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Course Aims

This course aims to:

• provide you with a basic understanding of mechanisms and structures found in
computers to support input output devices, memory protection and scheduling,

• explain the structure and functions of an operating system,

• illustrate key operating system aspects by concrete example, and

• prepare you for future courses. . .

At the end of the course you should be able to:

• describe the fetch-execute cycle of a computer

• understand the different types of information which may be stored within a
computer memory

• compare and contrast CPU scheduling algorithms

• explain the following: process, address space, file.

• distinguish paged and segmented virtual memory.

• discuss the basic underpinnings of Unix. . .
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Course Outline

• Part I: Context: Computer Organisation

– Machine Levels

– Operation of a Simple Computer.

– Input/Output.

• Part II: Operating System Functions.

– Introduction to Operating Systems.

– Processes & Scheduling.

– Memory Management.

– I/O & Device Management.

– Protection.

– Filing Systems.

• Part III: Case Study.

– Unix.

Note change from before 2013-14: Protection in, Windows case study out
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A Quick Refresher on Background
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Languages and Levels

C/C++ Source

ASM Source

Object File
Other Object 

Files ("Libraries")

Executable File
("Machine Code")

compile

assemble

link

execute

ML/Java 
Bytecode

Level 4

Level 3

Level 2

Level 1

Level 5

interpret

• Modern machines all programmable with a huge variety of different languages.

• e.g. ML, java, C++, C, python, perl, FORTRAN, Pascal, scheme, . . .

• We can describe the operation of a computer at a number of different levels;
however all of these levels are functionally equivalent
— i.e. can perform the same set of tasks

• Each level relates to the one below via either

a. translation, or
b. interpretation.
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Layered Virtual Machines

Virtual Machine M5 (Language L5)

Virtual Machine M4 (Language L4)

Virtual Machine M3 (Language L3)

Meta-Language Level

Compiled Language Level 

Assembly Language Level 

Virtual Machine M2 (Language L2)

Virtual Machine M1 (Language L1)

Digital Logic Level

Operating System Level

Actual Machine M0 (Language L0)

Conventional Machine Level

• A set of different machines M0, M1, . . . Mn, each built on top of the other.

• Can consider each machine Mi to understand only machine language Li.

• Levels 0, -1 pot. done in Dig. Elec., Physics. . .

• This course focuses on levels 1 and 2.

• NB: all levels useful; none “the truth”.
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A (Simple) Modern Computer
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A (Simple) Modern Computer

Control
Unit

 e.g. 1 GByte
2^30 x 8 =

8,589,934,592bits

Address Data Control

Processor

Reset

Bus

Memory
Execution

Unit

Register File 
(including PC)

Sound Card

Framebuffer

Hard Disk

Serial I/O

Mouse Keyboard Serial

sProcessor (CPU): executes programs

Memory: store both programs and data

Devices: for input and output

Bus(es): transfers information
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Registers and the Register File

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

0x5A

0x102034

0x2030ADCB

0x0

0x0

0x2405

0x102038

0x20 0x20000000

0x1

0x37B1CD

0xFF0000

0x102FC8

0xFFFFFFFF

0x1001D

0xEA02D1F

Computers all about operating on information:

• information arrives into memory from input devices

• memory is a large byte array which holds any information we wish to operate on.

• computer logically takes values from memory, performs operations, and then
stores result back.

• in practice, CPU operates on registers:
– a register is an extremely fast piece of on-chip memory, usually either 32- or

64-bits in size; modern CPUs have between 8 and 128 registers.

– data values are loaded from memory into registers before being operated upon,

– and results are stored back again.
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Memory Hierarchy

64K ROM
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Address

Data

Control

CPU

Data
Cache

Instruction
 Cache

Cache (SRAM)
Main Memory

B
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1GB
DRAM

Bus

• Use cache between main memory and register: try to hide delay in accessing (relatively) slow

DRAM.

• Cache made from faster SRAM:

– more expensive, so much smaller

– holds copy of subset of main memory.

• Split of instruction and data at cache level ⇒ “Harvard” architecture.

• Cache ↔ CPU interface uses a custom bus.

• Today have ∼ 8MB cache, ∼ 32GB RAM.
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The Fetch-Execute Cycle

Control Unit

IBDecode

Execution Unit

R
e
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PC

+

• A special register called PC holds a memory address; on reset, initialised to 0.

• Then:

1. Instruction fetched from memory address held in PC into instruction buffer (IB).

2. Control Unit determines what to do: decodes instruction.

3. Execution Unit executes instruction.

4. PC updated, and back to Step 1.

• Continues pretty much forever. . .
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Execution Unit

Execution 
Unit PC

#Ra
A

#Rb
A

Fn
K

#Rd
A

Register File

• The “calculator” part of the processor.

• Broken into parts (functional units), e.g.

– Arithmetic Logic Unit (ALU).

– Shifter/Rotator.

– Multiplier.

– Divider.

– Memory Access Unit (MAU).

– Branch Unit.

• Choice of functional unit determined by signals from control unit.
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Arithmetic Logic Unit

k

N

Carry In

Carry Out

ALU

Function
Code

input a

input b

output (d)

An N-bit ALU

N

N

• Part of the execution unit.
• Inputs from register file; output to register file.
• Performs simple two-operand functions:

– a + b

– a - b

– a AND b

– a OR b

– etc.

• Typically perform all possible functions; use function code to select (mux) output.
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Number Representation

00002 016 01102 616 11002 C16

00012 116 01112 716 11012 D16

00102 216 10002 816 11102 E16

00112 316 10012 916 11112 F16

01002 416 10102 A16 100002 1016

01012 516 10112 B16 100012 1116

• a n-bit register bn−1bn−2 . . . b1b0 can represent 2n different values.

• Call bn−1 the most significant bit (msb), b0 the least significant bit (lsb).

• Unsigned numbers: treat the obvious way, i.e.
val = bn−12n−1 + bn−22n−2 + · · ·+ b121 + b020,
e.g. 11012 = 23 + 22 + 20 = 8 + 4 + 1 = 13.

• Represents values from 0 to 2n − 1 inclusive.

• For large numbers, binary is unwieldy: use hexadecimal (base 16).

• To convert, group bits into groups of 4, e.g.
11111010102 = 0011|1110|10102 = 3EA16.

• Often use “0x” prefix to denote hex, e.g. 0x107.

• Can use dot to separate large numbers into 16-bit chunks, e.g. 0x3FF.FFFF .
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Number Representation (2)

• What about signed numbers? Two main options:

• Sign & magnitude:

– top (leftmost) bit flags if negative; remaining bits make value.

– e.g. byte 100110112 → −00110112 = −27.

– represents range −(2n−1 − 1) to +(2n−1 − 1), and the bonus value −0 (!).

• 2’s complement:

– to get −x from x, invert every bit and add 1.

– e.g. +27 = 000110112 ⇒ −27 = (111001002 + 1) = 111001012.

– treat 1000 . . . 0002 as −2n−1.

– represents range −2n−1 to +(2n−1 − 1)
• Note:

– in both cases, top-bit means “negative”.

– both representations depend on n;

• In practice, all modern computers use 2’s complement. . .
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Unsigned Arithmetic

0 0 1 1 1

0 0 1 1 0

1C2C3C4C

10110 0)(1)(1)(0)(

0)(
= =

0)( 0)(1)( 1)(

0)(

0C inC
outC 5C

0)(

• Unsigned addition: Cn means “carry”:

00101 5 11110 30
+ 00111 7 + 00111 7
------------- --------------
0 01100 12 1 00101 5
------------- --------------

• Unsigned subtraction: Cn means “borrow”:

11110 30 00111 7
+ 00101 -27 + 10110 -10
------------- --------------
1 00011 3 0 11101 29
------------- --------------
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Signed Arithmetic

• In signed arithmetic, carry no good on its own.
Use the overflow flag, V = (Cn⊕ Cn−1).
• Also have negative flag, N = bn−1 (i.e. the msb).
• Signed addition:

00101 5 01010 10
+ 00111 7 + 00111 7
------------- --------------
0 01100 12 0 10001 -15
------------- --------------

0 1

• Signed subtraction:

01010 10 10110 -10
+ 11001 -7 + 10110 -10
------------- --------------
1 00011 3 1 01100 12
------------- --------------

1 0

• Note that in overflow cases the sign of the result is always wrong (i.e. the N bit is
inverted).

Computer Organisation — Arithmetic and Logical Operations 14



Warning

• We are about to look at typical machine instructions

• This is meant to be illustrative

• We aren’t even saying which processor architecture they are for (because we will
use examples from various)

• Undertanding the concepts is important, details of mnemonics are not!
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Arithmetic & Logical Instructions

• Some common ALU instructions are:
Mnemonic C/Java Equivalent
and d← a, b d = a & b;
xor d← a, b d = a ^ b;
bis d← a, b d = a | b;
bic d← a, b d = a & (~b);
add d← a, b d = a + b;
sub d← a, b d = a - b;
rsb d← a, b d = b - a;
shl d← a, b d = a << b;
shr d← a, b d = a >> b;

• Typically also have addc and subc, which handle carry or borrow (for
multi-precision arithmetic), e.g.

add d0, a0, b0 // compute "low" part.
addc d1, a1, b1 // compute "high" part.

• May also get:

– Arithmetic shifts: asr and asl(?)

– Rotates: ror and rol.
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Conditional Execution

• Seen C,N, V ; add Z (zero), logical NOR of all bits in output.
• Can predicate execution based on (some combination) of flags, e.g.

subs d, a, b // compute d = a - b
beq proc1 // if equal, goto proc1
br proc2 // otherwise goto proc2

Java equivalent approximately:

if (a==b) proc1() else proc2();

• On most computers, mainly limited to branches.
• On ARM (and IA64), everything conditional, e.g.

sub d, a, b # compute d = a - b
moveq d, #5 # if equal, d = 5;
movne d, #7 # otherwise d = 7;

Java equiv: d = (a==b) ? 5 : 7;

• “Silent” versions useful when don’t really want result, e.g. tst, teq, cmp.
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An Example Condition Code Set

Suffix Meaning Flags
EQ, Z Equal, zero Z == 1
NE, NZ Not equal, non-zero Z == 0
MI Negative N == 1
PL Positive (incl. zero) N == 0
CS, HS Carry, higher or same C == 1
CC, LO No carry, lower C == 0
VS Overflow V == 1
VC No overflow V == 0
HI Higher C == 1 && Z == 0
LS Lower or same C == 0 || Z == 1
GE Greater than or equal N == V
GT Greater than N == V && Z == 0
LT Less than N != V
LE Less than or equal N != V || Z == 1

• HS, LO, etc. used for unsigned comparisons (recall that C means “borrow”).

• GE, LT, etc. used for signed comparisons: check both N and V so always works.
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Loads & Stores

• Have variable sized values, e.g. bytes (8-bits), words (16-bits), longwords
(32-bits) and quadwords (64-bits).

• Load or store instructions usually have a suffix to determine the size, e.g. ‘b’ for
byte, ‘w’ for word, ‘l’ for longword.

• When storing > 1 byte, have two main options: big endian and little endian; e.g.
storing longword 0xDEADBEEF into memory at address 0x4.

Little Endian

00 01 02 03

Big Endian

04 05 06 07 08

EF BE AD DE

DE AD BE EF

If read back a byte from address 0x4, get 0xDE if big-endian, or 0xEF if
little-endian.

• Today have x86 little endian; Sparc big endian; Mips & ARM either.
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Addressing Modes

• An addressing mode tells the computer where the data for an instruction is to
come from.

• Get a wide variety, e.g.
Register: add r1, r2, r3
Immediate: add r1, r2, #25
PC Relative: beq 0x20
Register Indirect: ldr r1, [r2]
” + Displacement: str r1, [r2, #8]
Indexed: movl r1, (r2, r3)
Absolute/Direct: movl r1, $0xF1EA0130
Memory Indirect: addl r1, ($0xF1EA0130)

• Most modern machines are load/store ⇒ only support first five:

– allow at most one memory ref per instruction

– (there are very good reasons for this)

• Note that CPU generally doesn’t care what is being held within the memory.

• i.e. up to programmer to interpret whether data is an integer, a pixel or a few
characters in a novel.

Computer Organisation — Memory (CPU point of view) 20



Representing Text

• Two main standards:

1. ASCII: 7-bit code holding (English) letters, numbers, punctuation and a few
other characters.

2. Unicode: 16-bit code supporting practically all international alphabets and
symbols.

• ASCII default on many operating systems, and on the early Internet (e.g. e-mail).

• Unicode becoming more popular (esp UTF-8!).

• In both cases, represent in memory as either strings or arrays: e.g. “Pub Time!”

Ox351A.25E4

Ox351A.25E8

20 62 75 50

ArrayString

65 6D 69 54

Ox351A.25EC2100xxxx

20 62

75 50

69 54

65 6D21xx

00 09

• 0x49207769736820697420776173203a2d28
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Data Structures

• Records / structures: each field stored as an offset from a base address.
• Variable size structures: explicitly store addresses (pointers) inside structure, e.g.

datatype rec = node of int * int * rec
| leaf of int;

val example = node(4, 5, node(6, 7, leaf(8)));

Imagine example is stored at address 0x1000:

Address Value Comment

0x0F30 0xFFFF Constructor tag for a leaf

0x0F34 8 Integer 8
...

0x0F3C 0xFFFE Constructor tag for a node

0x0F40 6 Integer 6

0x0F44 7 Integer 7

0x0F48 0x0F30 Address of inner node
...

0x1000 0xFFFE Constructor tag for a node

0x1004 4 Integer 4

0x1008 5 Integer 5

0x100C 0x0F3C Address of inner node

Computer Organisation — Memory (Programmer’s Point of View) 22



Instruction Encoding

• An instruction comprises:

a. an opcode: specify what to do.
b. zero or more operands: where to get values

e.g. add r1, r2, r3 ≡ 1010111 001 010 011

• Old machines (and x86) use variable length encoding motivated by low code
density.

• Most modern machines use fixed length encoding for simplicity. e.g. ARM ALU
operations.

00 I Opcode S Ra Rd Operand 2

31 25 24 21 20 19 16 15 1211 026

Cond

2728

and r13, r13, #31 = 0xe20dd01f =

1110 00 1 0000 0 1101 1101 000000011111

bic r3, r3, r2 = 0xe1c33002 =

1110 00 0 1110 0 0011 0011 000000000010

cmp r1, r2 = 0xe1510002 =

1110 00 0 1010 1 0001 0000 000000000010
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Fetch-Execute Cycle Revisited

Control Unit

IBDecode

Execution Unit

R
e
g
i
s
t
e
r
 
F
i
l
e

PC

+

MAU

BU

ALU

1. CU fetches & decodes instruction and generates (a) control signals and (b)
operand information.

2. Inside EU, control signals select functional unit (“instruction class”) and
operation.

3. If ALU, then read one or two registers, perform operation, and (probably) write
back result.

4. If BU, test condition and (maybe) add value to PC.

5. If MAU, generate address (“addressing mode”) and use bus to read/write value.

6. Repeat ad infinitum.
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Stacks

• A stack is a data structure

• items are piled one on top of each other

• in pure form you can only:

– look at the top item

– put a new item on top (push)

– remove an item from the (pop)

– see if the stack is empty

• sometimes called “last in, first out” (LIFO)

• expression evaluation: Reverse Polish Notation

– consider (a + b) / (c + d)

– in RPN: a b + c d + /

• expression analysis, eg matching brackets

• remembering where you have been if you have to go back there

– where program executing was

– what my context is (i.e. what name refers to what)
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Remembering Where To Go Back To

Consider:

int sum (int a, int b)
{

return a+b;
}

int main(){
int d, e;

d = sum (5, 10);
e = sum (4, 2);

printf ("d is %d, e is %d\n", d, e);
}

How do we know where to go to when we finish executing sum?
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Processor Stack

• a stack that contains a reference to the places in the program from which “calls”
are made

• so top of stack is the place to where transfer should be returned when the current
procedure is exited

• can (in theory) be of arbitrary depth

• often supported by special machine instructions like jsr and ret, and/or a special
register sp, the stack pointer

• stack pointer denotes place in memory which is the top of the stack

• jsr xx

– pushes the address of the instruction immediately after itself on the stack (note
this involves updating the sp register)

– transfers control to xx

• What does ret do?

• stacks can “grow down” in memory as well as up
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Processor Stack II
Actually we can do more with the processor stack. Consider:

int factorial (int n)
{
if (n < 0) return 0;
if (n == 0) return 1;
return n * factorial (n - 1);

}

n refers to different things. (This is different from n taking on different values.)
Stack can record not just where to go back to, but can hold the n for the current
execution instance of factorial. It can also provide space for passing arguments
to the called routine and the result back to the caller.
return n * factorial (n - 1); could translate into

• push n - 1 onto the stack

• jsr factorial

• pop item off the top of the stack and multiply it by n

• store result one below the current top of stack

• ret
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Lets work through factorial(3)
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Stack Frames

• can also store local variables (particular to execution instance) on the stack

• (local variables can include expression evaluation temporaries)

• can save registers on the stack (either by caller or callee, depends on programming
convention)

• progam (at machine level) understands where things are e.g. that a local variable
x is, say, 5 locations logically below the current stack top

• this gives rise to a contiguous block of information at the top of the stack relevant
to the current execution instance

• this it the stack frame for the current execution instance

• so more properly, the stack is a stack of frames

• when we enter a procedure we generally know how big our stack frame needs to
be.

• we ensure that when we exit a procedure the top of the stack is where it was
when we entered

• understanding a point in a programs execution often aided by a backtrace of the
execution stack

• note simplicity of memory allocation and release
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Input/Output Devices

• Devices connected to processor via a bus (e.g. ISA, PCI, ).

• Includes a wide range:

– Mouse,

– Keyboard,

– Graphics Card,

– Sound card,

– Floppy drive,

– Hard-Disk,

– CD-Rom,

– Network card,

– Printer,

– Modem

– etc.

• Often two or more stages involved (e.g. IDE, SCSI, RS-232, Centronics, etc.)
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UARTs

A[0:x]

D[0:7]

chip select/cs

Serial Input

Serial Output

Baud
Rate

Generator

read/writer/w

• Universal Asynchronous Receiver/Transmitter:

– stores 1 or more bytes internally.

– converts parallel to serial.

– outputs according to RS-232.

• Various baud rates (e.g. 1,200 – 115,200)

• Slow and simple. . . and very useful.

• Make up “serial ports” on PC.

• Max throughput ∼ 14.4KBytes; variants up to 56K (for modems).
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Hard Disks

spindle

actuator

read-write
head

arm

rotation

platter

sector

track

cylinder

• Whirling bits of (magnetized) metal. . .

• Rotate 3,600 – 12,000 times a minute.

• Capacity ∼ 1TByte (≈ 240bytes).
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Graphics Cards

hsync

from CPU

RAMDAC

Dot
Clock

vsync

Blue
Green
Red

to Monitor

Graphics
Processor

Framebuffer

VRAM/ 
SDRAM/
SGRAM

PCI/
AGP

• Essentially some RAM (framebuffer) and some digital-to-analogue circuitry
(RAMDAC).

• RAM holds array of pixels: picture elements.

• Resolutions e.g. 640x480, 800x600, 1024x768, 1280x1024, 1600x1200.

• Depths: 8-bit (LUT), 16-bit (RGB=555, 24-bit (RGB=888), 32-bit (RGBA=888).

• Memory requirement = x× y× depth, e.g. 1280x1024 @ 16bpp needs 2560KB.

⇒ full-screen 50Hz video requires 125 MBytes/s (or ∼ 1Gbit/s).
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Buses

Processor Memory

Other Devices

ADDRESS

 DATA 

CONTROL

• Bus = collection of shared communication wires:

4 low cost.

4 versatile / extensible.

8 potential bottle-neck.

• Typically comprises address lines, data lines and control lines (+ power/ground).

• Operates in a master-slave manner, e.g.

1. master decides to e.g. read some data.

2. master puts addr onto bus and asserts ’read’

3. slave reads addr from bus and retrieves data.

4. slave puts data onto bus.

5. master reads data from bus.
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Bus Hierarchy

Sound
Card

Bridge

512MByte
DIMM

Processor

C
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512MByte
DIMM

Framebuffer
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e

SCSI
Controller

PCI Bus (33/66Mhz)

Memory Bus (400Mhz)Processor 
Bus

ISA Bus (8Mhz)

• In practice, have lots of different buses with different characteristics e.g. data
width, max #devices, max length.

• Most buses are synchronous (share clock signal).
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Interrupts

• Bus reads and writes are transaction based: CPU requests something and waits
until it happens.

• But e.g. reading a block of data from a hard-disk takes ∼ 2ms, which is
∼ 5, 000, 000 clock cycles!

• Interrupts provide a way to decouple CPU requests from device responses.

1. CPU uses bus to make a request (e.g. writes some special values to a device).

2. Device goes off to get info.

3. Meanwhile CPU continues doing other stuff.

4. When device finally has information, raises an interrupt.
5. CPU uses bus to read info from device.

• When interrupt occurs, CPU vectors to handler, then resumes using special
instruction, e.g.

0x184c: add r0, r0, #8

0x1850: sub r1, r5, r6

0x1854: ldr r0, [r0]

0x1858: and r1, r1, r0

0x0020:    ...

0x0024: <do stuff>

......     ...

0x0038:    rti
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Interrupts (2)

• Interrupt lines (∼ 4− 8) are part of the bus.

• Often only 1 or 2 pins on chip ⇒ need to encode.

• e.g. ISA & x86:

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR78

2
5
9
A
 
P
I
C

Processor

Intel
Clone

 INT 

 INTA 

 D[0:7]

1. Device asserts IRx.

2. PIC asserts INT.

3. When CPU can interrupt, strobes INTA.

4. PIC sends interrupt number on D[0:7].

5. CPU uses number to index into a table in memory which holds the addresses of
handlers for each interrupt.

6. CPU saves registers and jumps to handler.
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Direct Memory Access (DMA)

• Interrupts good, but even better is a device which can read and write processor
memory directly.
• A generic DMA “command” might include

– source address

– source increment / decrement / do nothing

– sink address

– sink increment / decrement / do nothing

– transfer size

• Get one interrupt at end of data transfer

• DMA channels may be provided by devices themselves:

– e.g. a disk controller

– pass disk address, memory address and size

– give instruction to read or write

• Also get “stand-alone” programmable DMA controllers.
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Summary

• Computers made up of four main parts:

1. Processor (including register file, control unit and execution unit),

2. Memory (caches, RAM, ROM),

3. Devices (disks, graphics cards, etc.), and

4. Buses (interrupts, DMA).

• Information represented in all sorts of formats:

– signed & unsigned integers,

– strings,

– floating point,

– data structures,

– instructions.

• Can (hopefully) understand all of these at some level, but gets pretty complex.

⇒ to be able to actually use a computer, need an operating system.
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What is an Operating System?

First let us note than an operating system is a human created artifact so that the
definition of what an operating system is evolves.

• A program which controls the execution of all other programs (applications).

• Acts as an intermediary between the user(s) and the computer.

• Objectives:

– containment of failure

– protection

– allocation of resource

– convenience,

– efficiency,

– extensibility.

• Similar to a government. . .
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An Abstract View

Operating System

Hardware

A
pp

 2

A
pp
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A
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• The Operating System (OS):

– controls all execution.

– multiplexes resources between applications.

– abstracts away from complexity.

• Typically also have some libraries and some tools provided with OS.

• Are these part of the OS? Is IE a tool?

– no-one can agree. . .

• For us, the OS ≈ the kernel or services that can only be accessed via the kernel.
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In The Beginning. . .

• 1949: First stored-program machine (EDSAC)

• to ∼ 1955: “Open Shop”.

– large machines with vacuum tubes.

– I/O by paper tape / punch cards.

– user = programmer = operator.

• To reduce cost, hire an operator :

– programmers write programs and submit tape/cards to operator.

– operator feeds cards, collects output from printer.

• Management like it.

• Programmers hate it.

• Operators hate it.

⇒ need something better.
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Batch Systems

• Introduction of tape drives allow batching of jobs:

– programmers put jobs on cards as before.

– all cards read onto a tape.

– operator carries input tape to computer.

– results written to output tape.

– output tape taken to printer.

• Computer now has a resident monitor :

– initially control is in monitor.

– monitor reads job and transfer control.

– at end of job, control transfers back to monitor.

• Even better: spooling systems.
– use interrupt driven I/O.

– use magnetic disk to cache input tape.

– fire operator.

• Monitor now schedules jobs. . .
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Multi-Programming

Operating
System

Job 1

Job 2

Job 3

Job 4

Operating
System

Job 1

Job 2

Job 3

Job 4

Operating
System

Job 1

Job 2

Job 3

Job 4

Time 

• Use memory to cache jobs from disk ⇒ more than one job active simultaneously.

• Two stage scheduling:

1. select jobs to load: job scheduling.
2. select resident job to run: CPU scheduling.
• Users want more interaction ⇒ time-sharing :

• e.g. CTSS, TSO, Unix, VMS, Windows NT. . .
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Personal Computers

• In the 80’s and 90’s Single user systems: cheap and cheerful.

– no other users ⇒ ignore protection.

– e.g. DOS, Windows, Win 95/98, i.e. pre Windows NT (2000)

• Become more important, and ubiquitous

– users need protection from themselves

– networked systems, users need protection from each other

– nasty world: users need protection from programs they download either
wittingly or unwittingly
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Beyond this course

• Realtime systems

– (embedded) hard real time: e.g. engine management systems

– soft real time: e.g. MP3 player

• Multicore, parallel processing

• Distributed computing: global processing?

• Data centre scale computing
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Monolithic Operating Systems

H/W

S/W

App.

App. App.

Scheduler

Device Driver Device Driver

App.

• Oldest kind of OS structure (“modern” examples are DOS, original MacOS)

• Problem: applications can e.g.

– trash OS software.

– trash another application.

– hoard CPU time.

– abuse I/O devices.

– etc. . .

• No good for fault containment (or multi-user).

• Need a better solution. . .
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Dual-Mode Operation

• Want to stop buggy (or malicious) program from doing bad things.

⇒ provide hardware support to differentiate between (at least) two modes of
operation.

1. User Mode : when executing on behalf of a user (i.e. application programs).

2. Kernel Mode : when executing on behalf of the operating system.

• Hardware contains a mode-bit, e.g. 0 means kernel, 1 means user.

Kernel
Mode

User
Mode

reset

interrupt or fault

set user mode

• Make certain machine instructions only possible in kernel mode. . .
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Protecting I/O & Memory

• First try: make I/O instructions privileged.

– applications can’t mask interrupts.

– applications can’t control I/O devices.

• But:

1. Application can rewrite interrupt vectors.

2. Some devices accessed via memory
• Hence need to protect memory also. . .

• e.g. define a base and a limit for each program.

Operating
System

Job 1

Job 2

Job 3

Job 4

0x0000

0x3000

0x5000

0x9800

0xD800

0xFFFF

0x5000

0x4800

limit register

base register

• Accesses outside allowed range are protected.
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Memory Protection Hardware

CPU

vector to OS (address error)

yes

no

yes

no

base base+limit

M
em

or
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• Hardware checks every memory reference.

• Access out of range ⇒ vector into operating system (just as for an interrupt).

• Only allow update of base and limit registers in kernel mode.

• Typically disable memory protection in kernel mode (although a bad idea).

• In reality, more complex protection h/w used:

– main schemes are segmentation and paging
– (covered later on in course)
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Protecting the CPU

• Need to ensure that the OS stays in control.

– i.e. need to prevent any given application from ‘hogging’ the CPU the whole
time.

⇒ use a timer device.

• Usually use a countdown timer, e.g.

1. set timer to initial value (e.g. 0xFFFF).

2. every tick (e.g. 1µs), timer decrements value.

3. when value hits zero, interrupt.

• (Modern timers have programmable tick rate.)

• Hence OS gets to run periodically and do its stuff.

• Need to ensure only OS can load timer, and that interrupt cannot be masked.

– use same scheme as for other devices.

– (viz. privileged instructions, memory protection)

• Same scheme can be used to implement time-sharing (more on this later).
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Kernel-Based Operating Systems

H/W

S/W

App.

Priv

Unpriv

App. App. App.

Kernel

Scheduler

Device Driver Device Driver

System Calls

File System Protocol Code

• Applications can’t do I/O due to protection

⇒ operating system does it on their behalf.

• Need secure way for application to invoke operating system:

⇒ require a special (unprivileged) instruction to allow transition from user to
kernel mode.

• Generally called a software interrupt since operates similarly to (hardware)
interrupt. . .

• Set of OS services accessible via software interrupt mechanism called system calls.
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Microkernel Operating Systems

H/W

S/W

App.

Priv

Unpriv

Server Device
Driver

ServerServer

App. App. App.

Kernel Scheduler

Device
Driver

• Alternative structure:

– push some OS services into servers.
– servers may be privileged (i.e. operate in kernel mode).

• Increases both modularity and extensibility.
• Still access kernel via system calls, but need new way to access servers:

⇒ interprocess communication (IPC) schemes.
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Kernels versus Microkernels

So why isn’t everything a microkernel?

• Lots of IPC adds overhead

⇒ microkernels usually perform less well.

• Microkernel implementation sometimes tricky: need to worry about
synchronisation.

• Microkernels often end up with redundant copies of OS data structures.

Hence today most common operating systems blur the distinction between kernel
and microkernel.

• e.g. linux is “kernel”, but has kernel modules and certain servers.

• e.g. Windows NT was originally microkernel (3.5), but now (4.0 onwards) pushed
lots back into kernel for performance.

• Still not clear what the best OS structure is, or how much it really matters. . .
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Operating System Functions

• Regardless of structure, OS needs to securely multiplex resources, i.e.

1. protect applications from each other, yet

2. share physical resources between them.

• Also usually want to abstract away from grungy harware, i.e. OS provides a
virtual machine:

– share CPU (in time) and provide each application with a virtual processor,

– allocate and protect memory, and provide applications with their own virtual
address space,

– present a set of (relatively) hardware independent virtual devices, and

– divide up storage space by using filing systems.

• Remainder of this part of the course will look at each of the above areas in
turn. . .
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Process Concept

• From a user’s point of view, the operating system is there to execute programs:

– on batch system, refer to jobs
– on interactive system, refer to processes
– (we’ll use both terms fairly interchangeably)

• Process 6= Program:

– a program is static, while a process is dynamic

– in fact, a process
4
= “a program in execution”

• (Note: “program” here is pretty low level, i.e. native machine code or executable)

• Process includes:

1. program counter

2. stack

3. data section

• Processes execute on virtual processors
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Process States

Exit

Running

New

Ready

Blocked

dispatch

timeout
or yield

releaseadmit

event-waitevent

• As a process executes, it changes state:

– New : the process is being created

– Running : instructions are being executed

– Ready : the process is waiting for the CPU (and is prepared to run at any time)

– Blocked : the process is waiting for some event to occur (and cannot run until it
does)

– Exit: the process has finished execution.

• The operating system is responsible for maintaining the state of each process.
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Process Control Block

Process Number (or Process ID)

Current Process State

Other CPU Registers

Memory Mangement Information 

CPU Scheduling  Information

Program Counter

Other Information 
(e.g. list of open files, name of 

executable, identity of owner, CPU 
time used so far, devices owned)

Refs to previous and next PCBs

OS maintains information about every process in a data structure called a process
control block (PCB):

• Unique process identifier

• Process state (Running, Ready, etc.)

• CPU scheduling & accounting information

• Program counter & CPU registers

• Memory management information, . . .
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Context Switching

Process A Process BOperating System

Save State into PCB A

Restore State from PCB B

Save State into PCB B

Restore State from PCB A

idle

idle

idle

executing

executing

executing

• Process Context = machine environment during the time the process is actively
using the CPU.

• i.e. context includes program counter, general purpose registers, processor status
register, . . .

• To switch between processes, the OS must:

a) save the context of the currently executing process (if any), and

b) restore the context of that being resumed.

• Time taken depends on h/w support.
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Scheduling Queues

admit

CPU
release

timeout or yield

dispatch

Ready Queue

event-waitevent

Wait Queue(s)

Job 
Queue

create
(batch) (interactive)
create

• Job Queue: batch processes awaiting admission.

• Ready Queue: set of all processes residing in main memory, ready and waiting to
execute.

• Wait Queue(s): set of processes waiting for an I/O device (or for other processes)

• Long-term & short-term schedulers:

– Job scheduler selects which processes should be brought into the ready queue.

– CPU scheduler selects which process should be executed next and allocates
CPU.
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Process Creation

• Nearly all systems are hierarchical : parent processes create children processes.
• Resource sharing:

– parent and children share all resources.

– children share subset of parent’s resources.

– parent and child share no resources.

• Execution:

– parent and children execute concurrently.

– parent waits until children terminate.

• Address space:

– child duplicate of parent.

– child has a program loaded into it.

• e.g. Unix:

– fork() system call creates a new process

– all resources shared (child is a clone).

– execve() system call used to replace the process’ memory space with a new
program.

• NT/2K/XP: CreateProcess() system call includes name of program to be
executed.
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Process Termination

• Process executes last statement and asks the operating system to delete it (exit):

– output data from child to parent (wait)

– process’ resources are deallocated by the OS.

• Process performs an illegal operation, e.g.

– makes an attempt to access memory to which it is not authorised,

– attempts to execute a privileged instruction

• Parent may terminate execution of child processes (abort, kill), e.g. because

– child has exceeded allocated resources

– task assigned to child is no longer required

– parent is exiting (“cascading termination”)

– (many operating systems do not allow a child to continue if its parent
terminates)

• e.g. Unix has wait(), exit() and kill()

• e.g. NT/2K/XP has ExitProcess() for self and TerminateProcess() for
others.
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Process Blocking

• In general a process blocks on an event, e.g.

– an I/O device completes an operation,

– another process sends a message

• Assume OS provides some kind of general-purpose blocking primitive, e.g.
await().

• Need care handling concurrency issues, e.g.

if(no key being pressed) {
await(keypress);
print("Key has been pressed!\n");

}
// handle keyboard input

What happens if a key is pressed at the first ’{’ ?

• (This is a big area: lots more detail next year.)

• In this course we’ll generally assume that problems of this sort do not arise.
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CPU-I/O Burst Cycle
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• CPU-I/O Burst Cycle: process execution consists of a cycle of CPU execution and
I/O wait.

• Processes can be described as either:

1. I/O-bound: spends more time doing I/O that than computation; has many
short CPU bursts.

2. CPU-bound: spends more time doing computations; has few very long CPU
bursts.

• Observe most processes execute for at most a few milliseconds before blocking

⇒ need multiprogramming to obtain decent overall CPU utilization.
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CPU Scheduler

Recall: CPU scheduler selects one of the ready processes and allocates the CPU to it.

• There are a number of occasions when we can/must choose a new process to run:

1. a running process blocks (running → blocked)

2. a timer expires (running → ready)

3. a waiting process unblocks (blocked → ready)

4. a process terminates (running → exit)

• If only make scheduling decision under 1, 4 ⇒ have a non-preemptive scheduler:

4 simple to implement

8 open to denial of service

– e.g. Windows 3.11, early MacOS.

• Otherwise the scheduler is preemptive.
4 solves denial of service problem

8 more complicated to implement

8 introduces concurrency problems. . .
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Idle system

What do we do if there is no ready process?

• halt processor (until interrupt arrives)

4 saves power (and heat!)

4 increases processor lifetime

8 might take too long to stop and start.

• busy wait in scheduler

4 quick response time

8 ugly, useless

• invent idle process, always available to run

4 gives uniform structure

4 could use it to run checks

8 uses some memory

8 might slow interrupt response

In general there is a trade-off between responsiveness and usefulness.
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Scheduling Criteria

A variety of metrics may be used:

1. CPU utilization: the fraction of the time the CPU is being used (and not for idle
process!)

2. Throughput: # of processes that complete their execution per time unit.

3. Turnaround time: amount of time to execute a particular process.

4. Waiting time: amount of time a process has been waiting in the ready queue.

5. Response time: amount of time it takes from when a request was submitted until
the first response is produced (in time-sharing systems)

Sensible scheduling strategies might be:

• Maximize throughput or CPU utilization

• Minimize average turnaround time, waiting time or response time.

Also need to worry about fairness and liveness.
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First-Come First-Served Scheduling

• FCFS depends on order processes arrive, e.g.
Process Burst Time

P1 25
P2 4
P3 7

• If processes arrive in the order P1, P2, P3:
P1 P2 P3

0 25 29 36

– Waiting time for P1=0; P2=25; P3=29;

– Average waiting time: (0 + 25 + 29)/3 = 18.

• If processes arrive in the order P3, P2, P1:
P1P2P3

0 7 11 36

– Waiting time for P1=11; P2=7; P3=0;

– Average waiting time: (11 + 7 + 0)/3 = 6.

– i.e. three times as good!

• First case poor due to convoy effect.
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SJF Scheduling

Intuition from FCFS leads us to shortest job first (SJF) scheduling.

• Associate with each process the length of its next CPU burst.

• Use these lengths to schedule the process with the shortest time (FCFS can be
used to break ties).

For example:

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

P1 P3 P2

0

P4

7 8 12 16

• Waiting time for P1=0; P2=6; P3=3; P4=7;

• Average waiting time: (0 + 6 + 3 + 7)/4 = 4.

SJF is optimal in that it gives the minimum average waiting time for a given set of
processes.
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SRTF Scheduling

• SRTF = Shortest Remaining-Time First.

• Just a preemptive version of SJF.

• i.e. if a new process arrives with a CPU burst length less than the remaining time
of the current executing process, preempt.

For example:

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

P1 P3P2

0

P4

2 4 5 7 11 16

P2 P1

• Waiting time for P1=9; P2=1; P3=0; P4=2;

• Average waiting time: (9 + 1 + 0 + 2)/4 = 3.

What are the problems here?
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Predicting Burst Lengths

• For both SJF and SRTF require the next “burst length” for each process ⇒ need
to estimate it.

• Can be done by using the length of previous CPU bursts, using exponential
averaging:

1. tn = actual length of nth CPU burst.

2. τn+1 = predicted value for next CPU burst.

3. For α, 0 ≤ α ≤ 1 define:

τn+1 = αtn + (1− α)τn

• If we expand the formula we get:

τn+1 = αtn + . . . + (1− α)jαtn−j + . . . + (1− α)n+1τ0

where τ0 is some constant.

• Choose value of α according to our belief about the system, e.g. if we believe
history irrelevant, choose α ≈ 1 and then get τn+1 ≈ tn.

• In general an exponential averaging scheme is a good predictor if the variance is
small.
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Round Robin Scheduling

Define a small fixed unit of time called a quantum (or time-slice), typically 10-100
milliseconds. Then:

• Process at the front of the ready queue is allocated the CPU for (up to) one
quantum.

• When the time has elapsed, the process is preempted and appended to the ready
queue.

Round robin has some nice properties:

• Fair: if there are n processes in the ready queue and the time quantum is q, then
each process gets 1/nth of the CPU.

• Live: no process waits more than (n− 1)q time units before receiving a CPU
allocation.

• Typically get higher average turnaround time than SRTF, but better average
response time.

But tricky choosing correct size quantum:

• q too large ⇒ FCFS/FIFO

• q too small ⇒ context switch overhead too high.
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Static Priority Scheduling

• Associate an (integer) priority with each process

• For example:
0 system internal processes
1 interactive processes (staff)
2 interactive processes (students)
3 batch processes.

• Then allocate CPU to the highest priority process:

– ‘highest priority’ typically means smallest integer

– get preemptive and non-preemptive variants.

• e.g. SJF is a priority scheduling algorithm where priority is the predicted next CPU
burst time.

• Problem: how to resolve ties?

– round robin with time-slicing

– allocate quantum to each process in turn.

– Problem: biased towards CPU intensive jobs.

∗ per-process quantum based on usage?
∗ ignore?

• Problem: starvation. . .
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Dynamic Priority Scheduling

• Use same scheduling algorithm, but allow priorities to change over time.

• e.g. simple aging:

– processes have a (static) base priority and a dynamic effective priority.
– if process starved for k seconds, increment effective priority.

– once process runs, reset effective priority.

• e.g. computed priority:

– first used in Dijkstra’s THE

– time slots: . . . , t, t + 1, . . .

– in each time slot t, measure the CPU usage of process j: uj

– priority for process j in slot t + 1:
pj

t+1 = f(uj
t , p

j
t , u

j
t−1, p

j
t−1, . . .)

– e.g. pj
t+1 = pj

t/2 + kuj
t

– penalises CPU bound → supports I/O bound.

• today such computation considered acceptable. . .
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Memory Management

In a multiprogramming system:

• many processes in memory simultaneously

• every process needs memory for:

– instructions (“code” or “text”),

– static data (in program), and

– dynamic data (heap and stack).

• in addition, operating system itself needs memory for instructions and data.

⇒ must share memory between OS and k processes.

The memory magagement subsystem handles:

1. Relocation

2. Allocation

3. Protection

4. Sharing

5. Logical Organisation

6. Physical Organisation
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The Address Binding Problem in Multiprogramming

Consider the following simple program:

int x, y;
x = 5;
y = x + 3;

We can imagine that this would result in some assembly code which looks something
like:

str #5, [Rx] // store 5 into ’x’
ldr R1, [Rx] // load value of x from memory
add R2, R1, #3 // and add 3 to it
str R2, [Ry] // and store result in ’y’

where the expression ‘[ addr ]’ means “the contents of the memory at address
addr”.

Then the address binding problem is:

what values do we give Rx and Ry i.e. where in memory are x and y ?

This is a problem because we don’t know where in memory our program will be
loaded when we run it:

• e.g. if loaded at 0x1000, then x and y might be stored at 0x2000, 0x2004, but if
loaded at 0x5000, then x and y might be at 0x6000, 0x6004.

Operating Systems — Relocation 77



Address Binding and Relocation

To solve the problem, we need to translate between “program addresses” and “real
addresses”.

This can be done:

• at compile/link time:

– requires knowledge of absolute addresses

– e.g. monolithic embedded systems

• at load time:

– when program loaded, work out position in memory and update code with
correct addresses

– must be done every time program is loaded

– ok for embedded systems / boot-loaders

• at run-time:

– get some hardware to automatically translate between program and real
addresses.

– no changes at all required to program itself.

– most popular and flexible scheme, providing we have the requisite hardware, a
memory management unit (MMU).
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Logical vs Physical Addresses

Mapping of logical to physical addresses is done at run-time by Memory
Management Unit (MMU), e.g.

CPU

address fault

no

yes
physical
address

limit

M
em

or
y

base

+

logical
address

Relocation Register

1. Relocation register holds the value of the base address owned by the process.
2. Relocation register contents are added to each memory address before it is sent to

memory.
3. NB: process never sees physical address — simply manipulates logical addresses.
4. OS has privilege to update relocation register.
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Contiguous Allocation

Given that we want multiple virtual processors, how can we support this in a single
address space?

Where do we put processes in memory?

• OS typically must be in low memory due to location of interrupt vectors

• Easiest way is to statically divide memory into multiple fixed size partitions:

– bottom partition contains OS, remaining partitions each contain exactly one
process.

– when a process terminates its partition becomes available to new processes.

– e.g. OS/360 MFT.

• Need to protect OS and user processes from malicious programs:

– use base and limit registers in MMU

– update values when a new processes is scheduled

– NB: solving both relocation and protection problems at the same time!
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Static Multiprogramming

Partitioned
Memory

Run
Queue

Blocked
Queue

A
B

C

D

Backing
Store

Main
Store

OS

• partition memory when installing OS, and allocate pieces to different job queues.
• associate jobs to a job queue according to size.
• swap job back to disk when:

– blocked on I/O (assuming I/O is slower than the backing store).

– time sliced: larger the job, larger the time slice

• run job from another queue while swapping jobs
• e.g. IBM OS/360 MFT
• problems: cannot grow partitions.
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Dynamic Partitioning

Get more flexibility if allow partition sizes to be dynamically chosen (e.g. OS/360
MVT) :

• OS keeps track of which areas of memory are available and which are occupied.

• e.g. use one or more linked lists:
0000 0C04 2200 3810 4790 91E8

B0F0 B130 D708 FFFF

• When a new process arrives the OS searches for a hole large enough to fit the
process.

• To determine which hole to use for new process:

– first fit: stop searching list as soon as big enough hole is found.

– best fit: search entire list to find “best” fitting hole (i.e. smallest hole large
enough)

• When process terminates its memory returns onto the free list, coalescing holes
where appropriate.
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Scheduling Example

0

400K

1000K

2000K

2300K

2560K
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OS
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P4 P4

0

400K

1000K

2000K

2300K

2560K

1700K

0

400K

1000K

2000K

2300K

2560K

1700K

900K

• Consider machine with total of 2560K memory.

• Operating System requires 400K.

• The following jobs are in the queue:
Process Memory Time
P1 600K 10
P2 1000K 5
P3 300K 20
P4 700K 8
P5 500K 15
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External Fragmentation

OS

P1
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OS

P1
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P4

P3

OS

P3

P4
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P4

OS

P5

P3

P4

• Dynamic partitioning algorithms suffer from external fragmentation: as processes
are loaded they leave little fragments which may not be used.

• External fragmentation exists when the total available memory is sufficient for a
request, but is unusable because it is split into many holes.

• Can also have problems with tiny holes

Solution: compact holes periodically.
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Compaction
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Choosing optimal strategy quite tricky. . .

Note that:

• Require run-time relocation.

• Can be done more efficiently when process is moved into memory from a swap.

• Some machines used to have hardware support (e.g. CDC Cyber).

Also get fragmentation in backing store, but in this case compaction not really
viable. . .
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Paged Virtual Memory
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Another solution is to allow a process to exist in non-contiguous memory, i.e.

• divide physical memory into relatively small blocks of fixed size, called frames
• divide logical memory into blocks of the same size called pages (typical value is

4K)

• each address generated by CPU is composed of a page number p and page offset
o.

• MMU uses p as an index into a page table.
• page table contains associated frame number f

• usually have |p| >> |f| ⇒ need valid bit.
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Paging Pros and Cons
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4 memory allocation easier.

8 OS must keep page table per process

4 no external fragmentation (in physical memory at least).

8 but get internal fragmentation.

4 clear separation between user and system view of memory usage.

8 additional overhead on context switching
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Structure of the Page Table

Different kinds of hardware support can be provided:

• Simplest case: set of dedicated relocation registers

– one register per page

– OS loads the registers on context switch

– fine if the page table is small. . . but what if have large number of pages ?

• Alternatively keep page table in memory

– only one register needed in MMU (page table base register (PTBR))

– OS switches this when switching process

• Problem: page tables might still be very big.

– can keep a page table length register (PTLR) to indicate size of page table.

– or can use more complex structure (see later)

• Problem: need to refer to memory twice for every ‘actual’ memory reference. . .

⇒ use a translation lookaside buffer (TLB)
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TLB Operation
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• On memory reference present TLB with logical memory address

• If page table entry for the page is present then get an immediate result

• If not then make memory reference to page tables, and update the TLB
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Multilevel Page Tables

• Most modern systems can support very large (232, 264) address spaces.

• Solution – split page table into several sub-parts

• Two level paging – page the page table

P1 Offset

Virtual Address

L2 Address

L1 Page Table
0

n

N

P2 L1 Address

Base Register

L2 Page Table
0

n

N

Leaf PTE

• For 64 bit architectures a two-level paging scheme is not sufficient: need further
levels.

• (even some 32 bit machines have > 2 levels).
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Example: x86

PTA V
D

R
W

U
S

W
T

C
D

A
C

Z
O

P
SIGN

Page Directory (Level 1)

1024 
entries

L1 L2 Offset
Virtual Address

20 bits

• Page size 4K (or 4Mb).

• First lookup is in the page directory : index using most 10 significant bits.

• Address of page directory stored in internal processor register (cr3).

• Results (normally) in the address of a page table.
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Example: x86 (2)

PFA V
D

R
W

U
S

W
T

C
D

A
C

D
Y

Z
OIGN

Page Table (Level 2)

1024 
entries

G
L

L1 L2 Offset
Virtual Address

20 bits

• Use next 10 bits to index into page table.

• Once retrieve page frame address, add in the offset (i.e. the low 12 bits).

• Notice page directory and page tables are exactly one page each themselves.
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Protection Issues

• Associate protection bits with each page – kept in page tables (and TLB).

• e.g. one bit for read, one for write, one for execute.

• May also distinguish whether may only be accessed when executing in kernel
mode, e.g.

Frame Number VXWRK

• At the same time as address is going through page hardware, can check protection
bits.

• Attempt to violate protection causes h/w trap to operating system code

• As before, have valid/invalid bit determining if the page is mapped into the
process address space:

– if invalid ⇒ trap to OS handler

– can do lots of interesting things here, particularly with regard to sharing. . .
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Shared Pages

Another advantage of paged memory is code/data sharing, for example:

• binaries: editor, compiler etc.

• libraries: shared objects, dlls.

So how does this work?

• Implemented as two logical addresses which map to one physical address.

• If code is re-entrant (i.e. stateless, non-self modifying) it can be easily shared
between users.

• Otherwise can use copy-on-write technique:

– mark page as read-only in all processes.

– if a process tries to write to page, will trap to OS fault handler.

– can then allocate new frame, copy data, and create new page table mapping.

• (may use this for lazy data sharing too).

Requires additional book-keeping in OS, but worth it, e.g. over 40Mb of shared code
on my linux box.
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Virtual Memory

• Virtual addressing allows us to introduce the idea of virtual memory :

– already have valid or invalid page translations; introduce new “non-resident”
designation

– such pages live on a non-volatile backing store
– processes access non-resident memory just as if it were ‘the real thing’.

• Virtual memory (VM) has a number of benefits:

– portability : programs work regardless of how much actual memory present

– convenience: programmer can use e.g. large sparse data structures with
impunity

– efficiency : no need to waste (real) memory on code or data which isn’t used.

• VM typically implemented via demand paging :

– programs (executables) reside on disk

– to execute a process we load pages in on demand ; i.e. as and when they are
referenced.

• Also get demand segmentation, but rare.
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Demand Paging Details

When loading a new process for execution:

• create its address space (e.g. page tables, etc)

• mark PTEs as either “invalid or “non-resident”

• add PCB to scheduler.

Then whenever we receive a page fault :
1. check PTE to determine if “invalid” or not

2. if an invalid reference ⇒ kill process;

3. otherwise ‘page in’ the desired page:

• find a free frame in memory

• initiate disk I/O to read in the desired page

• when I/O is finished modify the PTE for this page to show that it is now valid

• restart the process at the faulting instruction

Scheme described above is pure demand paging:

• never brings in a page until required ⇒ get lots of page faults and I/O when
process begins.

• hence many real systems explicitly load some core parts of the process first
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Page Replacement

• When paging in from disk, we need a free frame of physical memory to hold the
data we’re reading in.

• In reality, size of physical memory is limited ⇒
– need to discard unused pages if total demand for pages exceeds physical

memory size

– (alternatively could swap out a whole process to free some frames)

• Modified algorithm: on a page fault we

1. locate the desired replacement page on disk

2. to select a free frame for the incoming page:

(a) if there is a free frame use it
(b) otherwise select a victim page to free,
(c) write the victim page back to disk, and
(d) mark it as invalid in its process page tables

3. read desired page into freed frame

4. restart the faulting process

• Can reduce overhead by adding a ‘dirty’ bit to PTEs (can potentially omit step 2c
above)

• Question: how do we choose our victim page?
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Page Replacement Algorithms

• First-In First-Out (FIFO)

– keep a queue of pages, discard from head

– performance difficult to predict: no idea whether page replaced will be used
again or not

– discard is independent of page use frequency

– in general: pretty bad, although very simple.

• Optimal Algorithm (OPT)

– replace the page which will not be used again for longest period of time

– can only be done with an oracle, or in hindsight

– serves as a good comparison for other algorithms

• Least Recently Used (LRU)

– LRU replaces the page which has not been used for the longest amount of time

– (i.e. LRU is OPT with -ve time)

– assumes past is a good predictor of the future

– Q: how do we determine the LRU ordering?
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Implementing LRU

• Could try using counters
– give each page table entry a time-of-use field and give CPU a logical clock

(counter)

– whenever a page is referenced, its PTE is updated to clock value

– replace page with smallest time value

– problem: requires a search to find min value

– problem: adds a write to memory (PTE) on every memory reference

– problem: clock overflow

• Or a page stack :

– maintain a stack of pages (doubly linked list) with most-recently used (MRU)
page on top

– discard from bottom of stack

– requires changing 6 pointers per [new] reference

– very slow without extensive hardware support

• Neither scheme seems practical on a standard processor ⇒ need another way.
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Approximating LRU (1)

• Many systems have a reference bit in the PTE which is set by h/w whenever the
page is touched

• This allows not recently used (NRU) replacement:

– periodically (e.g. 20ms) clear all reference bits

– when choosing a victim to replace, prefer pages with clear reference bits

– if also have a modified bit (or dirty bit) in the PTE, can extend MRU to use
that too:

Ref? Dirty? Comment
no no best type of page to replace
no yes next best (requires writeback)
yes no probably code in use
yes yes bad choice for replacement

• Or can extend by maintaining more history, e.g.

– for each page, the operating system maintains an 8-bit value, initialized to zero

– periodically (e.g. 20ms) shift reference bit onto high order bit of the byte, and
clear reference bit

– select lowest value page (or one of) to replace
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Approximating LRU (2)

• Popular NRU scheme: second-chance FIFO
– store pages in queue as per FIFO

– before discarding head, check its reference bit

– if reference bit is 0, discard, otherwise:

∗ reset reference bit, and
∗ add page to tail of queue
∗ i.e. give it “a second chance”

• Often implemented with a circular queue and a current pointer; in this case
usually called clock.
• If no h/w provided reference bit can emulate:

– to clear “reference bit”, mark page no access

– if referenced ⇒ trap, update PTE, and resume
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Approximating LRU (2)
– to check if referenced, check permissions

– can use similar scheme to emulate modified bit
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Other Replacement Schemes

• Counting Algorithms: keep a count of the number of references to each page

– LFU: replace page with smallest count

– MFU: replace highest count because low count ⇒ most recently brought in.

• Page Buffering Algorithms:

– keep a min. number of victims in a free pool

– new page read in before writing out victim.

• (Pseudo) MRU:

– consider access of e.g. large array.

– page to replace is one application has just finished with, i.e. most recently used.

– e.g. track page faults and look for sequences.

– discard the kth in victim sequence.

• Application-specific:

– stop trying to second guess what’s going on.

– provide hook for app. to suggest replacement.

– must be careful with denial of service. . .
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Performance Comparison
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Graph plots page-fault rate against number of physical frames for a pseudo-local
reference string.

• want to minimise area under curve

• FIFO can exhibit Belady’s anomaly (although it doesn’t in this case)

• getting frame allocation right has major impact. . .
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Frame Allocation

• A certain fraction of physical memory is reserved per-process and for core OS
code and data.

• Need an allocation policy to determine how to distribute the remaining frames.

• Objectives:

– Fairness (or proportional fairness)?

∗ e.g. divide m frames between n processes as m/n, with remainder in the free
pool
∗ e.g. divide frames in proportion to size of process (i.e. number of pages used)

– Minimize system-wide page-fault rate?
(e.g. allocate all memory to few processes)

– Maximize level of multiprogramming?
(e.g. allocate min memory to many processes)

• Most page replacement schemes are global : all pages considered for replacement.

⇒ allocation policy implicitly enforced during page-in:

– allocation succeeds iff policy agrees

– ‘free frames’ often in use ⇒ steal them!
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The Risk of Thrashing
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thrashing

• As more processes enter the system, the frames-per-process value can get very
small.

• At some point we hit a wall:

– a process needs more frames, so steals them

– but the other processes need those pages, so they fault to bring them back in

– number of runnable processes plunges

• To avoid thrashing we must give processes as many frames as they “need”

• If we can’t, we need to reduce the MPL
(a better page-replacement algorithm will not help)
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Locality of Reference
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Locality of reference: in a short time interval, the locations referenced by a process
tend to be grouped into a few regions in its address space.

• procedure being executed

• . . . sub-procedures

• . . . data access

• . . . stack variables

Note: have locality in both space and time.
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Avoiding Thrashing

We can use the locality of reference principle to help determine how many frames a
process needs:

• define the Working Set (Denning, 1967)

– set of pages that a process needs in store at “the same time” to make any
progress

– varies between processes and during execution

– assume process moves through phases
– in each phase, get (spatial) locality of reference

– from time to time get phase shift
• Then OS can try to prevent thrashing by maintaining sufficient pages for current

phase:

– sample page reference bits every e.g. 10ms

– if a page is “in use”, say it’s in the working set

– sum working set sizes to get total demand D

– if D > m we are in danger of thrashing ⇒ suspend a process

• Alternatively use page fault frequency (PFF):

– monitor per-process page fault rate

– if too high, allocate more frames to process
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Segmentation
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• User prefers to view memory as a set of segments of no particular size, with no
particular ordering

• Segmentation supports this user-view of memory — logical address space is a
collection of (typically disjoint) segments.

• Segments have a name (or a number) and a length — addresses specify segment
and offset.

• Contrast with paging where user is unaware of memory structure (all managed
invisibly).
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Implementing Segments

• Maintain a segment table for each process:
Segment Access Base Size Others!

• If program has a very large number of segments then the table is kept in memory,
pointed to by ST base register STBR

• Also need a ST length register STLR since number of segs used by different
programs will differ widely

• The table is part of the process context and hence is changed on each process
switch.

Algorithm:

1. Program presents address (s, d).
Check that s < STLR. If not, fault

2. Obtain table entry at reference s+ STBR, a tuple of form (bs, ls)
3. If 0 ≤ d < ls then this is a valid address at location (bs, d), else fault
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Sharing and Protection

• Big advantage of segmentation is that protection is per segment; i.e. corresponds
to logical view.

• Protection bits associated with each ST entry checked in usual way

• e.g. instruction segments (should be non-self modifying!) thus protected against
writes etc.

• e.g. place each array in own seg ⇒ array limits checked by hardware

• Segmentation also facilitates sharing of code/data

– each process has its own STBR/STLR

– sharing is enabled when two processes have entries for the same physical
locations.

– for data segments can use copy-on-write as per paged case.

• Several subtle caveats exist with segmentation — e.g. jumps within shared code.
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Sharing Segments
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[DANGEROUS] [SAFE]

Sharing segments:

• wasteful (and dangerous) to store common information on shared segment in each
process segment table

• assign each segment a unique System Segment Number (SSN)

• process segment table simply maps from a Process Segment Number (PSN) to
SSN
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External Fragmentation Returns. . .

• Long term scheduler must find spots in memory for all segments of a program.

• Problem now is that segs are of variable size ⇒ leads to fragmentation.

• Tradeoff between compaction/delay depends on average segment size

• Extremes: each process 1 seg — reduces to variable sized partitions

• Or each byte one seg separately relocated — quadruples memory use!

• Fixed size small segments ≡ paging!

• In general with small average segment sizes, external fragmentation is small.
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Segmentation versus Paging

logical view allocation

Segmentation 4 8
Paging 8 4

⇒ try combined scheme.

• E.g. paged segments (Multics, OS/2)

– divide each segment si into k = dli/2ne pages, where li is the limit (length) of
the segment.

– have page table per segment.

8 high hardware cost / complexity.

8 not very portable.

• E.g. software segments (most modern OSs)

– consider pages [m, . . . ,m + l] to be a segment.

– OS must ensure protection / sharing kept consistent over region.

8 loss in granularity.

4 relatively simple / portable.
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Summary (1 of 2)

Old systems directly accessed [physical] memory, which caused some problems, e.g.

• Contiguous allocation:

– need large lump of memory for process

– with time, get [external] fragmentation

⇒ require expensive compaction

• Address binding (i.e. dealing with absolute addressing):

– “int x; x = 5;” → “movl $0x5, ????”

– compile time ⇒ must know load address.

– load time ⇒ work every time.

– what about swapping?

• Portability:

– how much memory should we assume a “standard” machine will have?

– what happens if it has less? or more?

Can avoid lots of problems by separating concept of logical (or virtual) and physical
addresses.
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Summary (2 of 2)
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fault (to OS)
translation

Run time mapping from logical to physical addresses performed by special hardware
(the MMU).

If we make this mapping a per process thing then:

• Each process has own address space.
• Allocation problem split:

– virtual address allocation easy.
– allocate physical memory ‘behind the scenes’.

• Address binding solved:

– bind to logical addresses at compile-time.
– bind to real addresses at load time/run time.

Modern operating systems use paging hardware and implement segments in software.
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I/O Hardware

• Wide variety of ‘devices’ which interact with the computer via I/O, e.g.

– Human readable: graphical displays, keyboard, mouse, printers

– Machine readable: disks, tapes, CD, sensors

– Communications: modems, network interfaces

• They differ significantly from one another with regard to:

– Data rate

– Complexity of control

– Unit of transfer

– Direction of transfer

– Data representation

– Error handling

⇒ difficult to present a uniform I/O system which hides all the complexity.

I/O subsystem is generally the ‘messiest’ part of OS.
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I/O Subsystem

Device Driver Layer
Device 
Driver
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Driver
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Unpriv
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I/O SchedulingI/O Buffering

Application-I/O Interface

• Programs access virtual devices:

– terminal streams not terminals

– windows not frame buffer

– event stream not raw mouse

– files not disk blocks

– printer spooler not parallel port

– network sockets not raw ethernet

• OS deals with processor-device interface:

– I/O instructions versus memory mapped

– I/O hardware type (e.g. 10’s of serial chips)

– polled versus interrupt driven

– processor interrupt mechanism
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Polled Mode I/O

status

command

data (r/w)

device-busy (R/O)

command-ready (W/O)

error (R/O)

read (W/O)

write (W/O)

*

• Consider a simple device with three registers: status, data and command.

• (Host can read and write these via bus)

• Then polled mode operation works as follows:

H repeatedly reads device busy until clear.

H sets e.g. write bit in command register, and puts data into data register.

H sets command ready bit in status register.

D sees command ready and sets device busy.
D performs write operation.

D clears command ready & then device busy.

• What’s the problem here?
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Interrupts Revisited

Recall: to handle mismatch between CPU and device speeds, processors provide an
interrupt mechanism:

• at end of each instruction, processor checks interrupt line(s) for pending interrupt

• if line is asserted then processor:

– saves program counter,

– saves processor status,

– changes processor mode, and

– jump to well known address (or its contents)

• after interrupt-handling routine is finished, can use e.g. the rti instruction to
resume.

Some more complex processors provide:

• multiple levels of interrupts

• hardware vectoring of interrupts

• mode dependent registers
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Interrupt-Driven I/O

Sometimes split implementation into low-level interrupt handler plus per-device
interrupt service routine, although nomenclature is far from universal:

• Interrupt handler (processor-dependent) may:

– save more registers.

– establish a language environment.

– demultiplex interrupt in software.

– invoke appropriate interrupt service routine (ISR)

• Then ISR (device- not processor-specific) will:

1. for programmed I/O device:

– transfer data.
– clear interrupt (sometimes a side effect of tx).

1. for DMA device:

– acknowledge transfer.

2. request another transfer if there are any more I/O requests pending on device.

3. signal any waiting processes.

4. enter scheduler or return.

Question: who is scheduling who?
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Device Classes

Homogenising device API completely not possible
⇒ OS generally splits devices into four classes:
1. Block devices (e.g. disk drives, CD):

• commands include read, write, seek

• raw I/O or file-system access

• memory-mapped file access possible

2. Character devices (e.g. keyboards, mice, serial):

• commands include get, put

• libraries layered on top to allow line editing

3. Network Devices

• varying enough from block and character to have own interface

• Unix and Windows/NT use socket interface

4. Miscellaneous (e.g. clocks and timers)

• provide current time, elapsed time, timer

• ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers.
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I/O Buffering

• Buffering: OS stores (a copy of) data in memory while transferring between
devices

– to cope with device speed mismatch

– to cope with device transfer size mismatch

– to maintain “copy semantics”

• OS can use various kinds of buffering:

1. single buffering — OS assigns a system buffer to the user request

2. double buffering — process consumes from one buffer while system fills the next

3. circular buffers — most useful for bursty I/O

• Many aspects of buffering dictated by device type:

– character devices ⇒ line probably sufficient.

– network devices ⇒ bursty (time & space).

– block devices ⇒ lots of fixed size transfers.

– (last usually major user of buffer memory)
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Blocking v. Nonblocking I/O

From programmer’s point of view, I/O system calls exhibit one of three kinds of
behaviour:

1. Blocking: process suspended until I/O completed

• easy to use and understand.

• insufficient for some needs.

2. Nonblocking: I/O call returns as much as available

• returns almost immediately with count of bytes read or written (possibly 0).

• can be used by e.g. user interface code.

• essentially application-level “polled I/O”.

3. Asynchronous: process runs while I/O executes

• I/O subsystem explicitly signals process when its I/O request has completed.

• most flexible (and potentially efficient).

• . . . but also most difficult to use.

Most systems provide both blocking and non-blocking I/O interfaces; fewer support
asynchronous I/O.
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Other I/O Issues

• Caching: main memory holding copy of data

– can work with both reads and writes

– key to I/O performance

• Scheduling:

– e.g. ordering I/O requests via per-device queue

– some operating systems try fairness. . .

• Spooling: queue output for a device

– useful if device is “single user” (i.e. can serve only one request at a time), e.g.
printer.

• Device reservation:

– system calls for acquiring or releasing exclusive access to a device (care
required)

• Error handling:

– e.g. recover from disk read, device unavailable, transient write failures, etc.

– most I/O system calls return an error number or code when an I/O request fails

– system error logs hold problem reports.
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I/O and Performance

• I/O a major factor in system performance

– demands CPU to execute device driver, kernel I/O code, etc.

– context switches due to interrupts

– data copying

– network traffic especially stressful.

• Improving performance:

– reduce number of context switches

– reduce data copying

– reduce # interrupts by using large transfers, smart controllers, polling

– use DMA where possible

– balance CPU, memory, bus and I/O performance for highest throughput.

Improving I/O performance is one of the main remaining systems challenges. . .
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File Management

Directory 
Service

Storage Service

Disk Handler

text name user file-id information requested
from file

user space

I/O subsystem

filing system

Filing systems have two main components:

1. Directory Service

• maps from names to file identifiers.

• handles access & existence control

2. Storage Service

• provides mechanism to store data on disk

• includes means to implement directory service
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File Concept

What is a file?

• Basic abstraction for non-volatile storage.

• Typically comprises a single contiguous logical address space.

• Internal structure:

1. None (e.g. sequence of words, bytes)

2. Simple record structures

– lines
– fixed length
– variable length

3. Complex structures

– formatted document
– relocatable object file

• Can simulate last two with first method by inserting appropriate control
characters.

• All a question of who decides:

– operating system

– program(mer).
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Naming Files

Files usually have at least two kinds of ‘name’:

1. System file identifier (SFID):

• (typically) a unique integer value associated with a given file

• SFIDs are the names used within the filing system itself

2. “Human” name, e.g. hello.java

• What users like to use

• Mapping from human name to SFID is held in a directory, e.g.

Name SFID

hello.java

23812Makefile

12353

README 9742

• Directories also non-volatile ⇒ must be stored on disk along with files.

3. Frequently also get user file identifier (UFID).

• used to identify open files (see later)
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File Meta-data

Type (file or directory)

Location on Disk
Size in bytes

Time of creation

Access permissions

File Control Block

Metadata Table
(on disk)

f(SFID)

SFID

In addition to their contents and their name(s), files typically have a number of other
attributes, e.g.

• Location: pointer to file location on device

• Size: current file size

• Type: needed if system supports different types

• Protection: controls who can read, write, etc.

• Time, date, and user identification: data for protection, security and usage
monitoring.

Together this information is called meta-data. It is contained in a file control block.
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Directory Name Space (I)

What are the requirements for our name space?

• Efficiency: locating a file quickly.

• Naming: user convenience

– allow two (or more generally N) users to have the same name for different files

– allow one file have several different names

• Grouping: logical grouping of files by properties (e.g. all Java programs, all games,
. . . )

First attempts:

• Single-level: one directory shared between all users

⇒ naming problem

⇒ grouping problem

• Two-level directory: one directory per user

– access via pathname (e.g. bob:hello.java)

– can have same filename for different user

– but still no grouping capability.
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Directory Name Space (II)

Ann Bob Yao

javamail A

B C G H

I J

sent

FED

• Get more flexibility with a general hierarchy.
– directories hold files or [further] directories

– create/delete files relative to a given directory

• Human name is full path name, but can get long:
e.g. /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c

– offer relative naming, login directory, current working directory

• What does it mean to delete a [sub]-directory?
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Directory Name Space (III)

Ann Bob Yao

javamail A

B C

D E F

G H

I J

sent

• Hierarchy good, but still only one name per file.

⇒ extend to directed acyclic graph (DAG) structure:

– allow shared subdirectories and files.

– can have multiple aliases for the same thing

• Problem: dangling references

• Solutions:

– back-references (but variable size records), reference counts.

• Problem: cycles. . .
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Directory Implementation

/Ann/mail/B

Ann

Bob

Yao

Name SFID

1034

179

7182

mail

A

Name SFID

2165

5797 sent

B

C

Name SFID

434

2459

25

D

D

D

Y

Y

Y

Y

Y

N

N

N

• Directories are non-volatile ⇒ store as “files” on disk, each with own SFID.

• Must be different types of file (for traversal)

• Explicit directory operations include:

– create directory

– delete directory

– list contents

– select current working directory

– insert an entry for a file (a “link”)
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File Operations (I)

UFID SFID File Control Block (Copy)

1
2
3
4

23421
3250
10532
7122

location on disk, size,...
"              "
"              "
"              "

• Opening a file: UFID = open(<pathname>)

1. directory service recursively searches directories for components of
<pathname>

2. if all goes well, eventually get SFID of file.

3. copy file control block into memory.

4. create new UFID and return to caller.

• Create a new file: UFID = create(<pathname>)

• Once have UFID can read, write, etc.

– various modes (see next slide)

• Closing a file: status = close(UFID)

1. copy [new] file control block back to disk.

2. invalidate UFID
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File Operations (II)

current 
file position

end of filestart of file
already accessed to be read

• Associate a cursor or file position with each open file (viz. UFID), initialised to
start of file.

• Basic operations: read next or write next, e.g.

– read(UFID, buf, nbytes), or
– read(UFID, buf, nrecords)

• Sequential Access: above, plus rewind(UFID).

• Direct Access: read N or write N

– allow “random” access to any part of file.
– can implement with seek(UFID, pos)

• Other forms of data access possible, e.g.

– append-only (may be faster)
– indexed sequential access mode (ISAM)
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Other Filing System Issues

• Access Control: file owner/creator should be able to control what can be done,
and by whom.

– access control normally a function of directory service ⇒ checks done at file
open time

– various types of access, e.g.

∗ read, write, execute, (append?),
∗ delete, list, rename

– more advanced schemes possible (see later)

• Existence Control: what if a user deletes a file?

– probably want to keep file in existence while there is a valid pathname
referencing it

– plus check entire FS periodically for garbage

– existence control can also be a factor when a file is renamed/moved.

• Concurrency Control: need some form of locking to handle simultaneous access

– may be mandatory or advisory

– locks may be shared or exclusive

– granularity may be file or subset
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Protection
Require protection against unauthorised:

• release of information

– reading or leaking data
– violating privacy legislation
– using proprietary software
– covert channels

• modification of information

– changing access rights
– can do sabotage without reading information

• denial of service

– causing a crash
– causing high load (e.g. processes or packets)
– changing access rights

Also wish to protect against the effects of errors:

• isolate for debugging
• isolate for damage control

Protection mechanisms impose controls on access by subjects (e.g. users) on objects
(e.g. files).
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Protection and Sharing

If we have a single user machine with no network connection in a locked room then
protection is easy.

But we want to:

• share facilities (for economic reasons)

• share and exchange data (application requirement)

Some mechanisms we have already come across:

• user and supervisor levels

– usually one of each

– could have several (e.g. MULTICS rings)

• memory management hardware

– protection keys

– relocation hardware

– bounds checking

– separate address spaces

• files

– access control list

– groups etc
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Design of Protection System

• Some other protection mechanisms:

– lock the computer room (prevent people from tampering with the hardware)

– restrict access to system software

– de-skill systems operating staff

– keep designers away from final system!

– use passwords (in general challenge/response)

– use encryption

– legislate

• ref: Saltzer + Schroeder Proc. IEEE Sept 75

– design should be public

– default should be no access

– check for current authority

– give each process minimum possible authority

– mechanisms should be simple, uniform and built in to lowest layers

– should be psychologically acceptable

– cost of circumvention should be high

– minimize shared access
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Authentication of User to System (1)

Passwords currently widely used:

• want a long sequence of random characters issued by system, but user would write
it down
• if allow user selection, they will use dictionary words, car registration, their name,

etc.
• best bet probably is to encourage the use of an algorithm to remember password
• other top tips:

– don’t reflect on terminal, or overprint

– add delay after failed attempt

– use encryption if line suspect

• what about security of password file?

– only accessible to login program (CAP, TITAN)

– hold scrambled, e.g. UNIX

∗ only need to write protect file
∗ need irreversible function (without password)
∗ maybe ‘one-way’ function
∗ however, off line attack possible
⇒ really should use shadow passwords
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Authentication of User to System (2)

E.g. passwords in UNIX:

• simple for user to remember

arachnid

• sensible user applies an algorithm

!r!chn#d

• password is DES-encrypted 25 times using a 2-byte per-user ‘salt’ to produce a 11
byte string

• salt followed by these 11 bytes are then stored

IML.DVMcz6Sh2

Really require unforgeable(?) evidence of identity that system can check:

• enhanced password: challenge-response.

• id card inserted into slot

• fingerprint, voiceprint, face recognition

• smart cards

Operating Systems — Protection 142



Authentication of System to User

User wants to avoid:

• talking to wrong computer

• right computer, but not the login program

Partial solution in old days for directly wired terminals:

• make login character same as terminal attention, or

• always do a terminal attention before trying login

But, today micros used as terminals ⇒
• local software may have been changed

• so carry your own copy of the terminal program

• but hardware / firmware in public machine may have been modified

Anyway, still have the problem of comms lines:

• wiretapping is easy

• workstation can often see all packets on network

⇒ must use encryption of some kind, and must trust encryption device (e.g. a smart
card)
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Mutual suspicion

• We need to encourage lots and lots of suspicion:

– system of user

– users of each other

– user of system

• Called programs should be suspicious of caller (e.g. OS calls always need to check
parameters)

• Caller should be suspicious of called program

• e.g. Trojan horse:

– a ‘useful’ looking program — a game perhaps

– when called by user (in many systems) inherits all of the user’s privileges

– it can then copy files, modify files, change password, send mail, etc. . .

– e.g. Multics editor trojan horse, copied files as well as edited.

• e.g. Virus:

– often starts off as Trojan horse

– self-replicating
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Access matrix

Access matrix is a matrix of subjects against objects.

Subject (or principal) might be:

• users e.g. by uid
• executing process in a protection domain
• sets of users or processes

Objects are things like:

• files
• devices
• domains / processes
• message ports (in microkernels)

Matrix is large and sparse ⇒ don’t want to store it all.

Two common representations:

1. by object: store list of subjects and rights with each object ⇒ access control list
2. by subject: store list of objects and rights with each subject ⇒ capabilities
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Access Control Lists

Often used in storage systems:

• system naming scheme provides for ACL to be inserted in naming path, e.g. files

• if ACLs stored on disk, check is made in software ⇒ must only use on low duty
cycle

• for higher duty cycle must cache results of check

• e.g. Multics: open file = memory segment.
On first reference to segment:

1. interrupt (segment fault)

2. check ACL

3. set up segment descriptor in segment table

• most systems check ACL

– when file opened for read or write

– when code file is to be executed

• access control by program, e.g. Unix

– exam prog, RWX by examiner, X by student

– data file, A by exam program, RW by examiner
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Capabilities

Capabilities associated with active subjects, so:

• store in address space of subject

• must make sure subject can’t forge capabilities

• easily accessible to hardware

• can be used with high duty cycle
e.g. as part of addressing hardware

– Plessey PP250

– CAP I, II, III

– IBM system/38

– Intel iAPX432

• have special machine instructions to modify (restrict) capabilities

• support passing of capabilities on procedure (program) call

Can also use software capabilities (checked by encryption) in distributed systems
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Covert channels

Information leakage by side-effects: lots of fun!

At the hardware level:

• wire tapping

• monitor signals in machine

• modification to hardware

• electromagnetic radiation of devices

By software:

• leak a bit stream as:

file exists page fault compute a while 1
no file no page fault sleep for a while 0

• system may provide statistics
e.g. TENEX password cracker using system provided count of page faults

In general, guarding against covert channels is expensive and difficult.
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Protection and Risk

• be sceptical of systems being “absolutely secure”

• need to understand benefit and cost to attacker

• seek solutions which drastically increase cost to attacker (but not to system)

• much bigger issue of understanding attacker motivation

• just because difficult to attack now, doesn’t mean can’t be attacked later at leisure

• do not want to make systems unusable
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Unix: Introduction

• Unix first developed in 1969 at Bell Labs (Thompson & Ritchie)

• Originally written in PDP-7 asm, but then (1973) rewritten in the ‘new’ high-level
language C
⇒ easy to port, alter, read, etc.

• 6th edition (“V6”) was widely available (1976).

– source avail ⇒ people could write new tools.

– nice features of other OSes rolled in promptly.

• By 1978, V7 available (for both the 16-bit PDP-11 and the new 32-bit VAX-11).

• Since then, two main families until 1998ish, and then linux takes off:

– AT&T: “System V”, ending in SVR5 (1997 release).

– Berkeley: “BSD”, with FreeBSD and Mac OS X still going

– linux

• Standardisation efforts (e.g. POSIX, X/OPEN) to homogenise.

• Best known “UNIX” today is probably linux, but also get FreeBSD, NetBSD, and
(commercially) Solaris, Mac OS X.
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Unix Family Tree (Simplified)

System V
SVR2

SVR3

SVR4

4.2BSD

4.3BSD

4.3BSD/Tahoe

4.3BSD/Reno

4.4BSD

Eighth Edition

Ninth Edition

Tenth Edition

Mach

OSF/1 SunOS 4

Solaris

Solaris 2

SunOS

SunOS 3

First Edition

Fifth Edition

Sixth Edition

Seventh Edition
3BSD

4.0BSD
4.1BSD

System III

32V

1974
1975

1977

1983
1984
1985
1986

1987
1988
1989

1990

1991
1992

1993

1969

1973

1976

1978
1979
1980
1981
1982
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Design Features

Ritchie and Thompson writing in CACM, July 74, identified the following (new)
features of UNIX:

1. A hierarchical file system incorporating demountable volumes.

2. Compatible file, device and inter-process I/O.

3. The ability to initiate asynchronous processes.

4. System command language selectable on a per-user basis.

5. Over 100 subsystems including a dozen languages.

6. A high degree of portability.

Features which were not included:

• real time

• multiprocessor support

Adding these in is pretty hard.
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Structural Overview

System Call Interface

Application
(Process)

Application
(Process)

Application
(Process)

Kernel

User

Hardware

Process 
Management

Memory 
Management

Block I/O Char I/O

File System

Device Driver Device Driver Device Driver Device Driver

• Clear separation between user and kernel portions.

• Processes are unit of scheduling and protection.

• All I/O looks like operations on files.
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File Abstraction

• A file is an unstructured sequence of bytes.

• Represented in user-space by a file descriptor (fd)

• Operations on files are:

– fd = open (pathname, mode)

– fd = creat(pathname, mode)

– bytes = read(fd, buffer, nbytes)

– count = write(fd, buffer, nbytes)

– reply = seek(fd, offset, whence)

– reply = close(fd)

• Devices represented by special files:
– support above operations, although perhaps with bizarre semantics.

– also have ioctl’s: allow access to device-specific functionality.

• Hierarchical structure supported by directory files.
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Directory Hierarchy

/

etc/bin/ usr/dev/ home/

steve/

unix.ps index.html

jean/
hda hdb tty

• Directories map names to files (and directories).

• Have distinguished root directory called ’/’

• Fully qualified pathnames ⇒ perform traversal from root.

• Every directory has ’.’ and ’..’ entries: refer to self and parent respectively.

• Shortcut: current working directory (cwd).

• In addition shell provides access to home directory as ~username (e.g. ~steve/)
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Aside: Password File

• /etc/passwd holds list of password entries.

• Each entry roughly of the form:

user-name:encrypted-passwd:home-directory:shell

• Use one-way function to encrypt passwords.

– i.e. a function which is easy to compute in one direction, but has a hard to
compute inverse.

• To login:

1. Get user name

2. Get password

3. Encrypt password

4. Check against version in /etc/password

5. If ok, instantiate login shell.

• Publicly readable since lots of useful info there.

• Problem: off-line attack.

• Solution: shadow passwords (/etc/shadow)
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File System Implementation

type mode

timestamps (x3)

direct blocks (x12)

single indirect
double indirect

triple indirect

direct 
blocks 
(512)

data

data

data

data

data

data

to block with 512 
single indirect entries

to block with 512 
double indirect entries

userid groupid

size nblocks
nlinks flags

• Inside kernel, a file is represented by a data structure called an index-node or i-node.
• Holds file meta-data:

a) Owner, permissions, reference count, etc.

b) Location on disk of actual data (file contents).

• Where is the filename kept?
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Directories and Links

home/

steve/ jean/

/

doc/

.

..
unix.ps
index.html

214
78
385

56

Filename I-Node

misc 47

.

..
unix.ps
hello.txt

2

78
107

13

Filename I-Node

misc/ index.html unix.ps

hello.txt

bin/

• Directory is a file which maps filenames to i-nodes.

• An instance of a file in a directory is a (hard) link.
• (this is why have reference count in i-node).

• Directories can have at most 1 (real) link. Why?

• Also get soft- or symbolic-links: a ‘normal’ file which contains a filename.
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On-Disk Structures

S
u

p
er

-B
lo

ck

B
o

o
t-

B
lo

ck

Inode 
Table

Data
Blocks

S
u

p
er

-B
lo

ck

Inode 
Table

Data
Blocks

Partition 1 Partition 2

Hard Disk

0 1 2 i i+1 j j+1 j+2 l l+1 m

• A disk is made up of a boot block followed by one or more partitions.
• (a partition is just a contiguous range of N fixed-size blocks of size k for some N

and k).

• A Unix file-system resides within a partition.

• Superblock contains info such as:

– number of blocks in file-system

– number of free blocks in file-system

– start of the free-block list

– start of the free-inode list.

– various bookkeeping information.
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Mounting File-Systems

/

etc/bin/ usr/dev/ home/

hda1 hda2 hdb1

steve/ jean/

/

Mount
Point

Root File-System

File-System
on /dev/hda2

• Entire file-systems can be mounted on an existing directory in an already
mounted filesystem.

• At very start, only ‘/’ exists ⇒ need to mount a root file-system.

• Subsequently can mount other file-systems, e.g. mount("/dev/hda2", "/home",
options)

• Provides a unified name-space: e.g. access /home/steve/ directly.

• Cannot have hard links across mount points: why?

• What about soft links?
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In-Memory Tables

Process A

Process B

0
1
2
3
4

N

11
3
25
17
1

6

0
1
2
3
4

N

2
27
62
5
17

32

0 47
1

17

135

78

process-specific
file tables

system-wide
open file table

Inode 78

acitve inode table

• Recall process sees files as file descriptors
• In implementation these are just indices into process-specific open file table
• Entries point to system-wide open file table. Why?

• These in turn point to (in memory) inode table.
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Access Control

Owner Group World

R W E R W E R W E

= 0640

Owner Group World

R W E R W E R W E

= 0755

• Access control information held in each inode.

• Three bits for each of owner, group and world : read, write and execute.

• What do these mean for directories?

• In addition have setuid and setgid bits:

– normally processes inherit permissions of invoking user.

– setuid/setgid allow user to “become” someone else when running a given
program.

– e.g. prof owns both executable test (0711 and setuid), and score file (0600)

⇒ anyone user can run it.
⇒ it can update score file.
⇒ but users can’t cheat.

• And what do these mean for directories?
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Consistency Issues

• To delete a file, use the unlink system call.

• From the shell, this is rm <filename>

• Procedure is:

1. check if user has sufficient permissions on the file (must have write access).

2. check if user has sufficient permissions on the directory (must have write
access).

3. if ok, remove entry from directory.

4. Decrement reference count on inode.

5. if now zero:

a. free data blocks.
b. free inode.

• If crash: must check entire file-system:

– check if any block unreferenced.

– check if any block double referenced.
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Unix File-System: Summary

• Files are unstructured byte streams.

• Everything is a file: ‘normal’ files, directories, symbolic links, special files.

• Hierarchy built from root (‘/’).

• Unified name-space (multiple file-systems may be mounted on any leaf directory).

• Low-level implementation based around inodes.
• Disk contains list of inodes (along with, of course, actual data blocks).

• Processes see file descriptors: small integers which map to system file table.

• Permissions for owner, group and everyone else.

• Setuid/setgid allow for more flexible control.

• Care needed to ensure consistency.
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Unix Processes

Unix
Kernel 

Address Space
per Process

Text Segment

Data Segment

Stack Segment

Free
Space

grows downward as 
functions are called

grows upwards as more
memory allocated

Kernel Address Space
(shared by all)

• Recall: a process is a program in execution.

• Have three segments: text, data and stack.

• Unix processes are heavyweight.
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Unix Process Dynamics

execve exit

fork wait

parent
process

program executes

child
process zombie

process

parent process  (potentially) continues

• Process represented by a process id (pid)

• Hierarchical scheme: parents create children.

• Four basic primitives:

– pid = fork ()

– reply = execve(pathname, argv, envp)

– exit(status)

– pid = wait (status)

• fork() nearly always followed by exec()

⇒ vfork() and/or COW.
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Start of Day

• Kernel (/vmunix) loaded from disk (how?) and execution starts.

• Root file-system mounted.

• Process 1 (/etc/init) hand-crafted.

• init reads file /etc/inittab and for each entry:

1. opens terminal special file (e.g. /dev/tty0)

2. duplicates the resulting fd twice.

3. forks an /etc/tty process.

• each tty process next:

1. initialises the terminal

2. outputs the string “login:” & waits for input

3. execve()’s /bin/login

• login then:

1. outputs “password:” & waits for input

2. encrypts password and checks it against /etc/passwd.

3. if ok, sets uid & gid, and execve()’s shell.

• Patriarch init resurrects /etc/tty on exit.
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The Shell

execve
child

process

program 
executes

fg?

repeat
ad 

infinitum

yes

no

fork

read get command line

issue promptwrite

exitwait
zombie
process

• Shell just a process like everything else.

• Uses path for convenience.

• Conventionally ‘&’ specifies background.

• Parsing stage (omitted) can do lots. . .
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Shell Examples

# pwd
/home/steve
# ls -F
IRAM.micro.ps gnome_sizes prog-nc.ps
Mail/ ica.tgz rafe/
OSDI99_self_paging.ps.gz lectures/ rio107/
TeX/ linbot-1.0/ src/
adag.pdf manual.ps store.ps.gz
docs/ past-papers/ wolfson/
emacs-lisp/ pbosch/ xeno_prop/
fs.html pepsi_logo.tif
# cd src/
# pwd
/home/steve/src
# ls -F
cdq/ emacs-20.3.tar.gz misc/ read_mem.c
emacs-20.3/ ispell/ read_mem* rio007.tgz
# wc read_mem.c

95 225 2262 read_mem.c
# ls -lF r*
-rwxrwxr-x 1 steve user 34956 Mar 21 1999 read_mem*
-rw-rw-r-- 1 steve user 2262 Mar 21 1999 read_mem.c
-rw------- 1 steve user 28953 Aug 27 17:40 rio007.tgz
# ls -l /usr/bin/X11/xterm
-rwxr-xr-x 2 root system 164328 Sep 24 18:21 /usr/bin/X11/xterm*

• Prompt is ‘#’.

• Use man to find out about commands.

• User friendly?
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Standard I/O

• Every process has three fds on creation:

– stdin: where to read input from.

– stdout: where to send output.

– stderr: where to send diagnostics.

• Normally inherited from parent, but shell allows redirection to/from a file, e.g.:

– ls >listing.txt

– ls >&listing.txt

– sh <commands.sh.

• Actual file not always appropriate; e.g. consider:

ls >temp.txt;
wc <temp.txt >results

• Pipeline is better (e.g. ls | wc >results)

• Most Unix commands are filters ⇒ can build almost arbitrarily complex command
lines.

• Redirection can cause some buffering subtleties.
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Pipes

Process BProcess A

read(fd, buf, n)write(fd, buf, n)

old data
new data

free space

• One of the basic Unix IPC schemes.

• Logically consists of a pair of fds

• e.g. reply = pipe( int fds[2] )

• Concept of “full” and “empty” pipes.

• Only allows communication between processes with a common ancestor (why?).

• Named pipes address this.
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Signals

• Problem: pipes need planning ⇒ use signals.
• Similar to a (software) interrupt.

• Examples:

– SIGINT : user hit Ctrl-C.

– SIGSEGV : program error.

– SIGCHLD : a death in the family. . .

– SIGTERM : . . . or closer to home.

• Unix allows processes to catch signals.

• e.g. Job control:

– SIGTTIN, SIGTTOU sent to bg processes

– SIGCONT turns bg to fg.

– SIGSTOP does the reverse.

• Cannot catch SIGKILL (hence kill -9)

• Signals can also be used for timers, window resize, process tracing, . . .
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I/O Implementation

Hardware

Device Driver Device Driver Device Driver Device Driver

Generic File System Layer

Buffer 
Cache

Raw Block I/ORaw Character I/O

Cooked 
Character I/O

Kernel

Kernel

User

• Recall:

– everything accessed via the file system.

– two broad categories: block and char.

• Low-level stuff gory and machdep ⇒ ignore.

• Character I/O low rate but complex ⇒ most functionality in the “cooked”
interface.

• Block I/O simpler but performance matters ⇒ emphasis on the buffer cache.
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The Buffer Cache

• Basic idea: keep copy of some parts of disk in memory for speed.

• On read do:

1. Locate relevant blocks (from inode)

2. Check if in buffer cache.

3. If not, read from disk into memory.

4. Return data from buffer cache.

• On write do same first three, and then update version in cache, not on disk.

• “Typically” prevents 85% of implied disk transfers.

• Question: when does data actually hit disk?

• Answer: call sync every 30 seconds to flush dirty buffers to disk.

• Can cache metadata too — problems?
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Traditionall Unix Process Scheduling

• Priorities 0–127; user processes ≥ PUSER = 50.

• Round robin within priorities, quantum e.g. 100ms.

• Priorities are based on usage and nice, i.e.

Pj(i) = Basej +
CPUj(i− 1)

4
+ 2× nicej

gives the priority of process j at the beginning of interval i where:

CPUj(i) =
2× loadj

(2× loadj) + 1
CPUj(i− 1) + nicej

and nicej is a (partially) user controllable adjustment parameter ∈ [−20, 20].
• loadj is the sampled average length of the run queue in which process j resides,

over the last minute of operation

• so if e.g. load is 1 ⇒ ∼ 90% of 1 seconds CPU usage “forgotten” within 5
seconds.
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Unix Process States (simplified)

fork()

ru

rk p

rb

z

sl

c

schedule

wakeup

sleep

interrupt

exit

syscall

returnreturn

preempt

same
state

ru = running (user-mode) rk = running (kernel-mode)

z = zombie p = pre-empted

sl = sleeping rb = runnable

c = created
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Summary

• Main Unix features are:

– file abstraction

∗ a file is an unstructured sequence of bytes
∗ (not really true for device and directory files)

– hierarchical namespace

∗ directed acyclic graph (if exclude soft links)
∗ can recursively mount filesystems

– heavy-weight processes

– IPC: pipes & signals

– I/O: block and character

– dynamic priority scheduling

∗ base priority level for all processes
∗ priority is lowered if process gets to run
∗ over time, the past is forgotten

• But early versions had inflexible IPC, inefficient memory management, and poor
kernel concurrency.

• Later versions address these issues.
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Course Review

• Part I: Computer Organisation

– “how does a computer work?”

– fetch-execute cycle, data representation, etc

– NB: ‘circuit diagrams’ not examinable

• Part II: Operating System Functions.

– OS structures: h/w support, kernel vs. µ-kernel

– Processes: states, structures, scheduling

– Memory: virtual addresses, sharing, protection

– I/O subsytem: polling/interrupts, buffering.

– Filing: directories, meta-data, file operations.

– Protection: access control, proving identity

• Part III: Unix Case Study

– Unix: rationale, file abstraction, processes, the shell, interproces
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Course Review
communications, I/O organisation, scheduling
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Glossary and Acronyms: A–D

AGP Advanced Graphics Port
ALU Arithmetic/Logic Unit
API Application Programming Interface
ARM a 32-bit RISC microprocessor
ASCII American Standard Code for Information Interchange

Alpha a 64-bit RISC microprocessor
BSD Berkeley Software Distribution (Unix variant)
BU Branch Unit
CAM Content Addressable Memory
COW Copy-on-Write
CPU Central Processing Unit
DAG Directed Acyclic Graph
DMA Direct Memory Access
DOS 1. a primitive OS (Microsoft)

2. Denial of Service
DRAM Dynamic RAM
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Glossary and Acronyms: F–H

FCFS First-Come-First-Served (see also FIFO)
FIFO First-In-First-Out (see also FCFS)
FS File System
Fork create a new copy of a process
Frame chunk of physical memory (also page frame)
HAL Hardware Abstraction Layer
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Glossary and Acronyms: I–L

I/O Input/Output (also IO)
IA32 Intel’s 32-bit processor architecture
IA64 Intel’s 64-bit processor architecture
IDE Integrated Drive Electronics (disk interface)
IPC Inter-Process Communication
IRP I/O Request Packet
IRQ Interrupt ReQuest
ISA 1. Industry Standard Architecture (bus),

2. Instruction Set Architecture
Interrupt a signal from hardware to the CPU
IOCTL a system call to control an I/O device
LPC Local Procedure Call
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Glossary and Acronyms: M–N

MAU Memory Access Unit
MFT Multiple Fixed Tasks (IBM OS)
MIMD Multi-Instruction Multi-Data
MIPS 1. Millions of Instructions per Second,

2. a 32-bit RISC processor
MMU Memory Management Unit
MVT Multiple Variable Tasks (IBM OS)
NT New Technology (Microsoft OS Family)
NTFS NT File System
NVRAM Non-Volatile RAM
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Glossary and Acronyms: 0–Si

OS Operating System
OS/2 a PC operating system (IBM & Microsoft)
PC 1. Program Counter

2. Personal Computer
PCB 1. Process Control Block

2. Printed Circuit Board
PCI Peripheral Component Interface
PIC Programmable Interrupt Controller
PTBR Page Table Base Register
PTE Page Table Entry
Page chunk of virtual memory
Poll [repeatedly] determine the status of
Posix Portable OS Interface for Unix
RAM Random Access Memory
ROM Read-Only Memory
SCSI Small Computer System Interface
SFID System File ID
Shell program allowing user-computer interaction
Signal event delivered from OS to a process
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Glossary and Acronyms: Sj-U

SJF Shortest Job First
SMP Symmetric Multi-Processor
Sparc a 32 bit RISC processor (Sun)
SRAM Static RAM
SRTF Shortest Remaining Time First
STBR Segment Table Base Register
STLR Segment Table Length Register
System V a variant of Unix
TCB 1. Thread Control Block

2. Trusted Computing Base
TLB Translation Lookaside Buffer
UCS Universal Character Set
UFID User File ID
UTF-8 UCS Transformation Format 8
Unix the first kernel-based OS
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Glossary and Acronyms: V–X

VAS Virtual Address Space
VAX a CISC processor / machine (Digital)
VLSI Very Large Scale Integration
VM 1. Virtual Memory

2. Virtual Machine
VMS Virtual Memory System (Digital OS)
VXD Virtual Device Driver
Win32 API provided by modern Windows OSes
XP a OS from Microsoft
x86 Intel familty of 32-bit CISC processors
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