Workbook 6

Introduction

Last week you applied some basic software design principles to your program. You used an
interface to provide abstraction, allowing several alternative storage implementations to be written and
easily substituted for one another. In addition, you used inheritance to share code between those
implementations. This week you are going build your own graphical interface with Java Swing in order
to make your program more accessible to other users.

Important

You may find Sun's Swing Tutorial helpful:
http://java.sun.com/docs/books/tutorial/uiswing/

Remember to check the course website regularly for announcements and errata:

http://www.cl.cam.ac.uk/teaching/current/ProgJava

Java Swing

Java Swing is a graphical user interface supported by the Java standard library which supports a vast
range of graphical components. Components include widgets such as buttons, menus and text boxes,
as well as containers which may contain (and control the layout) of any widgets or containers within
them. Because containers may themselves contain containers, a typical graphical interface in Swing
is built by recursively nesting containers and widgets. You will use this technique in this workbook to
layout a graphical interface for the Game of Life.

To create a new Swing application you will need to create a window to display your graphical
components. Awindow in Swing is created by creating an instance of JFr ane. Here is a simple example:

package uk.ac.cam your-crsid.tické;

i mport javax.sw ng. JFrane;
i mport javax.sw ng. JLabel ;

public class Hell oSwi ngWrl d extends JFrane {

Hel | oSwi ngWor I d() {
super("Hell o Swi ng"); /lcreate window & set title text
set Def aul t C oseQperati on(EXIT _ON CLOSE); //close button on wi ndow quits app.
JLabel text = new JLabel ("Hello Swing"); //create graphical text |abel
add(text); /lassociate "text" with w ndow
set Si ze(320, 240) ; //set size of w ndow

}

public static void main(String[] args) {
Hel | oSwi ngWorl d hello = new Hel | oSwi ngWorl d(); //create instance
hel | 0. set Vi si bl e(true); //display wi ndow to user

}
}

1. Type in Hel | oSwi ngWor | d, compile it and run it.

http://java.sun.com/docs/books/tutorial/uiswing/
http://www.cl.cam.ac.uk/teaching/current/ProgJava

Workbook 6

As you can see, writing a basic graphical interface is quite simple. The i nport statements tell Java
that the definitions of JFr ane and JLabel are inside the package j avax. swi ng. You might like to
look at the documentation for these widgets in the Java documentation.

In the example above, Hel | oSwi ngWor | d extends JFr ane to create a new window. The use of
inheritance used here, whilst optional, is convenient since it makes it easy to invoke the methods
set Def aul t Cl oseQper ati on, add, set Si ze and set Vi si bl e.

Aninstance of JLabel represents a string on the graphical interface; note however that the add method
must be called to attach the instance called t ext to the instance of Hel | oSwi ngWér | d created in the
constructor. The set Si ze operator configures the default size of the window when it is created, although
the user can change the size at run-time (try resizing the window yourself to see what happens). Finally,
set Vi si bl e is called to display the window to the user; if you forget to call set Vi si bl e with the
argument t r ue, your graphical interface will not be displayed and your program will terminate instead.

In order to create more complicated graphical interfaces, you will need to tell Swing how to layout the
elements in the window. In order to get a visual impression of the layout options, take a look at the layouts
described in the Swing tutorial: http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html. You
do not need to work through the tutorial now, although you might like to look at it if you get stuck or
you want to know more. There are eight layout types: Bor der Layout , BoxLayout , Car dLayout ,
Fl owLayout, G'i dBaglLayout, Gi dLayout , G- oupLayout and Spri ngLayout.

In order to create a graphical interface for the Game of Life, the screen should be divided up as shown in
Figure 1, “Layout of GUI for the Game of Life; the left shows the GUI, and the right shows the names of
the main interface containers”. Controlling the size of each of the components as the window is resized
is important: the window should make good use of the display area whatever the size of the window.
It is a bad idea to assume that the window is of a fixed size, since the size of screens varies between
computers, and some users may prefer the window to occupy only a portion of the desktop in order to
view multiple applications simultaneously. The decision of how best to use the space available in the
window is application specific.

Source Game State
® None| O File) Library (4* Submissions

Source Panel

Starting pattern . [1}

Glider (Richard Guy 1970)
Elinkers (Horton Conway 1970)

me
| |}
|
|||
|
Il
||
|
||

Octogon (Goodman/Taber 1971) n |
Elock+Eoat+Beehive (Unknown)
The Phoenix MIT group 1971)
Glider Gun €ill Gosper 1970)
Pi- heptomino (Unknown)

101 (Life lexicon)

1-2-3 (Life lexicon)

1-2-3-4 (Life lexicon)

Patterns Panel

4-8-12 diamond (Life lexicon)
< boats (Life lexicon)

Achim's pl44 (Life lexicon)
Achim's p16 (Life lexicon) -

Control

Zuumc'
Slepc
SpeedC

World Type O long ® array (aging

Control Panel

Figure 1. Layout of GUI for the Game of Life; the left shows the GUI,
and the right shows the names of the main interface containers

When resizing the graphical interface for the Game of Life, the main window should grow or shrink the
Game Panel depending on the space available; in contrast the size of the Options Panel should remain
fixed. The Options Panel (which contains the Source Panel, Pattern Panel, and Control Panel) should
take up only the space which is necessary to display the widgets within it. This kind of control over
resizing can be achieved using Bor der Layout . Below is an example program which demonstrates
how to use this layout type.

http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html

Workbook 6

package uk.ac.cam your-crsid.tick6;

i mport java. awt. BorderLayout ;
i mport java.awt. Col or;

i mport j avax.sw ng. JFrane;

i mport j avax.sw ng. JPanel ;

public class Guilife extends JFranme {
public CuilLife() {
super (" Col oured Boxes");
set Si ze(640, 480) ;
set Def aul t Ol oseQperati on(EXI T_ON _CLCSE) ;
set Layout (new Bor der Layout ());

JPanel optionsPanel = createQOptionsPanel ();
add(opti onsPanel , Bor der Layout . V\EST) ;

JPanel ganePanel = createGanePanel ();
add(ganePanel , Bor der Layout . CENTER) ;

}

private JPanel createOptionsPanel () {
[/ TODO

}

private JPanel createGanePanel () {
JPanel result = new JPanel ();
resul t. set Backgr ound(Col or. GREEN) ;
return result;

}

public static void main(String[] args) {
Cui Life gui = new GuilLife();
gui . set Visible(true);

}

}

2. Type in QGui Li f e and complete the method cr eat eOpt i onsPanel which should create a
new instance of JPanel , set the background colour to Col or . BLUE and return a reference to
the new instance of JPanel you created to the caller.

If you run the program Cui Li f e and resize the window, you should find that the green area (a
placeholder for the Game Panel) takes up all the additional space made available through expanding
the size of the window, and the size of the blue area (a placeholder for the Options Panel) remains fixed.
This is just the behaviour required for the graphical interface for the Game of Life. The window behaves
in this way because the behaviour of Bor der Layout is to resize the "center” panel in preference to
any other panels which might exist.

Nested components

In the previous section you created a window which used Bor der Layout to control the layout of the
window. We will now add further components to the Options Panel to hold the Source Panel, Pattern
Panel and Control Panel. Below is a program which, when completed, will create space for all the key
parts of our graphical interface.

Workbook 6

package uk.ac.cam your-crsid.tick6;

i mport java.awt.

i mport j avax.
i mport j avax.
i mport j avax.
i mport j avax.
i mport j avax.
i mport j avax.
i mport j avax.
i mport j avax.

public class

SW
SW
SW
SW
SW
SW
SW
SW

GQui

Bor der Layout ;

ng. bor der . Bor der;

ng. Bor der Fact orvy;

ng. Box;

ng. JConponent ;

ng. JFranme;

ng. JPanel ;

ng. JScr ol | Pane;

ng. bor der . Et chedBor der

Life extends JFranme {

public CuilLife() {

super ("CQui Life");

set Si ze(640, 480);

set Def aul t Gl oseQper ati on(EXI T_ON_CLGCSE)

set Layout (new Bor der Layout ());

JConponent optionsPanel = createOptionsPanel ();
add(opti onsPanel, BorderLayout.WEST);
JConponent ganePanel = createCGanmePanel ();

add(ganePanel

}

Bor der Layout . CENTER) ;

private JComponent createQptionsPanel () {
= Box. createVerti cal Box();
resul t.add(creat eSour cePanel ());

resul t.add(createPatternPanel ());

resul t.add(createControl Panel ());

Box result

return result;

}

private void addBorder (JConponent conponent, String title) {

Bor der etch
Border tb =

}

Bor der Fact ory. cr eat eEt chedBor der (Et chedBor der . LONERED) ;

Bor der Factory. createTit|l edBorder(etch,title);
conponent . set Border (thb);

private JComponent createGanmePanel () {

JPanel hold

er

= new JPanel ();

addBor der (hol der, Stri ngs. PANEL_GAVEVI EW ;

JPanel resu

It

= new JPanel ();

hol der. add(result);
return new JScrol | Pane(hol der);

}

private JComponent createSourcePanel () {

JPanel resu

It

= new JPanel ();

addBor der (result, Strings. PANEL_SOURCE)

return result;

}

private JComponent createPatternPanel () { /*TODO*/ }
private JComponent createControl Panel () { /*TODO*/ }

public static void main(String[] args) {

Gui Life gu

new Cui Life();

gui . set Visi bl e(true);

4}
}

Workbook 6

In the example program, the Options Panel is created as a container with a vertical BoxLayout layout;
such a component places all the components within itself vertically. The layout of widgets inside a
container such as the Options Panel is quite flexible in Swing. Widgets have three sets of dimensions:
a minimum size, a preferred size, and a maximum size. In the case of a vertical BoxLayout as used in
the Options Panel, Swing attempts to provide space for widgets at their preferred size. More information
on the resizing of widgets using a particular layout with Swing can be found in Sun's documentation for
the appropriate layout class.

In the example above, you may have noticed there is a new object called Stri ngs. This is in fact
another class in the same package as Gui Li f e which contains all of the text data used in the graphical
interface. It's a good idea to collect together all the strings used in the interface in one place so that
they are easy to modify; this is especially useful if you wish to update the application so that it supports
multiple languages. The contents of St ri ngs should be as follows:

package uk.ac.cam your-crsid.tické;

public class Strings {
public static final String PANEL_SCURCE = "Source";
public static final String PANEL_PATTERN = "Starting pattern”;
public static final String PANEL_CONTRCL = "Control";
public static final String PANEL_GAMEVI EW = "Ganme State";

}

3. Place the contents of St ri ngs as defined above into a suitable file and directory structure.
4. Replace the your copy of Gui Li f e with the new one provided in this section.

5. Complete the methods cr eat ePat t er nPanel , and cr eat eCont r ol Panel in Gui Life.
Your implementations should create a new instance of JPanel , add a border to the panel
using addBor der , and return a reference to the instance of JPanel which you created; you
should use a suitable field from St r i ngs for the border text. You might find reading the body
of cr eat eSour cePanel helpful.

6. Run your improved version of Gui Li f e. You should see that the screen is now split into four
areas, although the text associated with the etched borders will not be entirely visible for the
three panels in the left half of the screen. This is okay at the moment.

Source Panel

In the previous section, you created space for the four main elements of the final graphical display. In
this section you will complete the body of the Source Panel. The Source Panel will eventually allow the
user to select the source of the patterns for the initial state of the world. Possible sources could include
a file in the file system, or a URL. This week you will add support for four possible input methods on the
display, none of which will actually function! Next week you will implement the code to make them work.

In your application you will only ever have one source at a time, and therefore a user interface component
which only allows the user to select a single source is required. One such user interface component is
the Radio Button which provides the user with a selection from one of several alternatives.

To use a Radio Button in your implementation of Source Panel you should create a separate class to
contain the details of the widgets used. Below is a partially complete implementation of Sour cePanel
which uses JRadi oBut t on widgets to control user selection of the source of patterns for the Game
of Life.

Workbook 6

package uk.ac.cam your-crsid.tick6;
/1 TODO. specify the appropriate inport statenents
public class SourcePanel extends JPanel {

publ i c SourcePanel () {
super();
set Layout (new BoxLayout (t hi s, BoxLayout. X AXIS));
JRadi oButt on none = new JRadi oButton(Strings. BUTTON SOURCE _NONE, true);
JRadi oButton file = new JRadi oButton(Strings. BUTTON SOURCE _FI LE, true);
JRadi oButton library = new JRadi oButton(Strings. BUTTON SOURCE_ LI BRARY, true);
JRadi oButton fourStar = new JRadi oButton(Strings. BUTTON SCURCE_FOURSTAR, true);
//add RadioButtons to this JPanel
add(none) ;
add(file);
add(library);
add(fourStar);

/lcreate a ButtonGroup containing all four buttons

//Only one Button in a ButtonG oup can be sel ected at once
Butt onGroup group = new ButtonG oup();
gr oup. add(none) ;
group. add(file);
group. add(library);
group. add(fourStar);

}

}

The class Sour cePanel extends JPanel , creating a new interface component which you can add to an
existing JFr ame or JConponent . The constructor for Sour cePanel first calls the default constructor
of the super class, and then configures the layout for this component as a BoxLayout with components
laid horizontally. Four new instances of Radi oBut t on are created, and these are then added to the
current instance of Sour cePanel under construction using the add method supplied by the parent
class. The remainder of the constructor creates a new instance of But t onGr oup and then adds the
instances of JRadi oBut t on to it; But t onGr oup prevents more than one JRadi oBut t on instance in
the group from being selected at the same time.

7. Place the code above for Sour cePanel inside a suitable class and package structure, and
use Sun's Java documentation to determine the appropriate import statements for the class.

8. Create four new entries inside your St r i ngs class to provide textual data for the Java St ri ng
literals used in the JRadi oButt on objects created in Sour cePanel . The Stri ng literals
should be " None" , " Fi | e","Li brary", and "4* Subni ssi ons".

9. Update your implementation of the method cr eat eSour cePanel inside Gui Li f e to create
a new instance of Sour cePanel instead of JPanel .

10.Run Cui Li f e. You should see four radio buttons inside the Source Panel with appropriate
text labels. It should only be possible to select a single radio button at a time. Compare your
implementation of the Source Panel with that shown in Figure 1.

Loading a list of patterns

In this section you will load a list of patterns into the Pattern Panel. To do so, you will need to use
the JLi st object to contain the list of patterns. The JLi st component should be placed inside a

Workbook 6

JScr ol | Pane, which adds scroll bars to the list; this is required since the number of patterns may be

quite

large and you will not want the window to grow too large. Here is an outline of the code needed

to implement the Pattern Panel:

package uk.ac.cam your-crsid.tick6;

/1 TODO. specify the appropriate inport statenents

public class PatternPanel extends JPanel {

private JList guiList;

public PatternPanel () {
super();
set Layout (new Bor der Layout ());
gui Li st = new JList();
add(new JScrol | Pane(guiList));

}

public void setPatterns(List<Pattern> list) {
ArrayLi st<String> names = new ArraylLi st<String>();

/1 TODO. Using a for loop which iterates over the itens

/1
/1
/1
/1
/1
/1
/1
/1

in "list" and adds the pattern nane and pattern
aut hor to "names". For exanple, if the pattern
nane and author is "dider" and "Richard Guy 1970"
then you should add the string:

"dider (Richard Guy 1970)"

to "nanes" using the nmethod "add" on "nanes".

gui Li st. set Li st Dat a(nanes. t oArray());

12

13

14

15

11.

Copy across your implementation of Pattern, Pat t er nLoader ,
Pat t er nFor mat Except i on, Wor | dI npl , PackedWor | d, Ar rayWor | d, Agi ng\Wor | d and
PackedLong from last week into the package uk. ac. cam your -crsi d. ti ck6; remember
to update the package statements at the top of these files accordingly.

.Place the code above for Pat t er nPanel inside a suitable class and package structure, and
use Sun's Java documentation to determine the appropriate import statements for the class.

.Complete the body of set Pat t er ns to add a string for each of the patterns found in | i st
into the local array of strings called nanes.

.Create a new field called pat t er nPanel of type Pat t er nPanel inside the class CGui Li f e.
.Update your implementation of the method cr eat ePat t er nPanel inside CGui Li f e to create

a new instance of Pat t er nPanel instead of JPanel . Your implementation should ensure that
the field you created in the previous step references the new instance you create in this method.

Workbook 6

16.Add the following lines of code immediately after the definition of the variable gui in the mai n
method of Gui Li f e:

try {
String url="http://ww.cl.cam ac. uk/teachi ng/ current/ProgJava/life.txt

Li st<Pattern> list = PatternLoader. | oadFromJRL(url);
gui . patt ernPanel . set Patterns(list);
} catch (1 OException ioe) {}

and add an import statement to import the exception | OExcept i on and the class Li st into
Gui Life.

17.Run Cui Li f e. You should find that the Pattern Panel is populated with the list of pattern names
available from the course website.

Control Panel

The Control Panel part of the interface shown in Figure 1 looks quite complex. The method of laying
out the elements you should use is to create a vertical BoxLayout inside the Control Panel with four
elements, each element of which contains a horizontal BoxLayout ; the first, second and third inner
horizontal BoxLayout objects will contain a JLabel object followed by a JSI i der object. The last
element is a JLabel followed by a group of three JRadi oBut t on objects. It's perhaps best to view
this layout visually by looking back to Figure 1 and then reading the code which lays out the Control
Panel as just described:

//TODO. Wite a suitable package statement and inport statenments
public class Control Panel extends JPanel {

private JSlider zoonSlider;
private JSlider stepSlider;
private JSlider speedSlider;
private JRadi oButton | ongButton;
private JRadi oButton arrayButton;
private JRadi oButton agi ngButton;

private JSlider createNewSlider(int mn, int max, int start, String s) {
Box panel = Box.createHorizontal Box();
add(panel) ;
panel . add(new JLabel (s));
JSlider slider = new JSlider(mn, max, start);
panel . add(slider);
return slider;

}

private JRadi oButton createNewButton(String s, ButtonGoup g, Box b) {
//TODO. create a new instance of JRadioButton with text "s
/1 TODO. add the new instance to the ButtonG oup referenced by "g"
// TODO. add the new i nstance to Box "b"

//TODO. return a reference to the new instance

}

Workbook 6

public Control Panel () {
super();
set Layout (new BoxLayout (t hi s, BoxLayout.Y_AXIS));

zoontl i der = createNewSlider(1, 20,1, Strings. CONTROL_ZOOM ;
add(Box.createVertical Strut(10)); //add 10px of extra space
stepSlider = createNewSlider (0, 10,0, Strings. CONTROL_STEP) ;
add(Box.createVertical Strut(10)); //add 10px of extra space
speedSli der = createNewSlider (0, 100, 0, Stri ngs. CONTROL_SPEED) ;
add(Box.createVertical Strut(10)); //add 10px of extra space

Box wor| dPanel = Box.createHorizontal Box();

add(wor | dPanel) ;

wor | dPanel . add(new JLabel (Strings. STORAGE WORLD TYPE)) ;

Butt onGroup group = new ButtonG oup();

| ongButton = createNewButton(Strings. STORAGE_LONG gr oup, wor | dPanel) ;
arrayButton = createNewButton(Strings. STORAGE ARRAY, gr oup, wor | dPanel) ;
agi ngButton = creat eNewButton(Strings. STORAGE _AG NG gr oup, wor | dPanel) ;
arrayButton. set Sel ected(true);

add(Box.createVertical Strut(10)); //add 10px of extra space

}

public Wirld initialisewrld(Pattern p) throws PatternFormat Exception {
Wrld result = null;

if (longButton.isSelected()) {

result = new PackedWorl d();

} else if (arrayButton.isSelected()) {

result = new ArrayWrl d(p.getWdth(), p.getHeight());
} else if (agingButton.isSelected()) {

result = new Agi ngWorl d(p. getWdth(), p.getHeight());
}

if (result '=null) p.initialise(result);

return result;

18.Place the code above for Cont r ol Panel inside a suitable class and package structure.
19.Complete the items marked TODOin Cont r ol Panel .

20. Create seven new entries inside your St ri ngs class to provide textual data for the Java
St ri ng literals used in the Cont r ol Panel . The St ri ng literals should be " Zoont' , " St ep”,

"Speed”,"World type","Long","Array", and " Agi ng".
21.Create a new field called cont r ol Panel of type Cont r ol Panel inside the class Gui Li f e.

22.Update your implementation of the method cr eat eCont r ol Panel inside Cui Li f e to create
a new instance of Cont r ol Panel instead of JPanel . Your implementation should ensure that
the field called cont r ol Panel you created in the previous step references the new instance
you create in this method.

23.Run Cui Li f e. You should find that the Control Panel now displays the labels, sliders and
radio buttons as shown in Figure 1.

Workbook 6

Game Panel

The Game Panel should display the state of the game board. The code for the Game Panel is:

/1 TODO. Wite a suitable package statenment and inport statenents
public class GanePanel extends JPanel {

private int zoom = 10; //Nunber of pixels used to represent a cell
private int width = 1; //Wdth of gane board in pixels

private int height = 1;//Height of game board in pixels

private Wrld current = null;

public Di mension getPreferredSize() {
return new Di mensi on(w dth, height);

}

protected voi d pai nt Conponent (G aphics g) {
if (current == null) return;
g. set Col or (j ava. awt . Col or. WHI TE) ;
g.fillRect (0, O, width, height);
current.draw(g, w dth, height);
if (zoom> 4) {
g. set Col or (j ava. awt . Col or. LI GHT_GRAY) ;
/1 TODO. Using for |loops call the drawLi ne nethod on "g",

/1 repeatedly to draw a grid of grey lines to delimt
/1 the border of the cells in the ganme board

}

}

private void conputeSize() {

if (current == null) return;

int newNdth = current.getWdth() * zoom
i nt newHei ght = current.getHeight() * zoom
if (newNdth !'=width || newHeight != height) {
wi dth = newW dt h;
hei ght = newHei ght;
revalidate(); //trigger the GanePanel to re-layout its conponents
}
}

public void display(Wrld w) ({
current = w;
conput eSi ze() ;
repaint();

}

}

24.Place the code above for GanePanel inside a suitable class and package structure.

25.Complete the items marked TODOin GanePanel . Remember to look at Figure 1 to see how
the gray borders between the cells in the game board should be drawn.

26.Create a new field called gamePanel of type GanePanel inside the class Gui Li f e.

10

Workbook 6

27. Update your implementation of the method cr eat eGanePanel inside Gui Li f e to create
a new instance of GanePanel instead of JPanel . Your implementation should ensure that
the field called ganePanel you created in the previous step references the new instance you
create in this method.

28. Add the following two lines of code immediately after the call to
gui . patt ernPanel . set Pat t er ns in the mai n method of Gui Li f e

Wrld w = gui.control Panel .initialiseWrld(list.get(0));
gui . ganmePanel . di spl ay(w) ;

The first line of code above may throw an instance of Pat t er nFor mat Except i on. You should
write an additional cat ch block to handle this type of exception and print a suitable error
message.

29.Run Gui Li f e. You should find that the Game Panel now contains a graphical depiction of a
"Glider" by Richard Guy.

30. Modify your program so that it displays the second pattern available from the website, called
"Blinkers" by Horton Conway.

Graphical world (Optional)

The work described in this section is optional; you may skip the work described here and proceed
directly to the last section of the Workbook. In the previous sections, you have displayed all the widgets
needed to support a graphical interface for the Game of Life. Unfortunately none of the widgets actually
do anything! For example, changing the zoom slider does not actually change the zoom level of the
Game Panel. Next week we will investigate how to support event handlers in Java to update parts of

the program in response for user input and make the graphical interface fully functional.

This week you will finish your implementation by adapting code from the mai n method you wrote for
Ref act or Li f e last week. The code you wrote last week parsed options, a URL or file, and an integer
the user provided to the program on the command line. Many of you produced a somewhat lengthy and
messy implementation! A better solution is to create a new class to store the pertinent details provided

by the user on the command line. Here is a skeleton structure of such a class:

package uk.ac.cam your-crsid.tick6;

public class ConmandLi neOptions {

public static String WORLD TYPE_LONG = "--1o0ong";
public static String WORLD TYPE_AGQ NG = "--agi ng";
public static String WORLD TYPE_ARRAY = "--array";

private String worldType = null;
private Integer index = null;
private String source = null;

publ i c CommandLi neCptions(String[] args) throws ComrandLi neException {
/1 TODO. parse "args" to update the private fields "worldType",

/1 "index" and "source" with the correct values, if any.

}

public String getWrldType() {return worldType;}

public Integer getlndex() {return index;}

public String getSource() {return source;}

11

Workbook 6

Notice that the constructor for ConmandLi neOptions may throw an exception of type
ConmandLi neExcept i on, which you should define as follows:

package uk.ac.cam your-crsid.tick6;
public class ConmandLi neExcepti on extends Exception {
publ i c CommandLi neException(String nmessage) {
super (nessage) ;
}
}

In the constructor of ConmandLi neExcepti on you should pass in a message of type String.
Since CommandLi neExcept i on inherits from Excepti on you can retrieve the message using the
get Message method on ConmandLi neExcepti on. You will find the following implementation of
Text Li f e helpful in writing and testing your implementation of ConmandLi neQpt i ons:

[/ TODO. Wite a suitable package statement and inport statenments
public class TextLife {

public static void main(String[] args) {
ConmandLi neOpti ons ¢ = new CommandLi neOpti ons(args);
Li st<Pattern> |ist;
if (c.getSource().startsWth("http://"))
list = PatternLoader.| oadFromJRL(c. get Source());
el se
list = PatternLoader.| oadFronDi sk(c. get Source());
if (c.getlndex() == null) {

int i =0;
for (Pattern p : list)
Systemout. println((i++)+" "+p.get Name()+" "+p.get Author());
} else {
Pattern p = list.get(c.getlndex());

Wrld w = null;

if (c.getWorldType(). equal s(CommandLi neOpti ons. WORLD TYPE_AQ NG) {
w = new Agi ngWor |l d(p. getWdth(), p.getHeight());

} else if (c.getWirldType().equal s(CommandLi neOpti ons. WORLD TYPE_ARRAY)) {
w = new ArrayWirl d(p. getWdth(), p.getHeight());

} else {
w = new PackedWor !l d();

}

p.initialise(w);

i nt userResponse = 0;

whil e (userResponse !'="q") {
w. print (new Qut put StreamWiter(Systemout));
try {

user Response = Systemin.read();
} catch (1 CException e) {}
w = w. next Generation(0);

}
}
}
}

The class Text Li f e uses many of the classes you wrote in previous weeks; you should have
already copied across the relevant classes to successfully complete previous exercises found in
this workbook. You should use the class Text Li f e above to help you test your implementation of
ConmandLi neOpt i ons. For example, Text Li f e should function as shown in the following examples:

12

Workbook 6

crsid@machi ne: ~> java -cp world.jar:. uk/ac/cam your-crsid/tick6/TextLife
Error: No argunents found

crsid@machi ne: ~> java -cp world.jar:. uk/ac/canfyour-crsid/tick6/TextLife \
http://ww. cl . cam ac. uk/teachi ng/ current/ProgJava/life.txt | head -n 2

0 dider Richard Guy 1970

1 Blinkers Horton Conway 1970

crsid@machi ne: ~> java -cp world.jar:. uk/ac/canfyour-crsid/tick6/TextLife \
http://ww. cl.cam ac. uk/teachi ng/ current/ProgJava/life.txt -3

Error: Index out of bounds

crsid@machi ne: ~> java -cp world.jar:. uk/ac/canfyour-crsid/tick6/TextLife \
--long http://ww. cl.cam ac. uk/teachi ng/ current/ProgJava/life.txt | head -n 2
0 dider Richard Guy 1970

1 Blinkers Horton Conway 1970

crsid@machi ne: ~> java -cp world.jar:. uk/ac/canfyour-crsid/tick6/TextLife \
http://wwv. cl . cam ac. uk/teachi ng/ current/ProgJaval/life.txt 0

_#
HH
_HH___

q
crsid@machi ne: ~> java -cp world.jar:. uk/ac/canfyour-crsid/tick6/TextLife \

--aging http://ww.cl.cam ac. uk/teachi ng/ current/ProgJava/life.txt O
_#
HH
H#H

31.Write an implementation of CommandLi neQpt i ons which parses the command line options
in the same way as your implementation of Ref act or Li f e did last week.

32. Adapt the definition of Text Li fe as shown above so that, when combined with your
implementation of CommandLi neOpt i ons, it produces the same output as shown in the test
cases shown above. Hint: You will need to catch and handle several exceptions which are
thrown by methods used in Text Li f e; they aren't currently caught so try compiling Text Li f e
as is to see which exceptions must be caught. To handle the errors, you might like to print out
the messages associated with the exception using the method get Message.

13

Workbook 6

33.Update your implementation of Gui Li f e to use the implementation of CommandLi neQpt i ons
to interpret the options provided to the program on the command line. If the options provided
are incorrect, an error message should be printed out and the program should terminate; if
the options are well formatted and a specific starting pattern is specified, then the graphical
interface should load with the Game Panel configured with the specified pattern.

Tick 6

To complete your tick you need to prepare a jar file with the contents of all the classes you have written
in this workbook and emailitto ti cksla-j ava@l . cam ac. uk. Your jar file should contain:

uk/ ac/ canmf your-crsid/tick6/Hell oSwi ngWrl d. java
uk/ ac/ canmf your-crsid/tick6/ Hell oSwi ngWorl d. cl ass

uk/ ac/ cani your-crsid/tick6/ CommandLi neQptions.java <-- optional
uk/ ac/ cam your-crsid/tick6/ CommandLi neOpti ons. cl ass <-- optional
uk/ ac/ caml your-crsid/tick6/ TextLife.java <-- optional
uk/ ac/ canf your-crsid/tick6/ TextLife.class <-- optional

uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti
uk/ ac/ cam your-crsid/ti

ck6/ CGui Life.java

ck6/ Gui Li fe.class

ck6/ GamePanel . j ava
ck6/ GamePanel . cl ass
ck6/ Strings.java

ck6/ Strings.cl ass

ck6/ Cont r ol Panel . j ava
ck6/ Cont r ol Panel . cl ass
ck6/ Patt er nPanel . j ava
ck6/ Patt er nPanel . cl ass
ck6/ Sour cePanel . j ava
ck6/ Sour cePanel . cl ass
ck6/ Wor I dl mpl . j ava
ck6/ Wor I dl mpl . cl ass
ck6/ ArrayWrl d. j ava
ck6/ ArrayWrl d. cl ass
ck6/ PackedWrl d. j ava
ck6/ PackedWor | d. cl ass
ck6/ Agi ngWor 1 d. j ava
ck6/ Agi ngWor | d. cl ass
ck6/ Pattern.java

ck6/ Pattern.cl ass

ck6/ PackedLong. j ava
ck6/ PackedLong. cl ass
ck6/ Patt er nLoader. j ava
ck6/ Patt er nLoader . cl ass

ck6/ Pat t er nFor mat Excepti on. j ava

uk/ ac/ canf your-crsid/tick6/ PatternFormat Exception. cl ass
If you completed the optional work, you should be able to run your program in one of three ways:
e java -cp world.jar:crsid-tick6.jar \

uk.ac. camyour-crsid.tick6. TextLife [url/file]
e java -cp world.jar:crsid-tick6.jar \

uk.ac.camyour-crsid.tick6. TextLife [url/file] [index]
e java -cp world.jar:crsid-tick6.jar \
uk.ac.camyour-crsid.tick6. TextLife [worldType] [url/file] [index]

14

	Workbook 6
	Introduction
	Java Swing
	Nested components
	Source Panel
	Loading a list of patterns
	Control Panel
	Game Panel
	Graphical world (Optional)
	Tick 6

