Quantum Computing Lecture 2

Review of Linear Algebra

Anuj Dawar

Vectors

Formally, the state of a qubit is a unit vector in \mathbb{C}^2 —the 2-dimensional complex *vector space*.

The vector $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ can be written as

$$\alpha |0\rangle + \beta |1\rangle$$

where,
$$|0\rangle=\left[\begin{array}{c}1\\0\end{array}\right]$$
 and $|1\rangle=\left[\begin{array}{c}0\\1\end{array}\right]$.

 $|\phi\rangle$ — a **ket**, Dirac notation for vectors.

Linear Algebra

The state space of a quantum system is described in terms of a *vector space*.

Vector spaces are the object of study in *Linear Algebra*.

In this lecture we review definitions from linear algebra that we need in the rest of the course.

We are mainly interested in vector spaces over the *complex number field* $-\mathbb{C}$.

We use the *Dirac notation*— $|v\rangle$, $|\phi\rangle$ (read as *ket*) for vectors.

Vector Spaces

A vector space over $\mathbb C$ is a set $\mathsf V$ with

- a commutative, associative addition operation + that has
 - an identity $\mathbf{0}$: $|\mathbf{v}\rangle + \mathbf{0} = |\mathbf{v}\rangle$
 - inverses: $|v\rangle + (-|v\rangle) = 0$
- an operation of multiplication by a scalar $\alpha \in \mathbb{C}$ such that:
 - $\alpha(\beta|v\rangle) = (\alpha\beta)|v\rangle$
 - $(\alpha + \beta)|v\rangle = \alpha|v\rangle + \beta|v\rangle$ and $\alpha(|u\rangle + |v\rangle) = \alpha|u\rangle + \alpha|v\rangle$
 - $1|v\rangle = |v\rangle$.

 \mathbb{C}^n is the vector space of *n*-tuples of complex numbers:

$$\begin{array}{c|c} \alpha_1 \\ \vdots \\ \alpha_n \end{array}$$

with addition
$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{bmatrix}$$
 and scalar multiplication $z \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} z\alpha_1 \\ \vdots \\ z\alpha_n \end{bmatrix}$

Basis

A *basis* of a vector space **V** is a *minimal* collection of vectors $|v_1\rangle, \ldots, |v_n\rangle$ such that every vector $|v\rangle \in \mathbf{V}$ can be expressed as a linear combination of these:

$$|\mathbf{v}\rangle = \alpha_1 |\mathbf{v}_1\rangle + \cdots + \alpha_n |\mathbf{v}_n\rangle.$$

n—the size of the basis—is uniquely determined by \mathbf{V} and is called the dimension of \mathbf{V} .

Given a basis, every vector $|v\rangle$ can be represented as an *n*-tuple of scalars.

Bases for \mathbb{C}^n

The standard basis for
$$\mathbb{C}^n$$
 is $\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$ (written $|0\rangle, \dots, |n-1\rangle$).

But other bases are possible: $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -i \end{bmatrix}$ is a basis for \mathbb{C}^2 .

We'll be interested in *orthonormal* bases. That is bases of vectors of unit length that are mutually orthogonal. Examples are $|0\rangle, |1\rangle$ and $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

Linear Operators

A linear operator A from one vector space V to another W is a function such that:

$$A(\alpha|u\rangle + \beta|v\rangle) = \alpha(A|u\rangle) + \beta(A|v\rangle)$$

If **V** is of dimension n and **W** is of dimension m, then the operator A can be represented as an $m \times n$ -matrix.

The matrix representation depends on the choice of bases for V and W.

Matrices

Given a choice of bases $|v_1\rangle, \ldots, |v_n\rangle$ and $|w_1\rangle, \ldots, |w_m\rangle$, let

$$A|v_j\rangle = \sum_{i=1}^m \alpha_{ij}|w_i\rangle$$

Then, the matrix representation of A is given by the entries α_{ij} .

Multiplying this matrix by the representation of a vector $|v\rangle$ in the basis $|v_1\rangle,\ldots,|v_n\rangle$ gives the representation of $A|v\rangle$ in the basis $|w_1\rangle,\ldots,|w_m\rangle$.

Examples

A 45° rotation of the real plane that takes $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ is represented, in the standard basis by the matrix

$$\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right]$$

The operator $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ does not correspond to a transformation of the real plane.

Inner Products

An inner product on $\mathbf V$ is an operation that associates to each pair $|u\rangle,|v\rangle$ of vectors a *complex number*

$$\langle u|v\rangle$$
.

The operation satisfies

- $\langle u|\alpha v + \beta w \rangle = \alpha \langle u|v \rangle + \beta \langle u|w \rangle$
- $\langle u|v\rangle = \langle v|u\rangle^*$ where the * denotes the complex conjugate.
- $\langle v|v\rangle \geq 0$ (note: $\langle v|v\rangle$ is a real number) and $\langle v|v\rangle = 0$ iff $|v\rangle = \mathbf{0}$.

Inner Product on \mathbb{C}^n

The standard inner product on \mathbb{C}^n is obtained by taking, for

$$|u\rangle = \sum_i u_i |i\rangle$$
 and $|v\rangle = \sum_i v_i |i\rangle$

$$\langle u|v\rangle=\sum_{i}u_{i}^{*}v_{i}$$

Note: $\langle u |$ is a *bra*, which together with $|v\rangle$ forms the *bra-ket* $\langle u | v \rangle$.

Norms

The *norm* of a vector $|v\rangle$ (written $|||v\rangle||$) is the *non-negative*, *real number*.

$$|||v\rangle|| = \sqrt{\langle v|v\rangle}.$$

A unit vector is a vector with norm 1.

Two vectors $|u\rangle$ and $|v\rangle$ are orthogonal if $\langle u|v\rangle = 0$.

An *orthonormal* basis for an inner product space **V** is a basis made up of *pairwise orthogonal, unit vectors*.

the term *Hilbert space* is also used for an inner product space

Outer Product

With a pair of vectors $|u\rangle \in \mathbf{U}$, $|v\rangle \in \mathbf{V}$ we associate a linear operator $|u\rangle\langle v|: \mathbf{V} \to \mathbf{U}$, known as the *outer product* of $|u\rangle$ and $|v\rangle$.

$$(|u\rangle\langle v|)|v'\rangle = \langle v|v'\rangle|u\rangle$$

 $|v\rangle\langle v|$ is the *projection* on the one-dimensional space generated by $|v\rangle$.

Any linear operator can be expressed as a linear combination of outer products:

$$A=\sum_{ij}A_{ij}|i\rangle\langle j|.$$

Eigenvalues

An *eigenvector* of a linear operator $A: \mathbf{V} \to \mathbf{V}$ is a non-zero vector $|v\rangle$ such that

$$A|v\rangle = \lambda|v\rangle$$

for some complex number λ

 λ is the *eigenvalue* corresponding to the eigenvector v.

The eigenvalues of A are obtained as solutions of the characteristic equation:

$$\det(A - \lambda I) = 0$$

Each operator has at least one eigenvalue.

Diagonal Representation

A linear operator (over an inner product space) A is said to be diagonalisable if

$$A = \sum_{i} \lambda_{i} |v_{i}\rangle\langle v_{i}|$$

where the $|v_i\rangle$ are an orthonormal set of eigenvectors of A with corresponding eigenvalues λ_i .

Equivalently, A can be written as a matrix

$$\left[\begin{array}{ccc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{array}\right]$$

in the basis $|v_1\rangle, \ldots, |v_n\rangle$ of its eigenvectors.

Adjoints

Associated with any linear operator A is its adjoint A^{\dagger} which satisfies

$$\langle v|Aw\rangle = \langle A^{\dagger}v|w\rangle$$

In terms of matrices, $A^{\dagger} = (A^*)^T$ where * denotes complex conjugation and T denotes transposition.

$$\begin{bmatrix} 1+i & 1-i \\ -1 & 1 \end{bmatrix}^{\dagger} = \begin{bmatrix} 1-i & -1 \\ 1+i & 1 \end{bmatrix}$$

Normal and Hermitian Operators

An operator A is said to be normal if

$$AA^{\dagger} = A^{\dagger}A$$

Fact: An operator is diagonalisable if, and only if, it is normal.

A is said to be Hermitian if $A = A^{\dagger}$

A normal operator is Hermitian if, and only if, it has real eigenvalues.

Unitary Operators

A linear operator A is unitary if

$$AA^{\dagger} = A^{\dagger}A = I$$

Unitary operators are normal and therefore diagonalisable.

Unitary operators are norm-preserving and invertible.

$$\langle Au|Av\rangle = \langle u|v\rangle$$

All eigenvalues of a unitary operator have modulus 1.

Tensor Products

If **U** is a vector space of dimension m and **V** one of dimension n then $U \otimes V$ is a space of dimension mn.

Writing $|uv\rangle$ for the vectors in $\mathbf{U} \otimes \mathbf{V}$:

- $|(u+u')v\rangle = |uv\rangle + |u'v\rangle$
- $|u(v + v')\rangle = |uv\rangle + |uv'\rangle$
- $z|uv\rangle = |(zu)v\rangle = |u(zv)\rangle$

Given linear operators $A: \mathbf{U} \to \mathbf{U}$ and $B: \mathbf{V} \to \mathbf{V}$, we can define an operator $A \otimes B$ on $\mathbf{U} \otimes \mathbf{V}$ by

$$(A \otimes B)|uv\rangle = |(Au), (Bv)\rangle$$

Tensor Products

In matrix terms,

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B & \cdots & A_{1m}B \\ A_{21}B & A_{22}B & \cdots & A_{2m}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \cdots & A_{mm}B \end{bmatrix}$$