
Mobile and Sensor Systems

Lecture 4: Wireless Sensor Systems
Dr Nicholas Lane

Nic Lane

2	

In this lecture

•  We will describe wireless sensor networks in
general and the properties of sensor nodes.

•  We will introduce sensor network MAC Layer
issues and some solutions.

3	

Wireless Sensor Networks?

•  In many situations, we want to measure things
to develop a better understanding of various
phenomena.

•  With this insight, we can then design novel or
improved systems.

4	

5	

Example: Sensor Network Macroscope

Conven+onal	 Manual	 Monitoring	
	

Long-‐lived	 High-‐density	 Sensing	 Networks	

Example Application

•  A vineyard farmer wants to measure soil
moisture, so he can irrigate only those parts
where soil moisture is low.

•  He wants to measure humidity and
temperature as well, so he can use pesticides
only when these are most effective.

•  Sensing allows him to save resources and can
reveal previously unknown behaviour.

6	

Many Applications

•  Structural health monitoring
•  Environmental monitoring
•  Animal behavior
•  Warehouse logistics

7	

Characteristics

•  Farmer wants to cover his entire vineyard
– Large number of sensing devices.

•  He wants to keep the cost down
– Low cost, resource constrained.

•  He cannot run wires to these many devices
– Battery powered, wireless.

8	

Transit	 Network	
	 (IP	 or	 not)	

Access	 point	
	 	 -‐	 Base	 sta+on	
	 	 -‐	 Proxy	

Sensor	 Patch	

Patch	 	
Network	

Data	 Service	

Intranet/Internet	 (IP)	

Client	 Data	 Browsing	
and	 Processing	

Sensor	 Node	

Gateway	
Gateway	

Other	 informa+on	 	
sources	

Sensor	 Node	

An Example of Sensor���
Network Architecture

10	

Sensor Systems ���
vs Standard or Mobile Systems

•  Sensor nodes have limited computational resources
and energy.

•  Sensor nodes are prone to failures (especially
because they are often deployed in challenging
conditions).

•  The topology of a sensor network might not
change frequently:
– Many deployments involve nodes with fixed

locations.
– Some deployments may have mobile sensors.

Sensor Node

•  A typical sensor node is composed of,
– Sensing device (Temperature, Humidity)
– Small processor (16bit, 8Mhz Microcontroller)

– Low power radio (250 kb/s Zigbee)
– Battery (Two AA Batteries)
– Small storage (128 kB flash)

11	 TelosB	 sensor	 node	 (2010)	 MicaZ	 sensor	 node	

12	

Michigan	 Micro	 Mote	

13	

Storage	 Processing	 Wireless	 Sensors	
WSN mote platform

What happens in the node

Radio	 Serial	 Flash	 ADC,	 Sensor	
I/F	

MCU,	 Timers,	
Bus,…	

Link	

Network	
Protocols	 Blocks,	

Logs,	 Files	
Scheduling,	
Management	

Streaming	
drivers	

Over-‐the-‐air	 	
Programming	

Applica+ons	 and	 Services	

Communica)on	 Centric	
Resource-‐Constrained	
Event-‐driven	 Execu)on	

Ti
ny
O
S	
2.
0	

What Operating System runs ���
on a sensor?

•  Operating system useful to simplify programming
tasks and to allow more control over operations
of the system

•  But what can we do with such a constrained
device?

•  Given the kind of applications needed it is
important to support concurrency…[frequent
and parallel collection from different sensors]

Main issue: How to support
concurrency

•  Simplest option: No concurrency, sequential
processing of tasks

–  Not satisfactory: Risk of missing data
(e.g., from transceiver) when processing
data, etc.

–  Interrupts/asynchronous operation has to
be supported

•  Why concurrency is needed

–  Sensor node’s CPU has to service the
radio modem, the actual sensors, perform
computation for application, execute
communication protocol software, etc.

Poll	 sensor	

Process	 	
sensor	 	
data	

Poll	 transceiver	

Process	 received	 	
packet	 	

Traditional concurrency: Processes
•  Traditional OS: processes/threads

–  Based on interrupts, context
switching

–  But: memory overhead, execution
overhead

•  concurrency mismatch

–  One process per protocol entails
too many context switches

–  Many tasks in WSN are small with
respect to context switching
overhead

Handle	 sensor	 	
process	

Handle	 packet	 	
process	

OS-‐mediated	
process	 switching	

Event-based concurrency
•  Alternative: Switch to event-based programming model

–  Perform regular processing or be idle

–  React to events when they happen immediately

–  Basically: interrupt handler

•  Problem: must not remain in interrupt handler too long

–  Danger of losing events

–  Only save data, post information that event has happened, then return

 ! Run-to-completion principle

–  Two contexts: one for handlers, one for regular execution

I	 d	 l	 e	 /	 R	 e	 g	 u	 l	 a	 r	
p	 r	 o	 c	 e	 s	 s	 i	 n	 g	

R	 a	 d	 i	 o	
e	 v	 e	 n	 t	

R	 a	 d	 i	 o	 e	 v	 e	 n	 t	 h	 a	 n	 d	 l	 e	 r	

S	 e	 n	 s	 o	 r	
e	 v	 e	 n	 t	

S	 e	 n	 s	 o	 r	 e	 v	 e	 n	 t	
h	 a	 n	 d	 l	 e	 r	

TinyOS: Tasks and ���
Command/Event Handlers

•  TinyOS: an OS for sensor networks
•  Event handlers must run to completion:

– Must not wait an indeterminate time.
– Only a request to perform some action.

•  Tasks can perform arbitrary, long computation;
– Also have to be run to completion.
– But can be interrupted by handlers.

 ! No need for stack management, tasks are
atomic with respect to each other.

Energy Management

•  Local computation does not consume significant
amount of energy.

•  The main source of energy
consumption is the radio.

•  Current draw on Telosb,
– Microcontroller ON, Radio OFF 1.8mA
– Microcontroller ON, Radio ON 21mA

Energy Management

•  In order to save energy, limit the number of radio
transmissions.

•  Idle listening consumes as much power as transmission.
•  Current draw on Telosb,

–  Idle listening 23mA
– Transmitting 21mA

•  Idle listening is wasteful when average data rate is low.
•  Switch off the radio when idle.

•  Transmissions from other sensor nodes are lost.

20	

Radio Duty Cycling

•  Switch off the radio of all sensors at specific intervals:
– Very precise synchronization.

– Still probable idle time for sensors which do not
communicate.

•  More refined strategy:
– Wave of switch off time depending on topology.
– Still an overestimate of the communication needs

of some sensors (traffic might be varying across
the network).

Dynamic duty cycling

•  More refined strategies have been proposed which
aim to allow sensors with more packets to stay
awake longer and others to sleep more.
–  Synchronized (e.g. S-MAC)
–  Asynchronous (e.g. B-MAC, X-MAC)

•  Synchronized protocols try to negotiate a
schedule among neighboring nodes.

•  Asynchronous protocols rely on preamble
sampling to connect a transmitter to receivers.

Sensor-MAC (S-MAC)

•  Idea: Switch nodes off, ensure that neighboring nodes turn on
simultaneously to allow packet exchange (rendez-vous)

–  Packet exchange occurs only
in these active periods

–  Need to also exchange
wakeup schedule between
neighbors

–  When awake, essentially
perform RTS/CTS

–  Use SYNCH, RTS, CTS phases

Wakeup period

Active period

Sleep period

For SYNCH For RTS For CTS

S-MAC
•  SYNC phase divided into time slots with CSMA

and backoffs to send schedule to neighbours.

•  Y chooses a slot and if no signal is received in this
slot, it will transmit its schedule to X otherwise it
will wait for next wake up of X.

•  RTS phase: X listens for RTS packets (CSMA
contention).

•  CTS phase: X sends one and extends its wake up
time.

S-MAC synchronized islands

•  Nodes try to pick up schedule synchronization
from neighboring nodes.

•  If no neighbor found, nodes pick some schedule to
start with.

•  If additional nodes join, some node might learn
about two different schedules from different nodes
– “Synchronized islands”.
•  To bridge this gap, it has to follow both schemes

and use more energy.

Preamble Sampling
•  So far: Periodic sleeping supported by some means to synchronize

wake up of nodes to ensure rendez-vous between sender and
receiver.

•  Alternative option: Don’t try to explicitly synchronize nodes:
–  Have receiver sleep and only periodically sample the channel.

•  Use long preambles to ensure that receiver stays awake to catch
actual packet. Example: B-MAC and WiseMAC.

Check	 	
channel	

Check	 	
channel	

Check	 	
channel	

Check	 	
channel	

Start	 transmission:	
Long	 preamble	 Actual	 packet	

Stay	 awake!	

Problems with this ���
technique

•  Overhearing
– All receivers listening to the preamble have to stay

awake to find out who is the intended receiver.

•  Energy Consumption
– Long preamble causes increased energy

consumption at both the transmitter and the
receiver.

•  Latency
– Long preamble introduces per-hop latency.

X-MAC

•  Short preamble
– Reduce latency and reduce energy consumption

•  Target in preamble
– Minimize overhearing problem.

•  Adding wait time between preambles
– Reduces latency for the case where destination

is awake before preamble completes.

X-MAC

Low-Energy Adaptive Clustering
Hierarchy (LEACH)

30	

Low-Energy Adaptive Clustering
Hierarchy (LEACH)

•  Assumption: dense network of nodes, reporting to a central sink, each node
can reach sink directly.

•  Idea: Group nodes into “clusters”, controlled by clusterhead:

–  Setup phase; details: later.

–  About 5% of nodes become clusterhead (depends on scenario).

–  Role of clusterhead is rotated to share the burden.

–  Clusterheads advertise themselves, ordinary nodes join CH with
strongest signal.

–  Clusterheads organize: CDMA code for all member transmission. TDMA
schedule to be used within a cluster

•  In steady state operation:

–  CHs collect & aggregate data from all cluster members.

–  Report aggregated data to sink using CSMA.

Low-Energy Adaptive Clustering
Hierarchy (LEACH)

32	

LEACH rounds

Setup phase Steady-state phase

Fixed-length round

……….. ………..

Advertisement phase Cluster setup phase Broadcast schedule

Time slot
1

Time slot
2

Time slot
n

Time slot
1…..….. …..

Clusterheads
compete with
CSMA

Members
compete
with CSMASelf-election of

clusterheads

References
•  TinyOS tutorial: http://www.tinyos.net/tinyos-1.x/doc/tutorial/
•  SMAC: Ye, W., Heidemann, J., and Estrin, D. 2004. Medium access control with

coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw.
12, 3 (Jun. 2004), 493-506.

•  WISEMAC: El-Hoiydi, A. and Decotignie, J. 2004. WiseMAC: an ultra low power MAC
protocol for the downlink of infrastructure wireless sensor networks. In Proceedings
of the Ninth international Symposium on Computers and Communications 2004
Volume 2 (Iscc"04) - Volume 02 (June 28 - July 01, 2004). ISCC. IEEE Computer
Society, Washington, DC, 244-251.

•  X-MAC: M. Buettner, G. V. Yee, E. Anderson, and R. Han, "X-MAC: a short preamble
MAC protocol for duty-cycled wireless sensor networks," in Proceedings of the 4th
international conference on Embedded networked sensor systems Boulder, Colorado,
USA: ACM, 2006.

•  LEACH: Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan, Energy-
Efficient Communication Protocols for Wireless Microsensor Networks, Proc.
Hawaaian Int'l Conf. on Systems Science, January 2000.

