed/Fri) Downing Site**
Lectures

Paper 1 (All)
- MWF 10-11
- Arts School Room A, New Museums Site

Paper 2 (CST)
- MWF 12-1
- Arts School Room A (Mon) New Museums Site
 Biffen Lecture Theatre (Wed/Fri) Downing Site

NOTE: The original timetable email you received has the Paper 2 lecture rooms wrong: this slide is correct!
Recordings

• With modern phones it is tempting to start recording lectures for later perusal. But:

Recordings are forbidden
Unless you have explicit permission from the department and lecturer

• Applies to video AND audio

• Even with permission, you must only use it for private work and destroy it asap without sharing.
Optional Fundamentals Lectures

If you don't have any CompSci experience there are **OPTIONAL Computer Fundamentals** lectures on **Thursdays** that cover some basics.

Look out for emails with more details
Aside: Scientific Computing Course

• As part of the NST Maths course, there is a “Scientific Computing” course with three assessed exercises that count toward the maths option mark.

• The content is *not* arranged or given by this department.

• Information should have been provided in your NST practical allocation email yesterday.
Aside: Scientific Computing Course

- As part of the NST Maths course, there is a “Scientific Computing” course with three assessed exercises that count toward the maths option mark.
- The content is *not* arranged or given by this department.
- Information should have been provided in your NST practical allocation email yesterday.

If you do NST Maths you need to do the Scientific Computing course regardless of any CS option.
Practicals ("Ticks")
Practicals (“Ticks”)

Practicals are called **ticks**
Held on Thursdays
Upstairs in the Intel Laboratory

- ML
- Java
- Algorithms
- Digital Electronics

CST: 20 ticks
NST: 10 ticks
Just so we're Clear...

- Cambridge 'weeks' start on a Thursday
- So this is the start of week 1
- Your first practical is next Thursday, at the start of week 2 (more on this later)
- *No, I don't know why either.*
Ticking Process

1. **Do tick exercise in allocated session**
 - Sign up **online** for a ticking slot within your session
 - Print solution
 - Meet ticker and go through solution
 - OK

2. **Do tick elsewhere**
 - **Needs correction**

Ticker takes printout
The Tick Signup for ML/Java

- Online system for ticking slots
- First come, first served
- Sign up in advance or on the day
Signup Etiquette

- One slot per tick
- Don't sign up until you've completed the work!
- Don't take up multiple slots in advance. If you want to get multiple ticks one week, please sign up on the day
- Tickers try to keep to time but please be patient
Timings for ML/Java in Paper 1

- There is a nominal tick per week (tick one starts next Thursday, which is week 2)
- You must each tick within two weeks of the associated date
 - Tick 1 by end of week 4 session
 - Tick 2 by end of week 5 session
 - Tick 3 by end of week 6 session
 - Tick 4 by end of week 7 session
 - Etc.
Working Elsewhere

- You can do the work for your practicals anywhere
- Doing them here ensures you have access to demonstrators
- You still need to come here in person to get your ticks signed off each week
Working Elsewhere

- You can do the work for your practicals anywhere
- Doing them here ensures you have access to demonstrators
- You still need to come here in person to get your ticks signed off each week

This year there are so many of you that we don't have quite enough workstations upstairs!

→ Working at home helps ←

or

→ Bringing your own laptop helps ←
Running Ahead

- Practicals often align roughly to lectures
- But we give you all the ticks at once so you can race ahead if you like
- Beware: you might not learn as much this way. Ticks can be solved in different ways and you might miss the clever subtleties...
Starred Ticks

- Some of the ticks have an extension called a 'star' to challenge you if you find the core tick easy
- These do **NOT** count towards anything exam-wise and are strictly **OPTIONAL**
- But you get kudos for doing them so if you find the core tick easy, why not..?

Exercise 1 - Recursive Functions Continued

Note that although the following problems will not count towards a 'tick', it is a good idea to attempt them before next week's exercise.

Remark: The function `real` converts an integer to a real number. The function `floor` converts a real number `x` to the largest integer `i` such that `i ≤ x`. These functions will be useful in the examples below, which involve both integer and real calculations.

1. Write an ML function `sumt(n)` to sum the `n` terms
THURSDAYS

Group AO, AE
Hardware
10.30-13.00

Group B
ML/Java
16.00-18.00

Group BO, BE
Hardware
13.30-16.00

Group A
ML/Java
14.00-16.00

AO = Group A, Odd numbered weeks only
AE = Group A, Even numbered weeks only
Practical Allocations

- The group assignments are now available at http://www.cl.cam.ac.uk/teaching/1415/Registratn/
- That link will also be emailed to you
- Space is tight. If you want to swap you need to find someone to swap with and email rkh23@cam.ac.uk for permission
Some Study Tips for CS
A Physicist, Engineer and Computer Scientist are travelling in a car when it breaks down.

Physicist: *We must have exceeded the elasticity of some component. We must get to a garage.*

Engineer: *No! Something will have fallen out of alignment. Let me hammer the engine a bit.*

Computer Scientist: *Hmmm. First let's turn the engine off, close all windows, and restart.*
Repetition is Everywhere

- There are a lot of connections in your various CS courses
- You probably won't see them at first, esp. if you're new to the subject
- But when you come to revise, things often slot into place and you realise we present the same ideas many times in different ways
- So what may seem complex and impenetrable at first often ends up being obvious and easy (ish)
Programming is a skill

- Skills need practice
- It is a good idea to install the necessary software on your own machines and play around with programming in addition to the coursework
- We have guidelines on setting up various programming environments online
Lectures should be Active not Passive!

- We give you lecture notes and some of you will take this as a cue to just kick back and listen in lectures.
Lectures should be Active not Passive!

- We give you lecture notes and some of you will take this as a cue to just kick back and listen in lectures

5% chance of info retention

Longman, D. and Atkinson, R. College Learning and Study Skills. 1999. Wadsworth/Thomson Learning
Lectures should be Active not Passive!

- We give you lecture notes and some of you will take this as a cue to just kick back and listen in lectures.

5% chance of info retention

34% chance of info retention!

Longman, D. and Atkinson, R. College Learning and Study Skills. 1999. Wadsworth/Thomson Learning
Giving us Feedback
Feedback 1: SSCOF

- **Staff-Student Consultative Forum**
 - Allows you to give feedback to the department on anything from ticks to room temperature.
 - You elect a CST and an NST/PBS representative to this committee. They will periodically ask for your input.
Feedback 2: Course Feedback

- We use electronic questionnaires after each course to gather specific feedback and improve.
 - Please take the time to fill them out – we need statistically significant data!
 - The results are viewed by the Tripos Management Committee, the lecturer and (if they are fit to release) you!
Feedback 3: Urgent Feedback

- Sometimes there's something that needs fixing ASAP and can't wait for the feedback forms or SSCOF

- http://www.cl.cam.ac.uk/teaching/hotline.html

- This gives you an *(anonymous)* urgent feedback form that is sent immediately to the important people who can help
Professional Bodies

• Computer Science in the UK has two main professional bodies: the IET and the BCS

• Both have accredited our course so you are all eligible to join them. More details on the registration pages

- Can get chartered status
- Student: £32 for one year
- £52 for up to four years
- www.bcs.org/student

- Can get chartered status
- Student: £20 for one year
- £50 for up to four years
- www.theiet.org/join
What to do ASAP

1) Check you know **where** your lectures are
2) Check you know **when** your lectures are
3) Check your @cam email **regularly** for information
4) Check you can log onto the **MCS** (Managed Cluster Service)
 http://www.ucs.cam.ac.uk/desktop-services/mcs
5) Reread these slides, which are available at
 http://www.cl.cam.ac.uk/teaching/1415/Registratn/
6) **Consider installing poly/ML on your own computer**
 http://www.cl.cam.ac.uk/teaching/1415/ML/usingml.html