Object Oriented Programming
Dr Robert Harle

|A CST, PBS (CS) and NST (CS)
Michaelmas 2014/15

= S50 far you have studied functional
programming (ML)

= Now we consider imperative programming
(Java primarily but not exclusively).
* You have practicals in Java
* This course complements the practicals
= Some material appears only here
= Some material appears only in the practicals

= Some material appears in both:
deliberately*!

* Some material may be repeated unintentionally. If so | will claim it was deliberate.

Types, Objects and Classes
Pointers, References and Memory
Creating Classes
Inheritance

Polymorphism

Lifecycle of an Object
Error Handling

Copying Objects

. Java Collections

10. Object Comparison

11. Design Patterns

12. Design Pattern (cont.)

G NO Ok DN~

O

Books and Resources |

= OOP Concepts

* Look for books for those learning to first program in an OOP
language (Java, C++, Python)

= Java: How fo Program by Deitel & Deitel (also C++)
* Thinking in Java by Eckels

= Java in a Nutshell (O' Reilly) if you already know another OOP
language

» Java specification book: hitp://java.sun.com/docs/lbooks/jls/
= Lots of good resources on the web

= Design Patterns
* Design Pafterns by Gamma et al.
* |ots of good resources on the web

Books and Resources |l

= Also check the course web page
* Updated notes (with annotations where possible)
= Code from the lectures
= Sample tripos questions

http://www.cl.cam.ac.uk/teaching/current/OOProg/

Lecture 1:
Types, Objects and Classes

Types of Languages

* Declarative - specify what fo do, not

how to do it. i.e.

* E.g. HIML describes what should appear on a web
page, and not how it should be drawn to the screen

* E.g. SQL statements such as “select * from table” tell a
program to get information from a database, but not
how to do so

* |Imperative - specify both what and how

* E.g. "double x™ might be a declarative instruction
that you want the variable x doubled somehow.
Imperatively we could have “x=x*2" or "x=x+x"

ML as a Functional Language

* Functional languages are a subset of

declarative languages
= ML is a functional language
" [t may appear that you tell 1

" how to do

everything, but you should think of it as

providing an explicit examp
happen

e of what should

* The compiler may optimise I.e. replace your
iImplementation with something entirely
different but 100% equivalent.

Aside: Some things to note on Java

" Programs are compiled and then run (i.e. not
interpreted live’ as per ML),

1) Write your .java code (e.g. Test.java)
2) Compile using javac Test.java
3) Run using java Test

= You need an explicit start point. This is called the
main() function

= You have to name your .java files exactly the same as
the class they define (this will make more sense |later)

More Boilerplate than ML

HelloWorld.ml:
print “Hello World”;

HelloWorld.java:
public class HelloWorld {
public static void main(String[] args) {
System.out.printin("Hello World!");

}
}

* Most imperative languages don't have type
Inference

int x = 512;
int y = 200; Cugliak hypes agsTgaed
Int z = x+y;

* The high-level language has a series of primitive
(built-in) types that we use to signify what’s in the
memory
* The compiler then knows what to do with them
= E.g. An “Int” is a primitive type in C, C++, Java and many

languages. It’s usually a 32-bit signed integer

= A variable is a name used in the code to refer to a
specific instance of a type
= X,Y,z are variables above
* They are all of type int

“Primitive” types are the built in ones.

» They are building blocks for more complicated types that
we will be looking at soon.

boolean - 1 bit (true, false)

char - 16 bits ~

byte - 8 bits as a sighed integer (-128 to 127) ol
short - 16 bits as a signed integer Complement
Int - 32 bits as a signed integer

long - 64 bits as a sighed integer]

float - 32 bits as a floating point number Sen
double - 64 bits as a floating point number | =™

See Workbook 1

* bool - 1 bit (true, false)
* int - arbitrary-precision integer
* real - arbitrary-precision floating point

Mv\cL\ S'lmplef fo oy ke ml’L

E‘A—-l—- \Woars o otk over w—ofkénj

—

R Pxad ‘m:u‘&'u oN

Immutable to Mutable Data

ML 1——
- val x=5; -« = /’i—
> valx =5:int CO p s
_X=7; I W‘(O\-/;SDV[
%)

> val it = false : bool 3 f

- val x=9; AT r
>va|x=9:int\ o /7#_—:?"—

Java
Int x=5;
x=7: = @ssif}nmq/
InEx=09:
Wonl b (DC - :q) @a\yﬁ.

c,owr;\-e_, (> == 5'3 snaand

byte™ arraydemo

byt@arraydem%@new byte[6];

(TOD 1&%35
o¢ Jaﬂwﬁij

Cﬂ7ﬁ35

aﬂvja‘uwb{‘)j j

oS lero (']

ON%UJMWO Efj >

Ox1AC594
Ox1AC595
Ox1AC596
Ox1AC597
Ox1AC598
Ox1AC599
Ox1AC5A0
Ox1AC5A1

Ox1AC5A2

MWD
= byte[6]; %
Q= new BEIOly T e als

ONTW%Tngxo
Shorage

Function Profotypes

* Functions are made up of a profotype
and a body

* Prototype specifies the function name,
arguments and possibly refurn type

* Body is tThe actual function code

f f b)) = ...;
un myfun(a,b) CM@WM
iInt myfun(int a, int'b) {...}

N

Overloading Functions

= Same function name
= Different arguments
= Possibly different return type

iInt myfun(int a, int b) {...}
float myfun(float a, float b) {...}
double myfun(double a, double b) {...}

-

* But not just a different return type

iInt myfun(int a, int b) {...}
float myfun(int a, int b) {...} X

Function Side Effects

* Functions in imperative languages can use
or adlter larger system state —» procedures

Maths: m(x,y) = xy p Ponchions
ML.: fun m(x,y) = x*y; (onhpub hepends
Java: int m(int x, int y) = x*y; only o
o Guien by
INnt y = I N
iInt m(x) { >peedanre
=vy+1; |
?‘letzjlrn x*y; (ouwktts or belanionr
} a\J«Yu/L.oL‘ on sone
_) Q)g\-W\ca.\ S"h‘*&)

void Procedures

= A void procedure returns nothing:

Int count=0;

void addToCount() {
count=count+1; Forr pro cedues

} Ge. ok tn mL)

Control Flow: Decision Making

if (boolean_expression) {
do something()

}

if (boolean_expression) {
do something()

}

else {
do something else()

}

Control Flow: Looping

for(/nitialisation, termination, increment)
for (int i=0; i<8; i++) ...
int j=0; for(; j<8; j++) ...
for(int k=7;k>=0; }¢-) ...
Jqrees
PO$" SRt

@LM valentl ko

NN
L,‘ C 7

while(boolean expression)

int i=0; while (i<8) {

int j=7; while (j>=0) {j—; ...}

Control Flow: Looping Examples

%mewé\%ﬂ
e e 0 ’ @mhr "

Int arr[] = 1,2,3,4,5}/ (Q"SH:“ Wm\v{/
for (int i=0; i<@rrlength)i++) { &7 >

System.out.printin(arr[il);

}

int 1=0;
while (i<arr.length) {
System.out.printin(arr[i]);

I=1+1;

Control Flow: Branching |

= Branching statements interrupt the current control flow
* retfurn
* Used to refurn from a function at any point

boolean linearSearch(int[] xs, 1int v) {
for (int i1=0;i<xs.length; i++) {
if (xs[1]==v) return true;

}
} return false; CDKQ Saanq

op-cwfﬁtj

Control Flow: Branching I

= Branching statements inferrupt the current control flow
" break
* Used to jump out of a loop

\ooo\em
vadxl LlinearSearch(int[] xs, int v) {
boolean found=false;
for (int i1=0;i<xs.length; i++) {
if (xs[i]==v) {
found=true;
break; // stop looping
}
}
return found; o Allsms> «s &
} koo p Jv‘-8|— 0N
re hm Po‘n/\]"

Control Flow: Branching Il

= Branching statements intferrupt the current control flow
= continue
» Used to skip the current iteration in a loop

volid printPositives(int[] xs) {

for (int 1i=0;i<xs.length; i++) {
if (xs[i1i]<0) continue;
System.out.println(xs[i]);

}

Custom Types

datatype 'a seq = NIl
| Cons of 'a* (unit -> 'a seq);

Cutlomm ’3{%/

ublic class Vector3D {
float x; .
float y; Petvm kv baaloling
float z; blocks

State and Behaviour

datatype 'a seq = Nil
| Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,)) = Xx;

public class Vector3D {

float x; Y,)\
float y; l 17

float z;]/

void add(float vx, float vy, float vz) { =
X=X+VX;
y=y+Vvy,
Z=7+VZ; !
}
}

Classes, Instances and Objects

* Classes can be seen as templates for
representing various concepts

= \We create instances of classes in a similar

way. e.g. D/C'ASS (cashrm hyet) "k
MyCoolClass rﬁ = new MyCoolClass(); e MJLOD]ClASj
MyCoolClass n = new MyCoolClass(); Ok@eoﬁ

makes two instances of class MyCooIC]ass.]
= An instance of a class is called an object ... ,,

(7@ N

o\o\')ed'

Loose Terminology (again!)

State Behaviour
Fields Functions
Instance Variables Methods
Properties Procedures
Variables

Members

Parameterised Classes

= ML's polymorphism allowed us to specify functions that
could be applied to multiple types

> fun self(x)=x;
valself =fn:'a->"'a

* |n Java, we can achieve something similar through
Generics; C++ through templates
»= Classes are defined with placeholders (see later

lectures)

= We fill them in when we create objects using them

LinkedList<Integer>
LinkedList<Double>

new LinkedList<Integer>()
new LinkedList<Double>()

Lecture 2:
Pointers, References and Memory

DinG /rraclL 6f FAﬂokoHS feh-o"

/1/_},/{ ‘Q,/V\/},\
7) i ‘
l%%%%%’ \4;(7"/”7
)) -~
L/__/_—// “\‘,L"_,n‘
e
Sonmghow rememhe, wlhee b rehn b

The Call Stack

Push ‘ ’ pop

Shack
ponter

O\fﬁmm /‘5

Local vasebles

Peobrn addess

Qlock. rome
(Q\HJU (}\AM}"O'\

creates Owﬂ.>

Nested Functions

int twice(int d) return 2*d;

int quadruple(int d) return twice(twice(d));
int a=50; —

int b = quadruple(a);
q"b\w’&""\’k

U WNBRE

Recursive Functions

int pow (int x, inty) {
if (y==0) return 1;
int p = pow(x,y-1);
return x*p;

} _

NOoupbh WNB

int s=pow(2,7);

ElERRERRERE

Tail-Recursive Functions |

oOoulh, WN K-

int pow (int x, inty, intt) {
if (y==0) return t;

return pow(x,y-1, t*x);

}
int s = pow(2,7,1);

fewe M

Tail-Recursive Functions |l

oOoulh, WN K-

int pow (int x, inty, intt) {
if (y==0) return t;
return pow(x,y-1, t*x);
}
ints = pow(2,7,1);

N
ﬁ?m\glm b He skl

r{fé‘%\ -
\ O‘\'\ ‘l \ _O\ 6‘-"]‘ ‘9 %\S
u (\Q . \ J'
\) 1)/
FOSS .

The Heap

int[] X = new int[3];
public void resize(int size) {

Xx=new int[size];
for (int=0; i<3; i++)
X[i]=tmpli];
}

resize(5):

‘LMJKH\ R 53

Sy 3

e
Mo Stack

Memory and Pointers

* |n redlity the compiler stores a mapping from
variable name 1o a specific memory address, along
with the type so it knows how 1o interpret the
memory (e.g. "xis an inf so it spans 4 byftes starfing
af memory address 435267).

= Lower level languages offen let us work with
memory addresses directly. Variables that store
memory addresses are called pointers or sometimes
references

* Manipulating memory directly allows us to write fast,
efficient code, but adlso exposes us to bigger risks

* et it wrong and the program ‘crashes’ .

Pointers: Box and Arrow Model

= A pointer is just the memory address of the first
memory slot used by the variable

* The pointer type tells the compiler how many
slots the whole object uses

Cort

- tr1 F—m> X
int x = 72: als

Int *xptrl = &x;
Xptr2 J

Int *xptr2 = xptrl;

Example: Representing Strings |

A single character is fine, but a text string is of variable length —
how can we cope with that?

We simply store the start of the string in memory and require it
to finish with a special character (the NULL or terminating
character, aka '\0)

So now we need 1o be able to store memory addresses — use
pointers

/7 8 9 10 11 12 13 14 15 16 17 18

11 *

We think of there being an array of characters (single letters) in
memory, with the string pointer pointing to the first element of
that array

Example: Representing Strings |

char letterArray[] = {'h','e",'l','l','0"',"\0"'};
char *stringPointer = &(letterArray[0]);
printf(“%s\n”,stringPointer);
letterArray[3]="\0";

printf(“%s\n”,stringPointer);

h|e|l

\O

—

‘lf\\’ X = Ox 0l02L0%04

— Y A %+ I ¥ Qo @] ¥L ¥ ¥4 ¥ <k

S l I |

Ol JoL |03 |04 | |

v i

Che s 3p <o) & = [/ gpk o ponbs o

>C 1 € 9CP = }9%

2 X ey valne ol

P w b o)
B(‘p-rl " “ 03
1_‘0*3 " " ok

péf,ﬁ. Y h tn oo v /

References

* Pointers are useful but dangerous

* References can be thought of as
restricted pointers
= Still just a memory address
* But the compiler limits what we can do fo it

= C, C++: pointers and references
= Java: references only
= ML: references only

References vs Pointers

Pointers References
Represents a Yes Yes
memory address
Can be arbitrarily Yes No
% assigned
Can be assigned to Yes Yes
established object
Can be tested for No Yes
validity 9
: ? l.\]&\'\c}\ AOKA 255
. Valid & ss
;.. NwWL-L P 2. N\A\\

y. R ardorm ¢ '\vwa\\«h

References Example (Java)

Amj]S oL MA[QA '{j rCFU‘-CrL‘—C

Skl heep
int[] refl = null;
refl =Chew) int[]1{1,2,3,4};
int[] refZ = refl; 2 {1,2,3,4}
A“OC«R— o
A L@of
\

refl[3]= 7 2
ref2[1]= 6 {1,6,3,7}

_

Argument Passing

* Pass-by-value. Copy the object info a new
value in the stack

void test(int x) {...}
int y=3;
test(y);

-

* Pass-by-reference. Create a reference to the
object and pass that.

S\hore FQL-MACL
ho e or'rﬁ'm ol
(s e oudh O

oF 9)

void test(int &x) {...}
int y=3;
test(y);

Passing Procedure Arguments In Javo

class Reference {

public static void update(int i, int[] array) {
i++; =
array[0]++;

}

public static void main(String[] args) {
int test i = 1;
int[] test array = {1}; We o
update(test i, test array); / \
System.out.printin(test i);
System.out.printin(test_array[0]); 4—('2"
}

Passing Procedure Arguments In C++

void update(int i, int &iref){

i++; -

iref++; |x rf

}

int main(int argc, char** argv) { —
inta=1; T
Int b=1;

update(a,b);
printf("%d %d\n",a,b); \

public static void myfunction2(int x, int[] a) { @4—1

x=1:
X=x+1; l
a = new int[]{1}; 7
al[0]=a[0]+1; o
} 4
Dy
public static void main(String[] arguments) {]
int num=1; A
int numarray[] = {1}; |
AL

myfunction2(num, numarray); _
System.out.printin(num+" “"+numarray[0]);

“1 2”
“2 1 7
“2 2”

COow>

Lecture 3:
Creating Classes

What Not to Do

Your ML has doubtless been one big file
where you threw together all the functions
and value declarations

Lots of C programs look like this :-(

We could emulate this in OOP by having
one class and throwing everything into it

We can do (much) better

ldentifying Classes

= We want our class to be a grouping of
conceptually-related state and behaviour

= One popular way to group is using
grammar

* Noun — Object
* Verb -» Method

“A simulation of the Earth's orbit around
the Sun”

UML: Representing a Class Graphically

MyFancyClass

/ - age :int <€ State
“-" means

private access + SetAge(age: int) : void

l

“4+” means
public access

- Behaviour

College 1 0..*x Student
S

—>

" Arrow going left to right says “a College has zero or
more students”

" Arrow going right to left says “a Student has exactly 1
College”

* What it means in real terms is that the College class
will contain a variable that somehow links to a set of
Student objects, and a Student will have a variable
that references a College object.

" Note that we are only linking c/asses: we don't start
drawing arrows to primitive types.

ﬂ‘lm&hc_c&@\s.?cwg

Wheel

oheels (7= nes Wheed (4]

Win }\Su{@,\

Scréen

= nes L\wdSereen U .,-

ink

N Secabs

-

e

W Lao,

Anatomy of an OOP Program (Java)

Class name

* Access modifier
public class MyFancyClas ,
Class state (properties

public int SomeNumber-/ that an object has such as
Cle - - ' colour or size)

public String someText;

public void someMethod() { «a— — Class behaviour (actions
% " an object can do)
}

— 'Magic' start point
public static void malnt‘lng[] args) { for the program
S MyFancyClass ¢ = new (named main by
/cyClass convention)
Create a reference to a \ Create an object of

MyFancyClass object type MyFancyClass in
and call it c memory

Anatomy of an OOP Program (C++)

Class name

* Access modifier
class MyFancyClass {
_ Class state
pUb“C: /
int someNumber;
public String someText;

Class behaviour
void someMethod() { /

'‘Magic' start point

}: for the program
void main(iht argc, char **argv) { Create an object of
MyFancyClass c; < type MyFancyClass and
call it cc
MyFancyClass *cp = new MyFancyClass()
_/' \ Create an object of
} Create a pointer to a type MyFancyClass and

MyFancyClass object and call it cp return a reference to it

hecessmy Yoo, slabe ond Behorioe

?U\b\‘.c class Test g

ik =S TVest £ = new TesH)!
' : L. x ="
vod sebx (ink \U)‘\/ { £, sehx (3) h
)
x=, /
/
j 4
. olot
2 ng/al"o)/

OOP Concepts

= OOP provides the programmer with a
number of important concepts:

= Modularity

* Code Re-Use
* Encapsulation
" I[Inheritance

* Polymorphism

* Let's look at these more closely...

You've long been taught to break down
complex problems into more tractable sub-
problems.

Each class represents a sub-unit of code that
(iIf written well) can be developed, tested and
updated independently from the rest of the
code.

Indeed, two classes that achieve the same
thing (but perhaps do it in different ways) can
be swapped in the code

Properly developed classes can be used in
other programs without modification.

Ceall 2xanmple]

Encapsulation |

class Student {
Int age;

¥

void main() {
Student s = new Student();
s.age = 21;

Student s2 = new Student():
s2.age=-1;

Student s3 = new Student();
s3.age=10055;

Encapsulation |l

class Student {
private int age;

boolean SetAge(int a) { S '
if (a>=0 && a<130) { ™

age=a; i~
return true; Cw(i j(
} of NPT
return false;
}
int GetAge() {return age;}
}

void main() {
Student s = new Student();
s.SetAge(21);

}

Encapsulation I

class Location {
private float x; C\’W 92
c — private Vector2D v;

}

class Location {

private float y;

float getX() {return x;}
float getY() {return y;}

void setX(float nx) {x=nx;}
void setY(float ny) {y=ny;}

float getX() {return v.getX();}
float getY() {return v.getY();}

void setX(float nx) {v.setX(nx);}
void setY(float ny) {v.setY(ny);}

Access Modifiers

Same Same
Everyone Subclass package
Class
(Java)
private X
package (Java) X X
protected X X X
public X X X X

Immutabllity

= Everything in ML was immutable (ignoring the
reference stuff). Immutability has a number of

advantages:
* Easier to construct, fest and use
= Can be used in concurrent contexts
= Allows lazy instantiation

= \WWe can use our access modifiers to create
immutable classes

Creating Parameterised Types

* These just require a placeholder type

class Vector3D<T> {

private Tx; ~_ '0[4%\,\0 | Les

private T y;

T getX() {return x;}
T getY() {returnvy;}

void setX(T nx) {x=nx;}
void setY(T ny) {y=ny;}

Class-Level Data and Functionality |

= A static field is created only once in the program's execution,
despite being declared as part of a class

public class Shopltem { One Oft.these Created
private float mVATRate; «— EVery time a new
private static float sVATRate; Shopltem is

- Instantiated. Nothing
} T keeps them all in
sync.

Only one of these created
ever. Every Shopltem object
references it.

Class-Level Data and Functionality |I

[0.2 | |=

— = Auto synchronised
ACross instances

|
- » Space efficient

wihon b
‘ghi'\ <

= Also static methods:

public class Whatever {
public static void main(String[] args) {

=
}

Why use Static Methods?

E

= Easier to debug (only depends on static state)

= Self documenting
= Groups related methods in a Class without requiring an object

* The compiler can produce more efficient code since no
specific object is involved

public class Math { public class Math {
public float sqrt(float x) {...} public static float sqgrt(float x) {...}
public double sin(float x) {...} public static float sin(float x) {...}
public double cos(float x) {...} public static float cos(float x) {...}
} }
VS
Math mathobject = new Math(); _Mg:ch.sqrt(9.0);
mathobject.sqrt(9.0); 7’
Mf')(‘ﬁ Clags vomn e wolr objecl
N L

Cocop

<\——1—”'

- Oof (C\/IMzs (c\cxsszs\ O 3%\/\35 o((— g \ele

onh U bdrcarons

P A ﬁook MS rﬁ?(’&%\.h o %\VLG \-C, ('-DMQ—/Pk

Nowe Nl)
4 q ? —_
ossoctahon | —
(‘ [y [y b} P
ihw { \5 _ H, 12
= NasS—=2A

- U2 ceenke V\/\M\\-w.‘DlQ— OLJCOJ’ﬁ Com ench henss

EY\Ca\DS 0\\0\("} on l S a ‘(p_,\,(C ot/\c_Q_\lol" b\/\;\,\— <N (ol,rag-e._s

) —
e o szpwale&- '\M‘p(e_me/\\'"ah'on (:(’OW\ 'vY\LQf(;QL.L,

' Ef_c&u{)(u o

N on

CL[[OLJJ

nd

bl re

Ceckor (re.m la)

AM&S&}MM o UusS2>s \Aem
W coda

o

S
JvJ

Enecpsulabion allows o5 o SM‘.LJ Aack inpuh

oo those Huob mele sense

. Shkhic ’(7(’:""‘3!5

for o ODI’\CL,D" bub i, e the Sanmc
‘Dg/ even inshence r.e . (Inslewnea - imckalp«bno&&«'f'
SLALC. or\) IoQ_LW-\Ov(\

Lecture 4:
Inheritance

Inheritance |

class Student {
public int age;
public String name;
public int grade;

}

class Lecturer {
public int age;
public String name;
public int salary;

}

There is a lot of duplication here

Conceptually there is a hierarchy that
we're not redlly representing

Both Lecturers and Students are people
(no, really).

We can view each as a kind of
specialisation of a general person

" They have all the properties of a
person

" But they also have some extra stuff
specific to them

(I should not have used public variables here, but | did it to keep things simple)

Inheritance |

class Person { * We create a base class (Person)
pugll}c gr;t_age; | and add a new notion: classes
y fublic String name; can inherit properties from it

* Both state and functionality
class Student extends‘ Persoﬁ){

public int grade; " We say:
! " Person is the superclass of
class Lecturer extends Person { Lecturer and Stfudent
) public int salary; = | ecturer and Student subclass
Person

.|\n\/\.o.f.\\"~'/‘/lcﬂ/

Representing Inheritance Graphically

See | T

Person

Generalise

Also known as an “is-a

relation

n

As in “Student is-a Person”

Student

exXam_score

salary

—

osl|eldads

name and age
inherited if not
private

(AML AYYVO'A)S \[DV\ \Qe,e,ok @ KWO'«)

/

— > Accociahon
7 Ll ny
2 Ihas —a
0\.8 ‘lﬂ) »L \/\?\S - &
A -l
—:9 H\IS ——qz'

\ aS N !X 1S & \/=

Tower OMul * Obieck

) N\&ﬁ“,cll O(G\SS O(OJ CC/i'
J \V
Fvreny lass extends oL ; ect
QJ | Ovect l
‘ _
MJQMSJ_ Q)’U‘L\'\C- closs MU Class e

. ——
— =

=

)

* Many languages support fype casting
pbetween numeric types

C,asjf
inti = 7; ,"
float f = (float) i; // f==7.0 &= WP <45 o
double d = 3.2; I NCoesl P
inti2 =(int)d; //i2==
Lalawll Caﬁ"/

Lpse preca Sion

= With inherifance it is reasonable to type
cast an object to any of the types
above it in the inheritance tree...

Person = Student is-a Person
" Hence we can use a Student

ZF object anywhere we want a

Student

Student s = new Student()
Person p = (Person) s;

e

“Castin
o o ()E/deV\ g \'D A Persor\

Person object

* Can perform widening
conversions (Up the tree)

public void print(Person p) {...}

Student s = new Student();
print(s);

\ [t | Pevson et |

Implicit cast

Narrowing

Person = Narrowing conversions move
down the tree (more specific)
ZF * Need to take care...
Student e v— -
< Pevson

Person p = new Person();

Student s = (Student) p;

7

FAILS. Not enough info
In the real object to represent
a Student

ﬂ;

Student s = new Student();
Person p = (Person) s;
Students s2 = (Student) p;

/

OK because underlying object
really is a Student

Wy ¢ —|-L;.5 Uselo | /
E-c,_ Mo\.L‘lnG, A]'nS'I" of o\\\ 'D-Q—b‘D\L
J J v

Linkedlisf £ SlwlunL? ls

Ll sk < Pemon> | p

= N

— .-,

~ reu Liahed lisk &ferson>)

Linledlist < Lechocer? 1L

6. 0ddh (e Shadant >)

c e —— 1. odh Cnaw Lacheert));,
1N
Loop over bkl (17((Fcos (< lysized) ia) £
\tSb VSLM-‘?: -'p -)

2
)

Fields and Inheritance

class Person { Student inherits this as a

public String mName; <& public variable and so
protected int mAge;

; canh access it
private double mHeith;\
} Student inherits this as a

protected variable and so
can access it

class Student extends Perspon {

public void do_something()
MmName="Bob/;
mAge=70;
lmHeight=1.70;

———

}

Student inherits this but
as a private variable and
SO cannot access it

\ directly t“\w\ﬂsr

b\)ov\w uok‘,lé,
g M (’USO’\E|@

Puu\o\lc, ~ QW‘/(T\”‘T\J Q&I*Mev\ cen. accebS

J

pmM{A/Sw\oclass 25 (e accss (r @Ml’km\ N

Sanng Dmclf/aﬁe, "\ J°~\N~\

pmmkﬁ —~ Of\“"j w\-uv\ﬂ\ U -NATAS)

(PO\L‘U\‘;»Q/,)v O’\\-ﬂ ’Gb;lvl‘]s 1\ Sewne pa,cchc.,Q/
=\ [\) J \ @,

Fields and Inheritance: Shadowing

class A { publicint x; }

class B extends A {
public int x;

}

class C extends B {
public int x;

public void action() {
/| Ways to set the x in C
x = 10;
Ek_l_i_g.x = 10;

/| Ways to set the x in B
super.x = 10;
((B)this).x = 10;

/| Ways to set the x in A
((A)this}.x = 10;

=t
T w
Bagtiiia

) S(AF@[, SV\QU,Su(Ma

NO!

E\'\;S ' The_ Cmmcv\'r" o‘\a\"]fd/ (:vé’»P f—u/\)

7\ 4

Swies” - G o ref . b Ue s:,.,lpzfo.\aCS

V)

Methods and Inheritance: Overriding

We might want fo require that every Person can dance. But
the way a Lecturer dances is not likely to be the same as the
way a Student dances...

class Person .
{ Person defines a

public void dance() { ‘default’
/ jiggle_a_bit(); g implementation of
P } dance()
3‘\3“”"\-‘& }
class Student extends Person {

» public void dance() { Student overrides

}
} .
Lecturer just
class Lecturer extends Person { inherits the default
} - implementation and

jiggles

,AA‘N\' ‘7\“\ A

0 |
, 1, .
Overtda P,\u;c. o N

e) S

g

Abstract Methods

= Sometimes we want to force a class to implement a
method but there isn't a convenient default behaviour

= An abstract method is used in a base class 1o do this
" |t has no implementation whatsoever

class abstract Person { No .
public abstract void dance(); é/:""‘v’{ o ,]—m!‘}or\

/Zf |
class Student extends Person {

7PN o public void dance() {
e body_pop();
o N }
Pes son ;
obytet class Lecturer extends Person {
\) public void dance() {
jiggle_a_bit();
}

}

Abstract Classes

= Note that | had to declare the class abstract too.
This is because it has a method without an

iImplementation so we can't direcftly instantiate a
Person.

class Person {
public:
virtual void dance()=0;

Java } C++

public abstract class Person {
public abstract void dance();
}

= All state and non-abstract methods are inherited as
normal by children of our abstract class

* |nterestingly, Java allows a class to be declared
abstract even if it contains no abstract methods!

Representing Abstract Classes

Per
Person g Sm§

Iltalics indicate the
+ dance() 4 class or method is
abstract

‘ 1 fdenal){

Student Lecturer

+ dancel() + dancel()

Lecture 5:
Polymorphism and Multiple Inheritance

Polymorphic Methods

Student s = new Student(); | ® Assuming Person has a
Person p = (Person)s; default dance() method,
p.dance(); what should happen here??

" General problem: when we refer to an object via a
parent type and both types implement a particular
method: which method should it run?

Polymorphic Concepts |

= Static polymorphism
* Decide at compile-tfime

* Since we don't know what the true type of the
object will be, we just run the parent method

* Type errors give compile errors

Student s = new Student(): ® Compiler says “p is of type
Person p = (Person)s; Person”

—%p.dance(); * So p.dance() should do the
) default dance() action in
L— F S &« pugom Person

coran Penenls Acn ()

Wy oAt Bl complec Juib [Ggue ont Ha dne byped

PQrSof\ fP = r\m\\

i (creake shodoat) &

P: (P-QfSCJV\> N W S\-vwkmi’(>/ ~

Dv\ﬁ_

J-

8\
>
Q
b

J

el g \o(MC\r\

p = CPUSOV\) new /\-&*P“‘JUC)/' A

]

QOKM&,(>/ +— Conpo ler cov-l\’ Jer or0 ll’lb

./‘C;\\\\'} ta S‘NJ\M‘I' o
T ex pbj(./

gl‘ﬁ-"\'@ Po%m@m \1&1\/\/‘& g@zn

ML wa\ ConS o 2> = OC.92csS °
—_— \ 7 . .
- vel tons = Ln: ‘oo = a \igh — o Wk
Cons 1 [2,34) -
4

Y . .
Lc,,mq';.\e,/ erecley e oS pr Gnby

A /

Qowa Genis public clocs Skock €T ¢

3

new Stoek < [“R:\ﬁ/> ()

N 77

Y. |
LCDM«.,‘/}(—C/ 'ﬁ“S m‘b\b ~I:,_\);')Q,

Polymorphic Concepts |l

* Dynamic polymorphism
* Run the method in the child

" Must be done at run-time since that's when we
know the child's type

* Type errors cause run-fime faults (crashes!)

Student s = new Student(); * Compiler looks in memory
Person p = (Person)s; and finds that the object is
p.dance(); really a Student

= So p.dance() runs the
L Looltg in mems (Y dance() action in Student

D Ny Shdab AM“’()

The Canonical Example |

Circle

+ draw()

Square

+ draw()

Oval

+ draw()

Star

+ draw()

= A drawing program that can draw
circles, squares, ovals and stars

* |t would presumably keep a list of all
the drawing objects

= Option 1

= Keep a list of Circle objects, a list of
Sguare objects,...

" |[terate over each list drawing each
object in turn

* What has to change if we want to
add a new shape?

The Canonical Example |

Shape

N\

Circle

+ draw()

Square

+ draw()

Oval

+ draw()

Star

+ draw()

= Option 2
= Keep asingle list of Shape references

* Figure out what each object redlly is,
narrow the reference and then

draw() _ _
for every Shape s in myShapelList

If (s is really a Circle)
Circle c = (Circle)s;
c.draw();

else if (s is really a Square)
Square sq = (Square)s;
sg.draw();

else If...

= What if we want to add a new
shape?

The Canonical Example I

= Option 3 (Polymorphic)

Shape
ZX-SSEQEEEEE nt = Keep a single list of Shape
y; , | references
+ draw
A * Let the compiler figure out what to
. do with each Shape reference
Circle
+ draw()
For every Shape s in myShapelList
Square s.draw();
+ draw() [t/ Pb k:) M.orPLv: s
Oval " ek ’
+ draw()
* What if we want fo add a new
Star shape?

+ draw()

Implementations

= Java

= All methods are dynamic polymorphic.
* Python

* All methods are dynamic polymorphic.
" C++

= Only functions marked virfual are dynamic
polymorphic

= Polymorphism in OOP is an extremely important
concept that you need to make sure you understand...

Harder Problems

* Given a class Fish and a class DrawableEntity, how do
we make a BlobFish class that is a drawable fish?

I DrawableEntity I
]

le | DrawableEntity |9| BlobFish |@| Fish
| |

Fish

? X Conceptually wrong

BlobFish

X Dependency
between two
independent

concepts

Multiple Inheritance

Fish

DrawableEntity

+ swim()

+ draw()

N\

N\

BlobFish

+ swim()
+ draw()

" |f we multiple inherit, we
capture the concept we want

= BlobFish inherits from both and
is-a Fish and is-a
DrawableEntity

= C++;

class Fish {...}
class DrawableEntity {...}

class BlobFish : public Fish,
public DrawableEntity {...}

= But...

Multiple Inheritance Problems

Fish

DrawableEntity

+ move()

+ move()

N\

N\

BlobFish

2777

What happens here? Which of
the move() methods is
inherited?

Have to add some grammar
tfo make it explicit

C++:

Yuk.

BlobFish *bf = new BlobFish();
bf->Fish::move();
bf->DrawableEntity::move();

J/
N\
/
-~
<
D
&
&€
& o
\) s \ﬂl
yaih [— 3 |
[A f Ih
' ; b .
< <3 A
\) -ﬂ—J
R
[Y)
W X2 .
. <L S,
) -
g% - PR >
% L o ”
4 2 I <1
\..d O .M_ m ~
ao ~N\
Q -
o
\J
—f \\l’/ 1“
9 J 2
) 4l N
- U
P >
— = }
N =
= (-

O

Fixing with Abstraction

Fish orawabieencty | W Actually, This problem
+move()| | +mover goes away if one or

JAN JAN more of the conflicting
methods is abstract

> Musk sl =
0 g Ha od

BlobFish =2 No akQQ-',\ML» v\ Of MOth

+ movel()

Java's Take on it: Interfaces

* Classes can have at most one parent. Period.

= But special ‘classes that are totally albstract can
do multiple inheritance - call these interfaces

<<interface>> <</interface>>
Drivable Identifiable
+ turn() + getidentifier()
+ brake()
Bicycle Car
+ turn()
+ t
+ bur;rll(g() + brake()
+ getldentifier()

Interface Drivable { . Q/X\J-/\A A
public void turn(); —
oublic void brake(); C\asS

} : imﬁiiwm r
Interface Identifiable { 1 (F‘hUA

public void getldentifier();
}

class Bicycle implements Drivable {
public void turn() {...}
public void brake() {... }

}

class Car implements Drivable, Identifiable {
public void turn() {...}
public void brake() {... }
public void getldentifier() {...}

}

L~
ARFIIRS: By
0\ rw |m|/) lrw C
2 \ - 3 > -m -+ \M. D
5 < — T
VRN]
h —— W £ V/u >
=) N =
VBN i
/yu ' /
-\ 7
</ f T
s= L \ \
N, S L
s \ [\
N 3 /
\\Y
=% \
X \
<\
- P
2 3|
1 .fk\ <5
d ~| \
\._% -2 \M
< M o ﬂD
& L3 =%
v = cy<L
—f-_v \\/ |
) ~/
_0)
) Q
E—— 2 —
\ 2%
A \ 8
N \
S N/ \
rrm . S = H\,
X 3 T
; < I\.v -
L | X \ d —
L ol S M .\\

| \ [A\
'\— 'O\C/t, (AN “)
< Q7
~ \
Wnly SHHIACT ’
™ Jo A AL N
N e A || e | . F vt
O Ul\ be | AnD \ | S
[QG‘EI\ a n
Yo) ub 1N hesfen .
| \ LN
. ‘) :Mt o U) 1. .A z N\,
) / D v \, 1 n _L
ut W D '\ﬂ\‘
\ 1
)
N
//

Lecture 6:
Lifecycle of an Object

Constructors

MyObject m = new MyQObject();

" You will have noticed that the RHS looks rather like a

function call, and that's exactly what it is.

It's a method that gets called when the object is
consfructed, and it goes by the name of a constructor
(if's not rocket science). It maps to the datatype
constructors you saw in ML.

We use constructors to initialise the state of the class in a
convenient way

= A constructor has the same name as the class
= A constructor has no refurn type

Constructor Examples

Java

public class Person {
private String mName;

S el
// Constructor ol
publi String name) {

mName=name;
}

No reh-n LUfJL

public static void main(
String[] args) {
Person p =
new Person(“Bob”);

}

C++

class Person {

};

private:
std::string mName;

public:
) Person(std::string &name){
mName=name;
}

int main (int argc,

}

char ** argv) {
Person p (“Bob”);

IM\'QG\\IW %{—0(/[(/5

&)wiﬂ‘,c classS /T-QSE Z,:

PﬁVQQ s PC-"':}',

.

x=%

3

D)

9Mb\lc— [QS’(’C} £
DC:'['/
8

)

?‘/'((\a\\ R@J‘] Xy |‘Cﬂ’\

‘ﬁ.‘m W m o=

‘L____.,S«dfsﬂa, \Ja.l\v«{, DF WOL baV—ﬂ}\ IN

e‘/‘P"”-/ oov‘il’mo(fv—v o Ao Im"’- Uoc/c.

C‘(V\&\ Ld\\b(ou,-;S(T <[h|'C3€/7 MLtS(— = ..

\ n - B
— lesant o Qom0 -eb g A

eleence. b the object refasins

o b ble

dublrc ‘E‘,M\A C,\mb X §£.3

I? ~ rL &\44\0”\ ‘ULQ/ Q(MSS
DE——— O

o

Default Constructor

o0
&Jw,@ks |
public class Person {
\ie eUSO"”{ private String mName;
e R
3 public static void main(String[] args) {

Person p = new Person();

}
}

" |If you specify no consfructor at all, Java
fills iIn an empty one for you

" Here it creates Person() for us

" The default constructor takes no
arguments (since it wouldn't know what

to do with them!)

Multiple Constructors

public class Student { " You can SpeCIfy as mony

private String mName; consfructors as you like.
private int mScore;

" fent(s . " Each constructor must
public Student(String s ;

mName=s: hgve a different |

mScore=0; signature (argument list)
}
public Student(String s, int sc) {

mName=s; —

mScore=sc;

}

public static void main(String[] args) {
Student s1 = new Student("Bob");
Student s2 = new Student("Bob",55);

}

Ca\“'mo\ Or\o_, Consbnc hor CV\}-I"\- A—wolcjwz.r

?w\o\;c Shudent (Sbl“fl neme, 1n b s*cm—e,\ ¢

mSeo e = Score

pblic. Shodent (%7 ny namme)

’U‘NS U'\(Nwz D)

3 A 1/ ° ,Il/u,.g;i" }2_0/ MO

1[;'(3]’ (me. of }jDV\/

Lown shwecho v

Constructor Chaining

* When you construct an object of a type with
parent classes, we call the consfructors of all of

the por_ef’rs IN seguence
NTAs

D&l{l Student s = new Student(); lﬂe I"hn (Dgﬂ

Animal ,
‘} \ 1. Call Animal()
Person
© 2. Call Person()

Student 3. Call Student()

.

Chaining without Default Constructors

= What if your classes have explicit consfructors that take
arguments? You need to explicitly chain

= Use super in Java:

— public Person (String name) {
*/ mName=name;
-mName : String

+Person(String name) }

N\

Student
+Student()

public Student () {
super(“Bob”);

}

= Most OO languages have a notion of a destructor too
= Gets run when the object is destroyed

= Allows us to release any resources (open files, etc) or
memory that we might have created especially for the

object
class FileReader { int main(int argc, char ** argv) {
public:
// Construct a FileReader Object
// Constructor FileReader *f = new FileReader();
FileReader() { —
f = fopen(“myfile”,"r"); // Use object here
C++ } ==
Destructor // Destruct the object
ileReader() { delete f;
fclose(f); _
}° ~ }
&4 (“’W*"O/ private :
FILE *file;

}

Cleaning Up

= A typical program creates |lofs of objects, not all of which need
to stick around all the fime

= Approach 1:

= Allow the programmer to specify when objects should be
deleted from memory

* Lots of control, but what if they forget to delete an object?
= A "memory leak”

= Approach 2:
* Delete the objects automatically (Garbage collection)

= But how do you know when an object will never be used
again and can be deleted??

Cleaning Up (Java) |

* Java reference counts. i.e. it keeps track of how many
references point fo a given object. If there are none,

the programmer can't access that object ever again so
It can e deleted

Person object

#ref =2

—

rl = null;

Person object
#ref =0

r2 = null;

rl

ri

r2

r2

ob;

Deletable

T raciag

A

“—éa D

Stac I

1 /)

\
/

N

'\

~N

—

1 N T~ —

\ 0(.7" ch'

Cleaning Up (Java) I

= Actual delefion occurs through a garbage collector

* A separate process that periodically scans the
objects in memory for any with a reference count of
zero, which it then deletes.

* Running the garbage collector is obviously not free. If
your program creates a lot of short-term objects, you
will soon notice the collector running

* Gives noticeable pauses o your application while
It runs.

" But minimises memory leaks (it does not prevent
them...)

One problem with GC is we have no idea when an
object will actually be deleted. The GC may even
decide to defer the deletion until a future run.

This causes issues for destructors — it might be ages
before a resource is closed and available again!

Therefore Java doesn't have destructors

It does have finalizers that gets run when the GC
deletes an object

= BUT there's no guarantee an object will ever get
garbage collected in Java...

* Garbage Collection = Desfruction

Lecture 7:
Error Handling

Return Codes

* The traditional imperative way to handle errors is to

return a value that indicates success/failure/error
é"ﬂ?f cod e

public int divide(double a, double b) {
if (b==0.0) return -1; // error
double result = a/b;) back
g ac
return O; // success S—— ot P55

}

if (divide(x,y)<0) System.out.printin(“Failure!!”);
* Problems:
= Couldignore the return value

* Have to keep checking what the return values are
meant o signify, etc.

®» The actual result often can't be returned in the same
way

Pass ‘9.3
‘-\ pe_(‘e,rej\ Ca_

ik il ((dedble a, dable o, dowdle g i) &

'l(: (0\:: 0-O> re_lwrn —\I

elee ¢

resull = f\/o\

ehuarn

~7

!

e

o~

-

\
o\ow
\

39\'6! o
c&h&(m.é -

7
N
/

=7 v

Codo\ G\Sa o S}JAo\ o Qo {—)«ouﬂL‘ Mag’c Vebaes

S

\ \ A - | - O\
donble Aiide (douwble N, olonble o’\/) 0

y Al |

A AN . .
|l7 (\ a\ z = D) rehm DDMLLﬁ,MA’K‘_\r-&L\AE:

N

U~

0&0-«‘.7(6, d = inde (Oxb\//

0\ = OKA\HOKQ. /r}\,(‘\'

A
/‘ ~ 0\\@.“\9(&_ = O, ()
’ goes il ((didhe (1)) <O
v // Ma’\/\.&, N
3
5 p ~
‘(\\" (J":V\AL <‘ric—" r)(D){\
(. \gnore to ehom U Lew Mo
J \)o..*-{,s ,@,/\)D'r

Deferred Error Handling

= A similar idea (with the same issues) is to set some state
in the system that needs to be checked for errors.

= C++ does this for streames:

ifstream file("test.txt");
if (file.good())
{

}

cout << "An error occurred opening the file" << end];

(‘)m(al‘,c Vechor LD pss = null

\/QOL\D()_B N oI (:Uec,ksrl\) v} £

i (Vgek() =200 &L v geh () ==0.0) {

rebnrn ((nall

5 (0D b all fo
inMcte enov
e‘ya_(o abience

donble Mg = Ma*'\z\.ﬁcl,’r{— (‘\l.g,e,H(C)* \l'ﬂe,{‘)(() +

V. gePY() ¥ V.ge FY Q)

reharn e Vechw 2D ((Vgehl O /pang,

v.gqer™ ()/MMA »
J J7 7

\\/\)

Non — Exam
Non —=

@Pk N, 0»| T2

* An exception is an object that can be thrown or raised
by a method when an error occurs and caught or
handled by the calling code

= Example usage:

try { u 1
double z = divide(x,y); 5 ™ [ock

}

catch(DivideByZeroException d) {

7 Y
// Handle error here Calzln Llock
}

Flow Control During Exceptions

* When an exception is thrown, any code leff to run in the
try block is skipped

Cdouble z=0.0;
boolean failed=false;

try {
z = divide(5,0);

NELODS Tl il sk ;%J
catch(DivideByZeroException d) {

failed=true;

}
z=3.0;
System.out.printin(z+" “+failed);

Creating Exceptions

= Just extend Exception (or Runtimekxception if you need it to
be unchecked). Good form to add a detail message in the
constructor but not required.

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
public ComputationFailed(String msqg) {
super(msg);
}
}

" You can also add more data to the exception class to provide
more info on what happened (e.g. store the numerator and
denominator of a failed division)

Throwing Exceptions

= An exception is an object that has Exception as
an ancestor

= SO you need to create it (with new) before
throwing

double divide(double x, double y) throws DivideByZeroException {
if (y==0.0) throivideByZeroException();
else return x/y; -

}

Multiple Handlers

= A try block can result in a range of different exceptions.
We test them in sequence

try {
FileReader fr = new FileReader(“somefile”);

Int r = fr.read();
}
catch(FileNoteFound fnf) {
// handle file not found with FileReader
}
catch(lOException d) {
// handle read() failed

}

Excepftion Hierarchies

" You can use inheritance hierarchies

public class MathException extends Exception {...}
public class InfiniteResult extends MathException {...}
public class DivByZero extends MathException {...}

= And catfch parent classes

try {

b Pl e s

catch(InfiniteResult ir) { ‘n orAel
// handle an infinite result

}

catch(MathException me) {

// handle any MathException or DivByZer
}

/\ww U(‘, émf

. Beceolx — gma\
<

— l\)ol‘l’ L\&LV\;U{‘LC — &{OLQ_,

'lf\\falm‘ CDV\ﬂti\'DhS Dw" D‘F ouvA” ')I\/"lf"‘-QJ'«a(-C Oof\‘”VDk

\/\/“C MV\

Checked vs Unchecked Exceptions

» Checked: must be handled or passed up.
» Used for recoverable errors 4

= Java requires you to declare checked exceptions that
your method throws

= Java requires you to catch the exception when you call
the function

double somefunc() throws SomeException {}

» Unchecked: not expected to be handled. Used for
programming errors

* Extends RuntimeException
* Good example is NullPointerException

finally

= With resources we offen want to ensure
that they are closed whatever happens

try {
fr,read();

fr.close();

}

catch(lOException ioe) {
// read() failed but we must still close the FileReader
fr.close();

}

finally |

* The finally block is added and will
always run (after any handler)

try {
fr,read(); <

}
catch(IOException ioe) {
// read() failed

}
finally {

fr.close();

}

Evil |I: Exceptions for Flow Control

= Afsome level, throwing an exception is like a GOTO

= Tempting tfo exploit this
o fesk

try {
for (inti=0;V; i++) {
System.out.printin(myarrayl[il);

}

}
catch (ArrayOutOfBoundsException ae) {

// This is expected

» This is not good. Exceptions are for exceptional
circumstances only

* Harder to read
* May prevent optimisations

Evil ll: Blank Handlers

* Checked exceptions must be handled

= Constantly having to use try...catch blocks to do this can be
annoying and the temptation is to just gaffer-tape it for now

try {
FileReader fr = new FileReader(filename);
}
catch (FileNotFound fnf) {
}

..but we never remembper to fix it and we could easily be

missing serious errors that manifest as bugs lafter on that are
extremely hard to track down

6"‘\ \“ . C't(CMMV‘eWk)\.C GKCQA‘)HM\ H‘tw‘\o[\m:\)

-Pc/\lo\\ < \J6 ,0\ '_{ﬁIA’\C ‘ ~ouW S E)k CZ,"D/W'OV\ é,

———

Advantages of Exceptions

= Advantages:

Class name can be descriptive (no need to look up error
codes)

Doesn't interrupt the natural flow of the code by requiring
constant tests

The exception object itself can contain state that gives
lots of detail on the error that caused the exception

Can't be ignored, only handled

(ke A

a\.\-—e-— Error \)\'GJ\ 0\\. N 6

ond

Lecture 8:
Copying Objects

Cloning |

= Sometimes we redlly do want to copy an object

Person object
(name =
MBOb")

* Java cadlls this cloning

-

Person object Person object
(name = (name =
MBOb") "BOb")
T T
r r_copy
_ 1),
ferson f= r& ferson),

* We need special support for it

Pecson @Y= P,

Ca?u\ CoY\S\’T\/\C,‘\')f S

Creale a Conﬁmoiuf' Hf\a\' \LIU—S A r&{: (;o

Gn 0[9\;(ek b be Lo!?'.eJ.

\{Ou ca(\ Lre C_Q‘PIJ CoNS. o]‘[Ao Porc.n‘l’ Cz/»&'m\i)

a«, S‘ZJ‘C N \(;1()0»(Ci&S)

v Ca?%. Shallo o

L5 Copy Jeg?

2 R

Cloning |I

= Every class in Java ultimately inherifs from the
Object class

* This class confains a clone() method so we just
call this to clone an object, right?

= This can go horribly wrong if our object contfains
reference types (objects, arrays, etc)

T e Toe clone () Lecipe

] ‘N»?KEA"\ZJ\'I’ C (oNoxla LC—

Overida pu\o\;o o\a\‘ia} c,lowc()

4

Co\\\ Qw?kf.c\ovxc(} on e Iﬁrsl— livie_

MP CDI3 (’Jf\J t\eﬁe.ucu\ ob\'}eofs asS m()!lm!)'ﬂCJ‘L

The Towe done () Lecipe

Mﬂl‘(- Yo G(C\SS ,MPL&N‘«C/\,‘I’ C(O'\QW\Ole_

O\IQFH,O'\(— PAL‘IC OLV‘ CC,F C{OV\Q_ C‘)

Must must st cﬂ‘\ Swpes . C,[oMC) on

the {—:rﬁ' (e of clone O)

CDP% é‘l’v\k-
"J

" O\a\j@ol/
Tl clowe) lomc_/

G

]\? ‘U‘US CAnSs 1S \/\of” C(o«\o.a\'\a'le,

‘U.Maw C(oml\]ri' Suﬁm{)%on‘

SR

(Q
7

B e Lit for -k cop Y

P IS

Z |

7 e

rw&‘\\

Shallow and Deep Copies

public class MyClass {
private MyOtherClass moc;

}

MyClass
object

MyClass
object

MyClass
object

Y

MyOtherClass
object

\ MyOtherClass /

object

MyClass
object

MyClass
object

Y

Y

MyOtherClass
object

object

MyOtherClass

Java Cloning

= So do you want shallow or deep?

* The default implementation of clone() performs a shallow
Copy

» But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

= Java has a Cloneable interface

* |f you call clone on anything that doesn't extend this
interface, it fails

| /

l [

, I

Slrxwu %,

0 + rQSVL“’
U
o cupr . Clove

Clone Example |

public class Velocity {
public float vx;
public float vy;
public Velocity(float x, float y) {
VX=X;
VY=Y,
}
b

public class Vehicle {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
&

Clone Example |l

public class Vehicle implements Cloneable {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
return super.clone();

}
¥

Clone Example |l

public class Velocity implement Cloneable {

public Object clone() {
return super.clone();

}
};

public class Vehicle implements Cloneable {
private int age;
private Velocity v;
public Student(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = (Velocity)vel.clone();
return cloned;

}
};

Cloning Arrays

= Arrays have build in cloning but the
contents are only cloned shallowly

int intarray[] = new int[100];
Vector3D vecarray = new Vector3D[10];

int intarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone();

Covariant Refurn Types

* The need to cast the clone return is annoying

public Object clone() {
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = (Velocity)vel.clone();
return cloned,;

}

= Recent versions of Java allow you to override a
method in a subclass and change ifs return type to
a subclass of the original's class

class C {
class A {} A mymethod() {}

}

class B extends A {}

class D extends C {
B mymethod() {}

N

Marker Interfaces

If you look at what's in the Cloneable interface, you'll find it's
empty!l What's going on?

Well, the clone() method is already inherited from Object so it
doesn't need to specify it

This is an example of a Marker Interface

= A marker inferface is an empty interface that is used o
label classes

= This approach is found occasionally in the Java libraries

Copy Constructors

* Another way to create copies of objects is to define
a copy constructor that takes in an object of the
same type and manudlly copies the data

= See examples sheet

public class Vehicle {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
public Vehicle(Vehicle v) {
age=v.age;
vel = v.vel.clone();

Lecture 8:
Java Collections

Java Class Library

= Java the platform contains around 4,000
classes/interfaces

= Data Structures

= Networking, Files

= Graphical User Interfaces

= Security and Encryption

* |mage Processing

= Multimedia authoring/playback
= And more...

= All neatly(ish) arranged into packages (see API docs)

<<interface>>
[terable

~

<</interface>>
Collection

Important chunk of the class library
A collection is some sort of grouping of
things (objects)

Usually when we have some grouping we
want to go through it (“/terate over it”)

The Collections framework has two main
Interfaces: lterable and Collections. They
define a set of operations that all classes
In the Collections framework support

add(Object 0), clear(), isEmpty(), etc.

<<interface>> Set

= A collection of elements with no :"'“"“'
duplicates that represents the :,'
mathematical notion of a set S,

= TreeSet: objects stored in order Sy e

= HashSet: objects in unpredictable order IQO Mlsml—@s
but fast to operate on (see Algorithms
course)

Sorked\

TreeSet<Integer> ts = new TreeSet<|nteger>()
ts.add(15); \

ts.add(12);

ts.contains(7); // false
ts.contains(12); // true
ts.first(); // 12 (sorted)

<<interface>> List

= An ordered collection of elements that may
contain duplicates

= LinkedLlIst: linked list of elements
= ArraylList: array of elements (efficient access)
= Vector: Legacy, as ArrayList but threadsafe

LinkedList<Double> || = new LinkedList<Double>();
Il.add(1.0);

Il.add(0.5);

Il.add(3.7);

Il.add(0.5);

Il.get(1); // get element 2 (==3.7)

Queues

<<interface>> Queue

An ordered collection of elements that may contain
duplicates and supports removal of elements from
the head of the queue

offer() to add to the back and poll() to take from the
front

LinkedList: supports the necessary functionality

PriorityQueue: adds a notion of priority to the queue
so more important stuff bubbles to the top

LinkedList<Double> || = new LinkedList<Double>();
Il.offer(1.0);
|l.offer(0.5);
Il.poll(); // 1.0
Il.poll(); // 0.5

<<interface>> Map

= Like dictionaries in ML
= Maps key objects to value objects -
= Keys must be unique

= Values can be duplicated and
(sometimes) null.

= TreeMap: keys kept in order -

= HashMap: Keys not in order,
efficient (see Algorithms)

TreeMap<String, Integer> tm = new TreeMap<String,Integer>();
tm.put(“A”’,1);

tm.put(“B”,2);

tm.get(“A”); // returns 1

tm.get(“C"); // returns null

tm.contains(“G"); // false

= for loop

LinkedList<Integer> list = new LinkedList<Integer>();

for (int i=0; i<list.size(); i++) { m Mo

Integer next = list.get(i);
}

= foreach loop (Java 5.0+)

LinkedList list = new LinkedList();
for (Integer i : list) { 5\3 b Seq
}

lterators

* What if our loop changes the structure?

for (int i=0; i<list.size(); i++) {
If (i==3) list.removeli);

}
* Java introduced the Iterator class

lterator<Integer> it = list.iterator(); f[

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}
= Safe to modify structure

while(it.hasNext()) {
it.remove();

}

The Origins of Generics

/| Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through

iterator it = ts.iterator();

while(it.hasNext()) {
Object o = it.next();
Integer i = (Integer)o;

}

= The original Collections
framework just dealt with
collections of Objects

= Everything in Java “is-a”
Object so that way our

collections framework will
apply to any class

= But this leads to:

l
U\j J = Constant casting of the
result (ugly)

* The need to know what
the return type is

= Accidental mixing of types
in the collection

The Origins of Generics |l

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();

while(it.hasNext()) { ooing to fail for the
Object o = it.next(); _gum== (5t it will compile:
Integer i = (Integer)o; the error will be at

} runtime)

The Generics Solution

* Java implements type erasure

= Compiler checks through your code to make sure
you only used a single type with a given Generics
object

* Then it deletes all knowledge of the parameter,
converting it to the old code invisibly

LinkedList<Integer> Il = LinkedList Il =
new LinkedList<Integer>(); new LinkedList();

for (Integeri: Il) { > for (Objecti: Il) {
do_sthing(i); do_sthing((Integer)i);

} }

The C++ Templates Solution

= Compiler first generates the class definitions from

the template

class MyClass<T> {

}

T membervar;

=)

class MyClass float {
float membervar;

¥

class MyClass _int {
int membervar;

b

class MyClass_double {
double membervar;

¥

Generics and SubTyping

Animal

// Object casting

Person p = new Person();

"

Animal o = (Animal) p;

// List casting

Person

List<Person> plist = new LinkedList<Person>();

List<Animal> alist = (List<Animal>)plist;

So a list of Persons is a list of Animals, yes?

alisk. add (reo igro0)

import java.util.LinkedList;

public class Naughty {

F@in(String[] args) {
LinkedList temp\= new LinkedList<Double>();
emp.add(9.0);
printAll(temp); // Should fail

}

public static void printAll(LinkedList<Object> list) {
for (Object d : list)

System.out.printin((Double)ay;

Lecture 10:
Comparing Objects

Comparing Primitives

Greater Than

Greater than or equal to
Equal to

= Not equal to

< Less than

<= Less than or equal to

vV V
|

* Clearly compare the value of a primitive
= But what does (refl==ref2) do??
= Test whether they point to the same object?

* Test whether the objects they point to have the
same state?

Reference Equality

" rl==r2,rll=r2

* These test reference equality

= |.e. do the two references point ot the same
chunk of memory?

Person pl = new Person(“Bob”);
Person p2 = new Person(“Bob”);

False (references differ)

(Pl==p2);«

(pl!=p2); = True (references differ)

(pl==pl); ~
True

Value Equality

= Use the equals() method in Object

= Default implementation just uses reference
equality (==) so we have to override the method

public EqualsTest { C)L\jecj’
public int x = 8; e
@Override

Mboolean equals(Object 0) {
EqualsTest e = (EqualsTest)o;
retuWe.x):

J PBe ¢l ¥

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
System.out.printin(tl==t2);
System.out.printin(tl.equals(t2));

}

}

Aside: Use The Override Annotation

* |t's so easy to mistakenly write:

public EqualsTest {
public int x = 8;

public boolean equals(EqualsTest e) {
return (this.x==e.x);

}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
Object 01 = (Object) t1;
Object 02 = (Object) t2;
System.out.printin(tl.equals(t2));
System.out.printin(ol.equals(02));

= Annotation would have picked up the mistake:

public EqualsTest {
public int x = 8;

@Override
public boolean equals(EqualsTest e) {
return (this.x==e.x);

}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
Object 01 = (Object) t1;
Object 02 = (Object) t2;
System.out.printin(tl.equals(t2));
System.out.printin(ol.equals(02));

* Object also gives classes hashCode()

= Code assumes that if equals(a,b)
returns true, then a.hashCode() is the
same as b.hashCodel()

* S0 you should override hashCode() at
the same time as equals()

Comparable<T> Interface |

int compareTo(T obj);

= Part of the Collections Framework

= Doesn't just tell us true or false, but smaller,
same, or larger: useful for sorting.

= Returns an integer, r:
= r<0 This object is less than obj
" r== This object is equal to obj
= >0 This object is greater than obj

Comparable<T> Interface Il

public class Point implements Comparable<Point> {
private final int mX;
private final int mY;
public Point (int, int y) { mX=x; mY=y; }

/| sort by y, then x
public int compareTo(Point p) {
if (MY>p.mY) return 1;
else if (mMY<p.mY) return -1;
else {
if (mX>p.mX) return 1;
else if (mX<p.mX) return -1;
else return 0.
}
}
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Comparator<T> Interface |

int compare(T objl, T obj2)

= Also part of the Collections framework and
allows us to specify a specific ordering for a
particular job

= E.g. a Person might have natural ordering that
sorts by surname. A Comparator could be
written to sort by age instead...

Comparator<T> Interface Il

public class Person implements Comparable<Person> {
private String mSurname;
private int mAge;
public int compareTo(Person p) {
return mSurname.compareTo(p.mSurname);

}
}

public class AgeComparator implements Comparator<Person> {
public int compare(Person pl, Person p2) {
return (pl.mAge-p2.mAge);
}
}

ArrayList<Person> plist = ...;

Collections.sort(plist); // sorts by surname
Collections.sort(plist, new AgeComparator()); // sorts by age

Operator Overloading

= Some languages have a neat feature that
allows you to overload the comparison
operators. e.g. in C++

class Person {
public:
Int mAge
bool operator==(Person &p) {
return (p.mAge==mAge);
};
}

Person a, b;
b ==a; // Test value equality

Lecture 11:
Design Patterns

Design Patterns

= A Design Pattern is a general reusable solution to
a commonly occurring problem in software design

= Coined by Erich Gamma in his 1991 Ph.D. thesis

= Originally 23 patterns, now many more. Useful to
look at because they illustrate some of the power
of OOP (and also some of the pitfalls)

= We will only consider a subset

A M L Q@\I]S,‘M

C)G\QS'\&ML — P N vote
skzale —+ ?m[vlf C
T ol ‘DrDROLQA
METWBAAS [
/ A
F A
o
/ B hese A AN f 5= A

5 d

dostny) Q

N
\

~ // PW‘U\AD(OAL

r Lastk . o\o‘o\“ ;J

L /

—

The Open-Closed Principle

Classes should be open for extension
but closed for modification

" i.e. we would like to be able to modify the
behaviour without touching its source code

* This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

Decorator

Abstract problem: How can we add
state or methods at runtime?

Example problem: How can we
efficiently support gift-wrapped
books in an online bookstore?

Solution 1: Add variables to the established Book
class that describe whether or not the product is to be

gift wrapped.

",
1520 F—
_M‘smp!.m\ ' bod ‘ \
—MPHCL N ¢A4’ 'F CV\\A)WP‘CJ\)
+jeWn‘aC)D— - - harg VIR mfnice
else
re,l'v-rn m P

X vigkeles

open— clogeh

\

X Waglef | - ovey boole

W aghes a_ _Loole,aﬁ

X -(—\-am\ N Qx\-(yj\

Solution 2: Extend Book to create WrappedBook.

™ dow do x convert
= C~ %ooL o o "JF’?P{”{BODk-{

’Z_S : _‘b:')_-\; _ ‘J\\Sook | OL:)C(J— \
X Ca%kf}“\ 0°‘+
7\‘,‘){'1‘009 %n\;’)k)

Solution 3: (Decorator) Extend Book to create
WrappedBook and also add a member reference to a
Book object. Just pass through any method calls to
the internal reference, intercepting any that are to do
with shipping or price to account for the extra wrap-
ping behaviour.

nok i
7N F&{‘D?f;r\\g, MW\A
zmﬂ tie o\o\'} ek

e

W pp e\ Baok.

R

N—

+ wrc\,"/‘(

B@@ ol © lcoi)

Bunllored Losd e ;

ulCered lovdar br = new> Bulleed Rondac

(o Filelosmder (" Mw&\e -))

|. q:;|€{ZQ.w}\QJ .CD\&DLJ.S ‘,Agjrw\c,l'\'on& QMC,"’L—\ —,-—ﬁ?/}_S

Bings byke by byte, Visit e DAl por
Q}lf/\/\ \a\a‘l—c_ \J ~

J

E Q Q(<N aor« o | Dolﬁﬁ(zxﬁc\.& ngbf -;P rort__

Q,H{c‘é;l\(’lﬁ
‘ 4

7 E&\ve, IQA/C}I'OMa\it\) = P&J\Lit&_{)

Decorator in General

* The decorator pattern
adds state and/or

Compone fur]ctlonallty tq an
roseration) object dynamically
ConcreteComponent Decorator |, | tents
+operation() +operation(d-{---1

contents.operation() ;ﬁ

StateDecorator FunctionDecorator

#extraState +operation()o-------- . _
+operation() +extraBehaviour() super.operation();

extraBehaviour();

Abstract problem: How can we ensure
only one instance of an object is
created by developers using our code?

Example problem: You have a class
that encapsulates accessing a
database over a network. When
instantiated, the object will create a
connection and send the query.
Unfortunately you are only allowed
one connection at a time.

S‘mq\e/\‘or\

U

Ma[LE. (7&0\, Cof\$|MC"of PBVQLL

CJ‘Q“LQ- = S '\,3 lz, Sl’kl\ C n $|7~V\ e

Malee e s&z\Hc 6,@14&/ ﬁor Jou/‘ NSk 2

' ONa . U&‘C\\ } KUL/\'I:lM.L

Rk e ,3@,{—{@” ‘

Singleton in General

= The singleton pattern
res a class has only

ensu
Singleton one instance and provides
“instance: static global access to it
+getInstance(): static
#Singleton() ?

if (instance==null) instance=new Singleton();
return instance;

|

Abstract problem: How can we let an
object alter its behaviour when its
Internal state changes?

Example problem: Representing
academics gs they progress through
the rank F

gwlgs SL%‘\’ Pvu(al em

5< c -\ "o |'—

(‘,or\\/‘t-/* 0‘0

eeh

c

'V\CA’\CA-W ‘AT.S 5!"

Solution 1: Have an abstract Academic class which

acts as a base class for Lecturer, Professor, etc.

&q_z_aq

lec 9(.’/0&_

P\fol'-

Solution 2: Make Academic a concrete class with
a member variable that indicates rank. To get rank-

specific behaviour, check this variable within the rele-

vant methods.

— mRoak a)\vwl’zsﬁi_s
M Ko J
/W I P
+geelethre () 0 v/ Does worke bt
- ' naly 7
UNJ
'l.

/

\)]

-n/ _ 1
f (vllmie == Ledwer)

Lo Neanowst)

else F (MYka:f’mj)

—,/

LQ_DU\H()/'
.y

Solution 3: (State) Make Academic a concrete
class that has-a AcademicRank as a member. Use
AcademicRank as a base for Lecturer, Professor, etc.,
implementing the rank-specific behaviour in each..

I N\
/ 4 -
/
|l L~ A AL e o[
[OTAT Y (vor

State in General

Contex<'>

>| State

Statel

State2

* The state pattern allows

an object to cleanly alter
its behaviour when

internal state changes

Abstract problem: How can we select an
algorithm implementation at runtime?

Example problem: We have many
possible change-making
iImplementations. How do we cleanly
change between them?

Solution 1: Use a lot of if...else statements in the
getChange(...) method.

Solution 2: (Strategy) Create an abstract
ChangeFinder class. Derive a new class for each of our
algorithms.

.' Jor. M\-\\ CDM?'/(o»\'of

Strategy in General

* The strategy pattern allows us to cleanly
iInterchange between algorithm implementations

Strategy

Context >

+algorithm()

A

ConcreteStrategyA ConcreteStrategyB

+algorithm() +algorithm()

Abstract problem: How can we treat
a group of objects as a single object?

Example problem: Representing a
DVD box-set as well as the individual
films without duplicating info and
with a 10% discount

Gul Low,uk

Composite in General

R = The composite pattern
Component /< lets us treat objects and
+operation() groups of objects
JA\ O uniformly
Leaf Composite
+operation() #children
+operation(9

]
for (Component ¢ : children)
c.operation();

Observer

Abstract problem: When an object
changes state, how can any
interested parties know?

Example problem: How can we write
phone apps that react to accelerator
events?

Observer Pallern

Observer in General

* The observer pattern allows an object to have multiple
dependents and propagates updates to the
dependents automatically.

Subject |1
*
#otate > Observer
#observers —
state
+attach(Observer)] _
+detach(Observer) |. #subject
+getState() K +update(9
+n°tifY() ~\‘ :
Q . : N

Etgte=subject.get5tate();

-~
-
-

AN

for (Observef o :

observers.add(observer)
observers)
o.update();

Fod

Pax\—ﬁf d

Inferpreter to Virfual Machine

* Java was born in an era of internet connectivity. SUN
wanted to distribute programs fo internet machines

= But many architectures were attached to the internet
— how do you write one program for them all?

* And how do you keep the size of the program small
(for quick download)?

= Could use an interpreter (—» Javascript). But:
= High level languages not very space-efficient

* The source code would implicifly be there for anyone
fo see, which hinders commercial viability.

* Went for a clever hybrid interpreter/compiler

Java Bytecode |

= SUN envisaged a hypothetical Java Virfual Machine
(JVM). Java is compiled info machine code (called
byftecode) for that (imaginary) machine. The bytecode
IS Then distributed.

* To use the bytecode, the user must have a JVM that has
been specially compiled for their architecture.

= The JVM takes in bytecode and spits out the correct
machine code for the local computer. i.e. is a bytecode
interpreter

Java Bytecode |l

Developer

Source Code ———p Java Compiler ——p Bytecode

Distribute
JVM for JVM for JVM for
x86/Linux x86/win ARM
Machine Machine Machine
code code code
Unix User Win User Android User

Java Bytecode |l

+ Bytecode is compiled so not easy o reverse
engineer

+ The JVM ships with tfons of libraries which makes
the bytecode you distribute small

+ The foughest part of the compile (from human-
readable to computer readable) is done by the
compller, leaving the computer-readable
bytecode to be franslated by the JVM (— easier job
— faster job)

- Still a performance hit compared to fully compiled
("native”) code

