
Mathematical Methods
for

Computer Science
Probability methods

Dr R.J. Gibbens

Computer Laboratory
University of Cambridge

Computer Science Tripos, Part IB
Michaelmas Term 2014/15

Last revised: 2014-10-26 (980990d)

MM4CS 2014/15 (1)



Outline
I Probability methods (10 lectures, Dr R.J. Gibbens)

I Probability generating functions (2 lectures)
I Inequalities and limit theorems (3 lectures)
I Stochastic processes (5 lectures)

I Fourier and related methods (6 lectures, Professor J. Daugman)
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Reference books (Probability methods)
I (*) Ross, Sheldon M.

Probability Models for Computer Science.
Harcourt/Academic Press, 2002

I Mitzenmacher, Michael & Upfal, Eli.
Probability and Computing: Randomized Algorithms and
Probabilistic Analysis.
Cambridge University Press, 2005
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Some notation
RV random variable
IID independent, identically distributed

PGF probability generating function GX (z)
MGF moment generating function MX (t)

X ∼ U(0,1) RV X has the distribution U(0,1), etc
I(A) indicator function of the event A
P(A) probability that event A occurs
E(X ) expected value of RV X
E(X n) nth moment of RV X , for n = 1,2, . . .
FX (x) distribution function, FX (x) = P(X ≤ x)
fX (x) density of RV X given, when it exists, by F ′X (x)
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Probability generating functions
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Probability generating functions (PGF)
A very common situation is when a RV, X , can take only non-negative
integer values. For example, X may count the number of random
events to occur in a fixed period of time. The probability mass
function, P(X = k), is given by a sequence of values p0,p1,p2, . . .
where

pk = P(X = k)≥ 0 ∀k ∈ {0,1,2, . . .} and
∞

∑
k=0

pk = 1 .

This sequence of terms can be “wrapped together” to define a
function called the probability generating function (PGF) as follows.

Definition (Probability generating function)
The probability generating function, GX (z), of a (non-negative
integer-valued) RV X is defined as

GX (z) =
∞

∑
k=0

pk zk

for all values of z such that the sum converges.
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Elementary properties of the PGF
1. GX (z) = ∑

∞

k=0 pk zk so

GX (0) = p0 and GX (1) = 1 .

2. If g(t) = z t then

GX (z) =
∞

∑
k=0

pk zk =
∞

∑
k=0

g(k)P(X = k) = E(g(X )) = E(zX ) .

3. The PGF is defined for all |z| ≤ 1 since
∞

∑
k=0
|pk zk | ≤

∞

∑
k=0

pk = 1 .

4. Importantly, the PGF characterizes the distribution of a RV in the
sense that

GX (z) = GY (z) ∀z

if and only if

P(X = k) = P(Y = k) ∀k ∈ {0,1,2, . . .} .
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Examples of PGFs

Example (Bernoulli distribution)

GX (z) = q+pz where q = 1−p .

Example (Binomial distribution, Bin(n,p))

GX (z) =
n

∑
k=0

(
n
k

)
pk (q)n−k zk = (q+pz)n where q = 1−p .

Example (Geometric distribution, Geo(p))

GX (z)=
∞

∑
k=1

pqk−1zk =pz
∞

∑
k=0

(qz)k =
pz

1−qz
if |z|< q−1 and q = 1−p .
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Examples of PGFs, ctd

Example (Uniform distribution, U(1,n))

GX (z) =
n

∑
k=1

zk 1
n
=

z
n

n−1

∑
k=0

zk =
z
n
(1−zn)

(1−z)
.

Example (Poisson distribution, Pois(λ ))

GX (z) =
∞

∑
k=0

λ k e−λ

k !
zk = eλze−λ = eλ (z−1) .
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Derivatives of the PGF
We can derive a very useful property of the PGF by considering the
derivative, G′X (z), with respect to z. Assume we can interchange the
order of differentiation and summation, so that

G′X (z) =
d
dz

(
∞

∑
k=0

zkP(X = k)

)

=
∞

∑
k=0

d
dz

(
zk
)
P(X = k)

=
∞

∑
k=0

kzk−1P(X = k)

then putting z = 1 we have that

G′X (1) =
∞

∑
k=0

kP(X = k) = E(X )

the expectation of the RV X .
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Further derivatives of the PGF
Taking the second derivative gives

G′′X (z) =
∞

∑
k=0

k(k −1)zk−2P(X = k) .

So that,

G′′X (1) =
∞

∑
k=0

k(k −1)P(X = k) = E(X (X −1))

Generally, we have the following result.

Theorem
If the RV X has PGF GX (z) then the r th derivative of the PGF,
written G(r)

X (z), evaluated at z = 1 is such that

G(r)
X (1) = E(X (X −1) · · ·(X − r +1)) .
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Using the PGF to calculate E(X ) and Var(X )
We have that

E(X ) = G′X (1)

and

Var(X ) = E(X 2)− (E(X ))2

= [E(X (X −1))+E(X )]− (E(X ))2

= G′′X (1)+G′X (1)−G′X (1)
2 .

For example, if X is a RV with the Pois(λ ) distribution
then GX (z) = eλ (z−1). Thus, G′X (z) = λeλ (z−1), G′′X (z) = λ 2eλ (z−1)

and so G′X (1) = λ and G′′X (1) = λ 2. So, finally,

E(X ) = λ and Var(X ) = λ
2 +λ −λ

2 = λ .
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Sums of independent random variables
The following theorem shows how PGFs can be used to find the PGF
of the sum of independent RVs.

Theorem
If X and Y are independent RVs with PGFs GX (z) and GY (z)
respectively then

GX+Y (z) = GX (z)GY (z) .

Proof.
Using the independence of X and Y we have that

GX+Y (z) = E(zX+Y )

= E(zX zY )

= E(zX )E(zY )

= GX (z)GY (z)
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PGF example: Poisson RVs
For example, suppose that X and Y are independent RVs
with X ∼ Pois(λ1) and Y ∼ Pois(λ2), respectively.
Then

GX+Y (z) = GX (z)GY (z)

= eλ1(z−1)eλ2(z−1)

= e(λ1+λ2)(z−1) .

Hence X +Y ∼ Pois(λ1 +λ2) is again a Poisson RV but with the
parameter λ1 +λ2.
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PGF example: Uniform RVs
Consider the case of two fair dice with IID
outcomes X and Y , respectively, so that X ∼ U(1,6)
and Y ∼ U(1,6). Let the total score be T = X +Y
and consider the PGF of T given
by GT (z) = GX (z)GY (z). Then

GT (z) =
∞

∑
k=0

pk zk ==
1
6
(z +z2 + · · ·+z6)

1
6
(z +z2 + · · ·+z6)

=
1
36

[z2 +2z3 +3z4 +4z5 +5z6 +6z7+

5z8 +4z9 +3z10 +2z11 +z12] .

k

P(X = k)
1
6

1 2 3 4 5 6
k

P(Y = k)
1
6

1 2 3 4 5 6
k

P(T = k)
1
6 = 6

36

3
36

2 3 4 5 6 7 8 9 101112

MM4CS 2014/15 (15)



Limits and inequalities

MM4CS 2014/15 (16)



Limits and inequalities
We are familiar with limits of real numbers. For example, if xn = 1/n
for n = 1,2, . . . then limn→∞ xn = 0 whereas if xn = (−1)n no such limit
exists. Behaviour in the long-run or on average is an important
characteristic of everyday life.
We will be concerned with these notions of limiting behaviour when
the real numbers xn are replaced by random variables Xn. As we
shall see there are several distinct notions of convergence that can be
considered.
To study these forms of convergence and the limiting theorems that
emerge we shall also gather a very useful collection of concepts and
tools for the probabilistic analysis of models, algorithms and systems.
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Probabilistic inequalities
To help assess how close RVs are to each other it is useful to have
methods that provide upper bounds on probabilities of the form

P(X ≥ a)

for fixed constants a.
We shall consider several such bounds and related inequalities.

I Markov’s inequality
I Chebyshev’s inequality
I Chernoff’s inequality

We will use I(A) for the indicator RV which is 1 if A occurs and 0
otherwise. Observe that we have for such indicator RVs that

E(I(A)) = 0×P(Ac)+1×P(A) = P(A) .
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Theorem (Markov’s inequality)
If E(X )< ∞ then for any a > 0,

P(|X | ≥ a)≤ E(|X |)
a

.

Proof.
We have that

I(|X | ≥ a) =

{
1 |X | ≥ a
0 otherwise .

Clearly,
|X | ≥ aI(|X | ≥ a)

hence
E(|X |)≥ E(aI(|X | ≥ a)) = aP(|X | ≥ a)

which yields the result.
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Theorem (Chebyshev’s inequality)
Let X be a RV with mean µ = E(X ) and finite variance σ2 = Var(X )
then for all a > 0

P(|X −µ| ≥ a)≤ σ2

a2 .

Proof.
Put Y = (X −µ)2 ≥ 0 then E(Y ) = E((X −µ)2) = Var(X ) = σ2. So, by
Markov’s inequality, for all b > 0

P((X −µ)2 ≥ b) = P(Y ≥ b)≤ E(Y )

b
=

σ2

b
.

Now put b = a2 and noting that P((X −µ)2 ≥ a2) = P(|X −µ| ≥ a) we
have that

P(|X −µ| ≥ a)≤ σ2

a2 .
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Moment generating function

Definition
The moment generating function (MGF) of a RV X , written MX (t), is
given by

MX (t) = E(etX )

and is defined for those values of t ∈ R for which this expectation
exists.
Using the power series ex = 1+x +x2/2!+x3/3!+ · · · we see that

MX (t) = E(etX ) = 1+E(X )t +E(X 2)t2/2!+E(X 3)t3/3!+ · · ·

and so the nth moment of X , E(X n), is given by the coefficient of tn/n!
in the power series expansion of the MGF MX (t).
Note that for every RV, X , we have that MX (0) = 1 since

MX (0) = E(e0X ) = E(1) = 1 .
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Elementary properties of the MGF
1. If X has MGF MX (t) then Y = aX +b has

MGF MY (t) = ebtMX (at).
2. If X and Y are independent then X +Y has

MGF MX+Y (t) = MX (t)MY (t).

3. E(X n) = M(n)
X (0) where M(n)

X is the nth derivative of MX .
4. If X is a discrete RV taking values 0,1,2, . . . with

PGF GX (z) = E(zX ) then MX (t) = GX (et).
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Fundamental properties of the MGF
We will use without proof the following results.

1. Uniqueness: to each MGF there corresponds a unique
distribution function having that MGF.
In fact, if X and Y are RVs with the same MGF in some
region −a < t < a where a > 0 then X and Y have the same
distribution.

2. Continuity: if distribution functions Fn(x) converge pointwise to a
distribution function F (x), the corresponding MGFs (where they
exist) converge to the MGF of F (x). Conversely, if a sequence of
MGFs Mn(t) converge to M(t) which is continuous at t = 0,
then M(t) is a MGF, and the corresponding distribution
functions Fn(x) converge to the distribution function determined
by M(t).
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Example: exponential distribution
If X has an exponential distribution with parameter λ > 0
then fX (x) = λe−λx for 0 < x < ∞. Hence, for t < λ ,

MX (t) =
∫

∞

0
etx

λe−λxdx =
∫

∞

0
λe−(λ−t)xdx

=

[
− λ

(λ − t)
e−(λ−t)x

]∞

0
=

λ

λ − t
.

For t < λ

λ

(λ − t)
=

(
1− t

λ

)−1

= 1+
t
λ
+

t2

λ 2 + · · ·

and hence E(X ) = 1/λ and E(X 2) = 2/λ 2 so that

Var(X ) = E(X 2)− (E(X ))2 = 1/λ
2 .
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Example: normal distribution
Consider a normal RV X ∼ N(µ,σ2) then fX (x) = 1

σ
√

2π
e−(x−µ)2/2σ2

so that

MX (t) =
∫

∞

−∞

etx 1
σ
√

2π
e−(x−µ)2/2σ2

dx

=
1

σ
√

2π

∫
∞

−∞

e−(−2txσ2+(x−µ)2)/2σ2
dx .

So, by completing the square,

MX (t) = eµt+σ2t2/2
{

1
σ
√

2π

∫
∞

−∞

e−(x−(µ+tσ2))2/2σ2
dx
}

= eµt+σ2t2/2 .
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Example: uniform distribution
Consider a uniform RV X ∼ U(a,b) for a < b. Then

fX (x) =

{
1

b−a a < x < b
0 otherwise .

Hence, for t 6= 0,

MX (t) =
∫ b

a

etx

b−a
dx

=

[
etx

(b−a)t

]b

a

=
ebt −eat

(b−a)t
.

and MX (0) = 1.
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Theorem (Chernoff’s bound)
Suppose that X has MGF MX (t) and a ∈ R then for all t > 0

P(X ≥ a)≤ e−taMX (t) .

Proof.
Using Markov’s inequality, we have that since t > 0

P(X ≥ a) = P(etX ≥ eta)

≤ E(etX )

eta

= e−taMX (t)

Note that the above bound holds for all t > 0 so we can select the
best such bound by choosing t > 0 to minimize e−taMX (t).
In fact, the upper bound also holds trivially if t = 0 since the RHS is 1.

MM4CS 2014/15 (27)



Notions of convergence: Xn→ X as n→ ∞

For a sequence of RVs (Xn)n≥1, we shall define two distinct notions of
convergence to some RV X as n→ ∞.

Definition (Convergence in distribution)
Xn

D−→ X if FXn(x)→ FX (x) for all points x at which FX is continuous.

Definition (Convergence in probability)
Xn

P−→ X if P(|Xn−X |> ε)→ 0 for all ε > 0.
There are further inter-related notions of convergence but two will
suffice for our purposes.
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Theorem
If Xn

P−→ X then Xn
D−→ X.

Proof

We prove this theorem as follows. Fix, ε > 0 then

FXn(x) = P(Xn ≤ x ∩X > x + ε)+P(Xn ≤ x ∩X ≤ x + ε)

since X > x + ε and X ≤ x + ε form a partition. But if Xn ≤ x
and X > x + ε then |Xn−X |> ε

and {Xn ≤ x ∩X ≤ x + ε} ⊂ {X ≤ x + ε}. Therefore,

FXn(x)≤ P(|Xn−X |> ε)+FX (x + ε) .

Similarly,

FX (x − ε) = P(X ≤ x − ε ∩Xn > x)+P(X ≤ x − ε ∩Xn ≤ x)
≤ P(|Xn−X |> ε)+FXn(x) .
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The proof is completed by noting that together these inequalities
show that

FX (x − ε)−P(|Xn−X |> ε)≤ FXn(x)≤ P(|Xn−X |> ε)+FX (x + ε) .

But Xn
P−→ X implies that P(|Xn−X |> ε)→ 0. So, as n→ ∞, FXn(x) is

squeezed between FX (x − ε) and FX (x + ε).
Hence, if FX is continuous at x , FXn(x)→ FX (x) and so Xn

D−→ X .
The converse does not hold in general. However, the problem sheet
contains an exercise showing an important special case where the
converse does hold.
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Limit theorems
Given a sequence of RVs (Xn)n≥1, let

Sn = X1 +X2 + · · ·+Xn and X n = Sn/n .

What happens to the sample average, X n, for large n?

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ (and finite

variance σ2) then X n
P−→ µ.

Note that convergence to µ in the WLLN (and SLLN) actually means
convergence to a degenerate RV, X , with P(X = µ) = 1.
This is referred to as the weak law of large numbers since under
more restrictive assumptions it holds (ie SLLN) for a stronger form of
convergence known as almost sure convergence. Under the SLLN
with almost sure convergence we would have that P(X n→ µ) = 1.
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WLLN

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ and finite

variance σ2 then X n
P−→ µ.

Proof.
Recall that E(X n) = µ and Var(X n) = σ2/n. Hence, by Chebyshev’s
inequality applied to X n for all ε > 0

0≤ P(|X n−µ|> ε)≤ σ2/n
ε2 =

σ2

nε2

and so, letting n→ ∞,

P(|X n−µ|> ε)→ 0

hence X n
P−→ µ as required.
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Applications: estimating probabilities
Suppose we wish to estimate the probability, p, that we succeed when
we play some game or perform some experiment. For i = 1, . . . ,n, let

Xi = I({i thgame is success}) .

So X n = m/n if we succeed m times in n attempts.
We have that µ = E(Xi) = P(Xi = 1) = p so then

m/n P−→ p

by the WLLN.
Thus we have shown the important result that the empirical estimate
of the probability of some event by its observed sample frequency
converges in probability to the correct but usually unknown value as
the number of samples grows.
This result forms the basis of all simulation methods.
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Applications: Shannon’s entropy

Theorem (Asymptotic Equipartition Property/AEP)
If Xn is a sequence of IID discrete RV with probability distribution
given by P(Xi = x) = p(x) for each x ∈ I then

−1
n

log2 p(X1,X2, . . . ,Xn)
P−→ H(X )

where Shannon’s entropy is defined by

H(X ) = H(X1) = · · ·= H(Xn) =−∑
x∈I

p(x) log2 p(x)

and

p(x1,x2, . . . ,xn) =
n

∏
i=1

p(xi)

is the joint probability distribution of the n IID RVs X1,X2, . . . ,Xn.
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Proof.
Observe that p(Xi) is a RV taking the value p(x) with probabilty p(x)
and similarly p(X1,X2, . . . ,Xn) is a RV taking a value p(x1,x2, . . . ,xn)
with probability p(x1,x2, . . . ,xn). Therefore,

−1
n

log2 p(X1,X2, . . . ,Xn) =−
1
n

log2

n

∏
i=1

p(Xi)

=−1
n

n

∑
i=1

log2 p(Xi)

=
1
n

n

∑
i=1

(− log2 p(Xi))

P−→ E(− log2 p(Xi)) by WLLN

=−∑
x∈I

p(x) log2 p(x)

= H(X )
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AEP implications
By the AEP, for all ε > 0,

lim
n→∞

P(|− 1
n

log2 p(X1,X2, . . . ,Xn)−H(X )| ≤ ε) = 1

lim
n→∞

P(H(X )− ε ≤−1
n

log2 p(X1,X2, . . . ,Xn)≤ H(X )+ ε) = 1

lim
n→∞

P(−n(H(X )− ε)≥ log2 p(X1,X2, . . . ,Xn)≥−n(H(X )+ ε)) = 1

lim
n→∞

P(2−n(H(X )+ε) ≤ p(X1,X2, . . . ,Xn)≤ 2−n(H(X )−ε)) = 1

Thus, the sequences of outcomes (x1,x2, . . . ,xn) ∈ Aε
n where

Aε
n = {(x1,x2, . . . ,xn) : 2−n(H(X )+ε) ≤ p(x1,x2, . . . ,xn)≤ 2−n(H(X )−ε)}

have a high probability and are referred to as typical sequences. An
efficient (optimal) coding is to assign short codewords to such
sequences leaving longer codewords for any non-typical sequence.
Such long codewords must arise only rarely in the limit and we would
need around n(H(X )+ ε) bits to distinguish these typical codewords.
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Central limit theorem

Theorem (Central limit theorem/CLT)
Let (Xn)n≥1 be a sequence of IID RVs with mean µ, variance σ2 and
whose moment generating function converges in some
interval −a < t < a with a > 0. Then

Zn =
X n−µ

σ/
√

n
D−→ Z ∼ N(0,1) .
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Proof of CLT
Set Yi = (Xi −µ)/σ then E(Yi) = 0 and E(Y 2

i ) = Var(Yi) = 1 so

MYi (t) = 1+
t2

2
+o(t2)

where o(t2) refers to terms of higher order than t2 which will therefore
tend to 0 as t → 0. Also,

Zn =
X n−µ

σ/
√

n
=

1√
n

n

∑
i=1

Yi .

Hence,

MZn(t) =
(

MYi

(
t√
n

))n

=

(
1+

t2

2n
+o

(
t2

n

))n

→ et2/2 as n→ ∞ .

But et2/2 is the MGF of the N(0,1) distribution so, together with the
continuity property, the CLT now follows.
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CLT example
Suppose X1,X2, . . . ,Xn are the IID RVs showing the n sample
outcomes of a 6-sided die with common distribution

P(Xi = j) = pj , j = 1,2, . . . ,6

Set Sn = X1 +X2 + · · ·+Xn, the total score obtained, and consider the
two cases
I symmetric: (pj) = (1/6,1/6,1/6,1/6,1/6,1/6) so

that µ = E(Xi) = 3.5 and σ2 = Var(Xi)≈ 2.9
I asymmetric: (pj) = (0.2,0.1,0.0,0.0,0.3,0.4) so

that µ = E(Xi) = 4.3 and σ2 = Var(Xi)≈ 4.0
for varying sample sizes n = 5,10,15 and 20.
The CLT tells us that for large n, Sn is approximately distributed
as N(nµ,nσ2) where µ and σ2 are the mean and variance,
respectively, of Xi .
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CLT example: symmetric
10,000 replications

score

D
en
sit
y

0.00
0.02
0.04
0.06
0.08
0.10

0 20 40 60 80 100 120

n=5
0.00
0.02
0.04
0.06
0.08
0.10

n=10
0.00
0.02
0.04
0.06
0.08
0.10

n=15
0.00
0.02
0.04
0.06
0.08
0.10

n=20

MM4CS 2014/15 (40)



CLT example: asymmetric
10,000 replications

score

D
en
sit
y

0.00
0.05
0.10

0 20 40 60 80 100 120

n=5
0.00
0.05
0.10

n=10
0.00
0.05
0.10

n=15
0.00
0.05
0.10

n=20
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Confidence intervals I
One of the major statistical applications of the CLT is to the
construction of confidence intervals. The CLT shows that

Zn =
X n−µ

σ/
√

n

is asymptotically distributed as N(0,1). If, the true value of σ2 is
unknown we may estimate it by the sample variance given by

S2 =
1

n−1

n

∑
i=1

(Xi −X n)
2 .

For instance, it can be shown that E(S2) = σ2 and then

X n−µ

S/
√

n

is approximately distributed as N(0,1) for large n.
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Confidence intervals II
Define zα so that P(Z > zα) = α where Z ∼ N(0,1) and so

P(−zα/2 < Z < zα/2) = 1−α .

Hence,

P

(
−zα/2 <

X n−µ

S/
√

n
< zα/2

)
≈ 1−α

P
(

X n−zα/2
S√
n
< µ < X n +zα/2

S√
n

)
≈ 1−α .

The interval between the pair of end points X n±zα/2S/
√

n is thus an
(approximate) 100(1−α) percent confidence interval for the unknown
parameter µ.
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Confidence intervals: example
Consider a collection of n IID RVs, Xi , with common
distribution Xi ∼ Pois(λ ). Hence,

P(Xi = j) =
λ je−λ

j!
j = 0,1, . . .

with mean E(Xi) = λ .
Then a 95% confidence interval for the (unknown) mean value λ is
given by

X n±1.96S/
√

n

where z0.025 = 1.96.
Alternatively, to obtain 99% confidence intervals replace 1.96
by z0.005 = 2.58 for a confidence interval X n±2.58S/

√
n.
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95% confidence intervals: illustration with λ = 25
and α = 5%

100 runs, n= 10

confidence interval

15 20 25 30 35

100 runs, n= 40

confidence interval

15 20 25 30 35
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Monte Carlo simulation and randomized
algorithms

Suppose we wish to estimate the value of π. One way to proceed is
to perform the following experiment. Select a point (X ,Y ) ∈ [−1,1]2

with X and Y chosen independently and uniformly in [−1,1]. Now
consider those points within unit distance of the origin then

P((X ,Y ) lies in unit circle) = P(X 2 +Y 2 ≤ 1) =
area of circle

area of square
=

π

4
.

Suppose we have access to a stream of random
variables Ui ∼ U(0,1) then 2Ui −1∼ U(−1,1). Now
set Xi = 2U2i−1−1, Yi = 2U2i −1 and Hi = I({X 2

i +Y 2
i ≤ 1}) so that

E(Hi) = P(X 2
i +Y 2

i ≤ 1) =
π

4
.

Hence by the WLLN the proportion of points (Xi ,Yi) falling within the
unit circle converges in probability to π/4. Furthermore, the CLT can
be used to form confidence intervals.
This a simple example of a randomized algorithm to solve a
deterministic problem.

MM4CS 2014/15 (46)



Stochastic processes

MM4CS 2014/15 (47)



Random walks
Consider a sequence Y1,Y2, . . . of IID RVs with P(Yi = 1) = p
and P(Yi =−1) = 1−p with p ∈ [0,1].

Definition (Simple random walk)
The simple random walk is a sequence of RVs {Xn |n ∈ {1,2, . . .}}
defined by

Xn = X0 +Y1 +Y2 + · · ·+Yn

where X0 ∈ R is the starting value.

Definition (Simple symmetric random walk)
A simple symmetric random walk is a simple random walk with the
choice p = 1/2.

n

Xn

0

X0

1 2 3 4 5 6 7 8 9

E.g. X0 = 2 & (Y1 ,Y2 , . . . ,Y9 , . . .) = (1,−1,−1,−1,−1,1,1,1,−1, . . .)
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Examples
Practical examples of random walks abound
across the physical sciences (motion of atomic
particles) and the non-physical sciences
(epidemics, gambling, asset prices,
cryptocurrencies).

The following is a simple model for the operation of a casino.
Suppose that a gambler enters with a capital of £X0. At each stage
the gambler places a stake of £1 and with probability p wins the
gamble otherwise the stake is lost. If the gambler wins the stake is
returned together with an additional sum of £1.
Thus at each stage the gambler’s capital increases by £1 with
probability p or decreases by £1 with probability 1−p.
The gambler’s capital Xn at stage n thus follows a simple random
walk except that the gambler is bankrupt if Xn reaches £0 and then
can not continue to any further stages.
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Returning to the starting state for a simple random
walk

Let Xn be a simple random walk and

rn = P(Xn = X0) for n = 1,2, . . .

the probability of returning to the starting state at time n.
We will show the following theorem.

Theorem
If n is odd then rn = 0 else if n = 2m is even then

rn =

(
2m
m

)
pm(1−p)m .

MM4CS 2014/15 (50)



Proof.
The position of the random walk will change by an amount

Xn−X0 = Y1 +Y2 + · · ·+Yn

between times 0 and n. Hence, for this change Xn−X0 to be 0 there
must be an equal number of up steps as down steps. This can never
happen if n is odd and so rn = 0 in this case. If n = 2m is even then
note that the number of up steps in a total of n steps is a binomial RV
with parameters 2m and p. Thus,

rn = P(Xn−X0 = 0) =
(

2m
m

)
pm(1−p)m .

This result tells us about the probability of returning to the starting
state at a given time n.
We will now look at the probability that we ever return to our starting
state. For convenience, and without loss of generality, we shall take
our starting value as X0 = 0 from now on.
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Recurrence and transience of simple random
walks

Note first that E(Yi) = p− (1−p) = 2p−1 for each i ∈ {1,2, . . .}. Thus
there is a net drift upwards if p > 1/2 and a net drift downwards
if p < 1/2. Only in the case p = 1/2 is there no net drift.
We say that the simple random walk is recurrent if it is certain to
revisit its starting state at some time in the future and transient
otherwise.
We shall prove the following theorem.

Theorem
For a simple random walk with starting state X0 = 0 the probability of
revisiting the starting state is

P(Xn = 0 for some n ∈ {1,2, . . .}) = 1−|2p−1| .

Thus a simple random walk is recurrent only when p = 1/2 and it is
transient for all p 6= 1/2.
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Proof
Since we have assumed that X0 = 0 the event Rn = {Xn = 0}
indicates that the simple random walk returns to its starting state at
time n. Consider the event

Fn = {Xn = 0,Xm 6= 0for m ∈ {1,2, . . . ,(n−1)}}
that the random walk first revisits its starting state at time n. If Rn
occurs then exactly one of F1,F2, . . . ,Fn occurs. So,

P(Rn) =
n

∑
m=1

P(Rn ∩Fm)

but
P(Rn ∩Fm) = P(Fm)P(Rn−m) for m ∈ {1,2, . . . ,n}

since we must first return at time m and then return a time n−m later
which are independent events. So if we write fn = P(Fn)
and rn = P(Rn) then

rn =
n

∑
m=1

fmrn−m .

Given the expression for rn we now wish to solve these equations
for fm.
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Proof, ctd
Define generating functions for the sequences rn and fn by

R(z) =
∞

∑
n=0

rnzn and F (z) =
∞

∑
n=0

fnzn

where r0 = 1 and f0 = 0 and take |z|< 1. We have that

∞

∑
n=1

rnzn =
∞

∑
n=1

n

∑
m=1

fmrn−mzn

=
∞

∑
m=1

∞

∑
n=m

fmzmrn−mzn−m

=
∞

∑
m=1

fmzm
∞

∑
k=0

rk zk

= F (z)R(z) .

The left hand side is R(z)− r0z0 = R(z)−1 thus we have that

R(z) = R(z)F (z)+1 if |z|< 1.
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Proof, ctd
Now,

R(z) =
∞

∑
n=0

rnzn

=
∞

∑
m=0

r2mz2m as rn = 0 if n is odd

=
∞

∑
m=0

(
2m
m

)
(p(1−p)z2)m

= (1−4p(1−p)z2)−
1
2 .

The last step follows from the binomial series expansion
of (1−4θ)−

1
2 and the choice θ = p(1−p)z2.

Hence,
F (z) = 1− (1−4p(1−p)z2)

1
2 for |z|< 1 .

MM4CS 2014/15 (55)



Proof, ctd
But now

P(Xn = 0for some n = 1,2, . . .) = P(F1∪F2∪·· ·)
= f1 + f2 + · · ·

= lim
z↑1

∞

∑
n=1

fnzn

= F (1)

= 1− (1−4p(1−p))
1
2

= 1− ((2p−1)2)
1
2

= 1−|2p−1| .

So, finally, the simple random walk is certain to revisit its starting state
just when p = 1/2.
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Mean return time
Consider the recurrent case when p = 1/2 and set

T = min{n ≥ 1 |Xn = 0} so that P(T = n) = fn

where T is the time of the first return to the starting state. Then

E(T ) =
∞

∑
n=1

nfn

= G′T (1)

where GT (z) is the PGF of the RV T and for p = 1/2 we have
that 4p(1−p) = 1 so

GT (z) = 1− (1−z2)
1
2

so that
G′T (z) = z(1−z2)−

1
2 → ∞ as z ↑ 1 .

Thus, the simple symmetric random walk (p = 1/2) is recurrent but
the expected time to first return to the starting state is infinite.
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The Gambler’s ruin problem
We now consider a variant of the simple random walk. Consider two
players A and B with a joint capital between them of £N. Suppose that
initially A has X0 = £a (0≤ a≤ N).
At each time step player B gives A £1 with probability p and with
probability q = (1−p) player A gives £1 to B instead. The outcomes
at each time step are independent.
The game ends at the first time Ta if either XTa = £0 or XTa = £N for
some Ta ∈ {0,1, . . .}.
We can think of A’s wealth, Xn, at time n as a simple random walk on
the states {0,1, . . . ,N} with absorbing barriers at 0 and N.
Define the probability of ruin, ρa, for gambler A as

ρa = P(A is ruined) = P(B wins) for 0≤ a≤ N .

n

Xn

0

N = 5

X0 = 2

1 2 3 4 5 6 7 8 9

E.g. N = 5, X0 = a = 2 & (Y1,Y2,Y3,Y4) = (1,−1,−1,−1)

T2 = 4 & XT2 = X4 = 0
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Solution of the Gambler’s ruin problem
Theorem
The probability of ruin when A starts with an initial capital of a is given
by

ρa =

{
θa−θN

1−θN if p 6= q
1− a

N if p = q = 1/2

where θ = q/p.
For illustration here is a set of graphs of ρa for N = 100 and three
possible choices of p.

a

ρa

10 20 30 40 50 60 70 80 90 1000

1

0.75

0.5

0.25

p = 0.49

p = 0.5

p = 0.51

MM4CS 2014/15 (59)



Proof
Consider what happens at the first time step

ρa = P(ruin∩Y1 =+1|X0 = a)+P(ruin∩Y1 =−1|X0 = a)
= pP(ruin|X0 = a+1)+qP(ruin|X0 = a−1)
= pρa+1 +qρa−1

Now look for a solution to this difference equation of the form λ a with
boundary conditions ρ0 = 1 and ρN = 0.
Try a solution of the form ρa = λ a to give

λ
a = pλ

a+1 +qλ
a−1

Hence,
pλ

2−λ +q = 0

with solutions λ = 1 and λ = q/p.
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Proof, ctd
If p 6= q there are two distinct solutions and the general solution of the
difference equation is of the form A+B(q/p)a.
Applying the boundary conditions

1 = ρ0 = A+B and 0 = ρN = A+B(q/p)N

we get
A =−B(q/p)N

and
1 = B−B(q/p)N

so

B =
1

1− (q/p)N and A =
−(q/p)N

1− (q/p)N .

Hence,

ρa =
(q/p)a− (q/p)N

1− (q/p)N .
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Proof, ctd
If p = q = 1/2 then the general solution is C +Da.
So with the boundary conditions

1 = ρ0 = C +D(0) and 0 = ρN = C +D(N) .

Therefore,
C = 1 and 0 = 1+D(N)

so
D =−1/N

and
ρa = 1−a/N .
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Mean duration time
Set Ta as the time to be absorbed at either 0 or N starting from the
initial state a and write µa = E(Ta).
Then, conditioning on the first step as before

µa = 1+pµa+1 +qµa−1 for 1≤ a≤ N−1

and µ0 = µN = 0.
It can be shown that µa is given by

µa =

{
1

p−q

(
N (q/p)a−1

(q/p)N−1 −a
)

if p 6= q

a(N−a) if p = q = 1/2 .

We skip the proof here but note the following cases can be used to
establish the result.
Case p 6= q: trying a particular solution of the form µa = ca shows
that c = 1/(q−p) and the general solution is then of the
form µa = A+B(q/p)a +a/(q−p). Fixing the boundary conditions
gives the result.
Case p = q = 1/2: now the particular solution is −a2 so the general
solution is of the form µa = A+Ba−a2 and fixing the boundary
conditions gives the result.
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Markov chains

Definition (Markov chain)
Suppose that (Xn) n ≥ 0 is a sequence of discrete random variables
taking values in some countable state space S. The sequence (Xn) is
a Markov chain (MC) if

P(Xn = xn|X0 = x0,X1 = x1, . . . ,Xn−1 = xn−1) = P(Xn = xn|Xn−1 = xn−1)

for all n ≥ 1 and for all x0,x1, . . . ,xn ∈ S.
Since, S is countable we can always choose to label the possible
values of Xn by integers and say that when Xn = i the Markov chain is
in the “i th state at the nth step” or “visits i at time n”.
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Transition probabilities
The dynamics of the Markov chain are governed by the transition
probabilites P(Xn = j |Xn−1 = i).

Definition (time-homogeneous MC)
A Markov chain (Xn) is time-homogeneous if

P(Xn = j |Xn−1 = i) = P(X1 = j |X0 = i)

for all n ≥ 1 and states i , j ∈ S.

I We shall assume that our MCs are time-homogeneous unless
explicitly stated otherwise.
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Transition matrix

Definition (Transition matrix)
The transition matrix, P, of a MC (Xn) is given by P = (pij) where for
all i , j ∈ S

pij = P(Xn = j |Xn−1 = i) .

I Note that P is a stochastic matrix, that is, it has non-negative
entries (pij ≥ 0) and the row sums all equal one (∑j pij = 1).

I The transition matrix completely characterizes the dynamics of
the MC.
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Example
Suppose the states of the MC are S = {1,2,3} and that the transition
matrix is given by

P =

1/3 1/3 1/3
1/2 0 1/2
2/3 0 1/3

 .

I Thus, in state 1 we are equally likely to be in any of the three
states at the next step.

I In state 2, we can move with equal probabilities to 1 or 3 at the
next step.

I Finally in state 3, we either move to state 1 with probability 2/3 or
remain in state 3 at the next step.
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n-step transition matrix

Definition (n-step transition matrix)
The n-step transition matrix is P(n) = (p(n)

ij ) where

p(n)
ij = P(Xn = j |X0 = i) .

Thus P(1) = P and we also set P(0) = I, the |S|× |S|-identity matrix.
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Chapman-Kolmogorov equations
Theorem (Chapman-Kolmogorov)
For all states i , j and for all steps m,n

p(m+n)
ij = ∑

k
p(m)

ik p(n)
kj .

Hence, P(m+n) = P(m)P(n) and P(n) = Pn, the nth power of P.

Proof.

p(m+n)
ij = P(Xm+n = j |X0 = i) = ∑

k
P(Xm+n = j ,Xm = k |X0 = i)

= ∑
k
P(Xm+n = j |Xm = k ,X0 = i)P(Xm = k |X0 = i)

= ∑
k
P(Xm+n = j |Xm = k)P(Xm = k |X0 = i)

= ∑
k

p(n)
kj p(m)

ik
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The Chapman-Kolmorgorov equations tell us how the long-term
evolution of the MC depends on the short-term evolution specified by
the transition matrix.
If we let λ

(n)
i = P(Xn = i) be the elements of a row vector λ (n)

specifying the distribution of the MC at the nth time step then the
follow holds.

Lemma
If m,n are non-negative integers then λ (m+n) = λ (m)P(n) and so, in
particular, if m = 0

λ
(n) = λ

(0)P(n)

where λ (0) is the initial distribution λ
(0)
i = P(X0 = i) of the MC.

Proof.

λ
(m+n)
j = P(Xm+n = j) = ∑

i
P(Xm+n = j |Xm = i)P(Xm = i)

= ∑
i

λ
(m)
i p(n)

ij =
(

λ
(m)P(n)

)
j
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Classification of states

Definition (Accessibility)
If, for some n ≥ 0, p(n)

ij > 0 then we say that state j is accessible from
state i , written i  j .
If i  j and j  i then we say that i and j communicate, written i! j .
Observe that the relation communicates! is
I reflexive
I symmetric
I transitive

and hence is an equivalence relation. The corresponding equivalence
classes partition the state space into subsets of states, called
communicating classes.
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Irreducibility
I A communicating class, C, that once entered can not be left is

called closed, that is pij = 0 for all i ∈ C, j 6∈ C.
I A closed communicating class consisting of a single state is

called absorbing.
I When the state space forms a single communicating class, the

MC is called irreducible and is called reducible otherwise.
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Recurrence and transience of MCs
Write for n ≥ 1

f (n)ij = P(X1 6= j , . . . ,Xn−1 6= j ,Xn = j |X0 = i)

so that f (n)ij is the probability starting in state i that we visit state j for
the first time at time n. Also, let

fij = ∑
n≥1

f (n)ij

the probability that we ever visit state j , starting in state i .

Definition
I If fii < 1 then state i is transient
I If fii = 1 then state i is recurrent.
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Recurrence and transience, ctd
I Observe that if we return to a state i at some time n then the

evolution of the MC is independent of the path before time n.
Hence, the probability that we will return at least N times is f N

ii .
I Now, if i is recurrent f N

ii = 1 for all N and we are sure to return to
state i infinitely often.

I Conversely, if state i is transient then f N
ii → 0 as N→ ∞ and so

there is zero probability of returning infinitely often.
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Theorem
I i is transient⇔ ∑n≥1 p(n)

ii converges

I i is recurrent⇔ ∑n≥1 p(n)
ii diverges

If i and j belong to the same communicating class then they are
either both recurrent or both transient — the solidarity property.

Proof

First, define generating functions

Pii(z) =
∞

∑
n=0

p(n)
ii zn and Fii(z) =

∞

∑
n=0

f (n)ii zn

where we take p(0)
ii = 1 and f (0)ii = 0.

MM4CS 2014/15 (75)



By examining the first time, r , that we return to i , we have
for m = 1,2, . . . that

p(m)
ii =

m

∑
r=1

f (r)ii p(m−r)
ii .

Now multiply by zm and summing over m we get

Pii(z) = 1+
∞

∑
m=1

zmp(m)
ii

= 1+
∞

∑
m=1

zm
m

∑
r=1

f (r)ii p(m−r)
ii

= 1+
∞

∑
r=1

f (r)ii zr
∞

∑
m=r

p(m−r)
ii zm−r

= 1+Fii(z)Pii(z)
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Thus, Pii(z) = 1/(1−Fii(z)). Now let z↗ 1 then Fii(z)→ Fii(1) = fii
and Pii(z)→ ∑n p(n)

ii .
If i is transient then fii < 1 so ∑n p(n)

ii converges. Conversely, if i is
recurrent then fii = 1 and ∑n p(n)

ii diverges.
Furthermore, if i and j are in the same class then there exist m and n
so that p(m)

ij > 0 and p(n)
ji > 0. Now, for all r ≥ 0

p(m+r+n)
ii ≥ p(m)

ij p(r)
jj p(n)

ji

so that ∑r p(r)
jj and ∑k p(k)

ii diverge or converge together.
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Mean recurrence time
First, let

Tj = min{n ≥ 1 : Xn = j}

be the time of the first visit to state j and set Tj = ∞ if no such visit
ever occurs.
Thus, P(Ti = ∞|X0 = i)> 0 if and only if i is transient in which
case E(Ti |X0 = i) = ∞.

Definition (Mean recurrence time)
The mean recurrent time, µi , of a state i is defined as

µi = E(Ti |X0 = i) =

{
∑n nf (n)ii if i is recurrent
∞ if i is transient .

I Note that µi may still be infinite when i is recurrent.
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Positive and null recurrence

Definition
A recurrent state i is
I positive recurrent if µi < ∞ and
I null recurrent if µi = ∞.
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Example: simple random walk
Recall the simple random walk where Xn = ∑

n
i=1 Yi where (Yn) are IID

RVs with P(Yi = 1) = p = 1−P(Yi =−1). Thus Xn is the position
after n steps where we take unit steps up or down with probabilities p
and 1−p, respectively.
It is clear that return to the origin is only possible after an even
number of steps. Thus the sequence (p(n)

00 ) alternates between zero
and a positive value.
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Periodicity
Let di be the greatest common divisor of {n : p(n)

ii > 0}.

Definition
I If di = 1 then i is aperiodic.
I If di > 1 then i is periodic with period di .

I It may be shown that the period is a class property, that is,
if i , j ∈ C then di = dj .

We will now concentrate on irreducible and aperiodic Markov chains.
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Stationary distributions

Definition
The vector π = (πj ; j ∈ S) is a stationary distribution for the MC with
transition matrix P if

1. πj ≥ 0 for all j ∈ S and ∑j∈S πj = 1
2. π = πP, or equivalently, πj = ∑i∈S πipij .

Such a distribution is stationary in the sense
that πP2 = (πP)P = πP = π and for all n ≥ 0

πPn = π .

Thus if X0 has distribution π then Xn has distribution π for all n.
Moreover, π is the limiting distribution of Xn as n→ ∞.
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Markov’s example
Markov was lead to the notion of a Markov chain by study the
patterns of vowels and consonants in text. In his original example, he
found a transition matrix for the states {vowel,consonant) as

P =

(
0.128 0.872
0.663 0.337

)
.

Taking successive powers of P we find

P2 =

(
0.595 0.405
0.308 0.692

)
P3 =

(
0.345 0.655
0.498 0.502

)
P4 =

(
0.478 0.522
0.397 0.603

)
.

As n→ ∞,

Pn→
(

0.432 0.568
0.432 0.568

)
.

Check that π = (0.432,0.568) is a stationary distribution, that
is πP = π.
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Limiting behaviour as n→ ∞

Theorem (Erdös-Feller-Pollard)
For all states i and j in an irreducible, aperiodic MC,

1. if the chain is transient, p(n)
ij → 0

2. if the chain is recurrent, p(n)
ij → πj , where

2.1 (null recurrent) either, every πj = 0
2.2 (positive recurrent) or, every πj > 0, ∑j πj = 1 and π is the unique

probability distribution solving πP = π.

3. In case (2), let Ti be the time to return to i then µi = E(Ti) = 1/πi
with µi = ∞ if πi = 0.

Proof.
Omitted.
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Remarks
I The limiting distribution, π, is seen to be a stationary one.

Suppose the current distribution is given by π and consider the
evolution of the MC for a further period of T steps. Since π is
stationary, the probability of being in any state i remains πi , so
we will make around T πi visits to i . Consequently, the mean time
between visits to i would be T/(T πi) = 1/πi .

I Using λ
(n)
j = P(Xn = j) and since λ (n) = λ (0)Pn

1. for transient or null recurrent states λ (n)→ 0, that is, P(Xn = j)→ 0
for all states j

2. for a positive recurrent state, p(n)→ π > 0, that
is, P(Xn = j)→ πj > 0 for all j , where π is the unique probability
vector solving πP = π.

I Note the distinction between a transient and a null recurrent
chain is that in a transient chain we might never make a return
visit to some state i and there is zero probability that we will
return infinitely often. However, in a null recurrent chain we are
sure to make infinitely many return visits but the mean time
between consecutive visits is infinite.
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Time-reversibility
Suppose now that (Xn :−∞ < n < ∞) is an irreducible, positive
recurrent MC with transition matrix P and unique stationary
distribution π. Suppose also that Xn has the distribution π for
all −∞ < n < ∞. Now define the reversed chain by

Yn = X−n for −∞ < n < ∞

Then (Yn) is also a MC and where Yn has the distribution π.

Definition (Reversibility)
A MC (Xn) is reversible if the transition matrices of (Xn) and (Yn) are
equal.
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Theorem
A MC (Xn) is reversible if and only if

πipij = πjpji for all i , j ∈ S .

Proof.
Consider the transition probabilities qij ofthe MC (Yn) then

qij = P(Yn+1 = j |Yn = i)
= P(X−n−1 = j |X−n = i)
= P(Xm = i |Xm−1 = j)P(Xm−1 = j)/P(Xm = i) where m =−n
= pjiπj/πi .

Hence, pij = qij if and only if πipij = πjpji .
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Theorem
For an irreducible chain, if there exists a vector π such that

1. 0≤ πi ≤ 1 and ∑i π = 1
2. πipij = πjpji for all i , j ∈ S

then the MC is reversible with stationary distribution π.

Proof.
Suppose that π satisfies the conditions of the theorem then

∑
i

πipij = ∑
i

πjpji = πj ∑
i

pji = πj

and so π = πP and the distribution is stationary.
The conditions πipij = πjpji for all i , j ∈ S are known as the local
balance (or detailed balance) conditions.
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Ehrenfest model
Suppose we have two containers A and B containing a total of m
balls. At each time step a ball is chosen uniformly at random and
switched between containers. Let Xn be the number of balls in
container A after n units of time. Thus, (Xn) is a MC with transition
matrix given by

pi ,i+1 = 1− i
m

, pi ,i−1 =
i
m

.

Instead of solving the equations π = πP we look for solutions to

πipij = πjpji

which yields πi =
(m

i

)
(1

2 )
m, a binomial distribution with parameters m

and 1
2 .
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Random walk on an undirected graph
Consider a graph G consisting of a countable collection of
vertices i ∈ N and a finite collection of edges (i , j) ∈ E joining
(unordered) pairs of vertices. Assume also that G is connected.
A natural way to construct a MC on G uses a random walk through
the vertices. Let vi be the number of edges incident at vertex i . The
random walk then moves from vertex i by selecting one of the vi
edges with equal probability 1/vi . So the transition matrix, P, is

pij =

{
1
vi

if (i , j) is an edge
0 otherwise .
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Since G is connected, P is irreducible. The local balance conditions
for (i , j) ∈ E are

πipij = πjpji

πi
1
vi

= πj
1
vj

πi

πj
=

vi

vj
.

Hence,
πi ∝ vi

and the normalization condition ∑i∈N πi = 1 gives

πi =
vi

∑j∈N vj

and P is reversible.
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Ergodic results
Ergodic results tell us about the limiting behaviour of averages taken
over time. In the case of Markov Chains we shall consider the
long-run proportion of time spent in a given state.
Let Vi(n) be the number of visits to i before time n then

Vi(n) =
n−1

∑
k=0

I({Xk = i}) .

Thus, Vi(n)/n is the proportion of time spent in state i before time n.

Theorem (Ergodic theorem)
Let (Xn) be a MC with irreducible transition matrix P then

P
(

Vi(n)
n
→ 1

µi
as n→ ∞

)
= 1

where µi = E(Ti |X0 = i) is the expected return time to state i.
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Proof

If P is transient then the total number of visits, Vi , to i is finite with
probability one, so

Vi(n)
n
≤ Vi

n
→ 0 =

1
µi

n→ ∞ .

Alternatively, if P is recurrent let Y (r)
i be the r th duration between

visits to any given state i . Then Y (1)
i ,Y (2)

i , . . . are non-negative IID
RVs with E(Y (r)

i ) = µi .
But

Y (1)
i + · · ·+Y (Vi (n)−1)

i ≤ n−1

since the time of the last visit to i before time n occurs no later than
time n−1 and

Y (1)
i + · · ·+Y (Vi (n))

i ≥ n

since the time of the first visit to i after time n−1 occurs no earlier
than time n.

MM4CS 2014/15 (93)



Hence,

Y (1)
i + · · ·+Y (Vi (n)−1)

i
Vi(n)

≤ n
Vi(n)

≤
Y (1)

i + · · ·+Y (Vi (n))
i

Vi(n)
.

However, by the SLLN,

P

(
Y (1)

i + · · ·+Y (n)
i

n
→ µi as n→ ∞

)
= 1

and for P recurrent we know that P(Vi(n)→ ∞ as n→ ∞) = 1. So,

P
(

n
Vi(n)

→ µi as n→ ∞

)
= 1

which implies

P
(

Vi(n)
n
→ 1

µi
as n→ ∞

)
= 1 .
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Example: random surfing on web graphs
Consider a web graph, G = (V ,E), with vertices given by a finite
collection of web pages i ∈ V and (directed) edges given by (i , j)
whenever there is a hyperlink from page i to page j .
Random walks through the web graph have received much attention
in the last few years.
Consider the following model, let Xn ∈ V be the location (that is, web
page visited) by the surfer at time n and suppose we choose Xn+1
uniformly from the, L(i), outgoing links from i , in the case
where L(i)> 0 and uniformly among all pages in V if L(i) = 0 (the
dangling page case).
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Hence, the transition matrix, P̂ij , say, is given by

p̂ij =


1

L(i) if (i , j) ∈ E
1
|V | if L(i) = 0

0 otherwise

where |V | is the number of pages (that is, vertices) in the web graph.
A potential problem remains in that P̂ may not be irreducible or may
be periodic.

MM4CS 2014/15 (96)



We will make a further adjustment to ensure irreducibility and
aperiodicity as follows. For 0 < α ≤ 1 set

pij = (1−α)p̂ij +α
1
|V |

.

We can interpret this as an “easily bored web surfer” model and see
that the transitions take the form of a mixture of two distributions.
With probability 1−α we follow the randomly chosen outgoing link
(unless the page is dangling in which case we move to a randomly
chosen page) while with probability α we jump to a random page
selected uniformly from the entire set of pages V .
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PageRank
Brin et al (1999) used this approach to define PageRank through the
limiting distribution of this Markov Chain, that is πi where the vector π

satisfies
π = πP

They report typical values for α of between 0.1 and 0.2.
The ergodic theorem now tells us that the random surfer in this model
spends a proportion πi of the time visiting page i — a notion in some
sense of the importance of page i .
Thus, two pages i and j can be ranked according to the total order
defined by

i ≥ j if and only if πi ≥ πj .

See, “The PageRank Citation Ranking: Bring Order to the Web” Sergey Brin,
Lawrence Page, Rajeev Motwani and Terry Winograd (1999) Technical
Report, Computer Science Department, Stanford University.
http://dbpubs.stanford.edu:8090/pub/1999-66
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Computing PageRank: the power method
We seek a solution to the system of equations

π = πP

that is, we are looking for an eigenvector of P (with corresponding
eigenvalue of one). Google’s computation of PageRank is one of the
world’s largest matrix computations.
The power method starts from some initial distribution π(0),
updating π(k−1) by the iteration

π
(k) = π

(k−1)P = · · ·= π
(0)Pk

Advanced methods from linear algebra can be used to speed up
convergence of the power method and there has been much study of
related MCs to include web browser back buttons and many other
properties as well as alternative notions of the “importance” of a web
page.
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Hidden Markov Models
An extension of Markov Chains is provided by Hidden Markov Models
(HMM) where a statistical model of observed data is constructed from
an underlying but usually hidden Markov Chain.
Such models have proved very popular in a wide variety of fields
including
I speech and optical character recognition
I natural language processing
I bioinformatics and genomics.

We shall not consider these applications in any detail but simply
introduce the basic ideas and questions that Hidden Markov Models
address.
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A Markov model with hidden states
Suppose we have a MC with transition matrix P but that the states i of
the chain are not directly observable. Instead, we suppose that on
visiting any state i at time n there is a randomly chosen output value
or token, Yn, that is observable.
The probability of observing the output token t when in state i is given
by some distribution bi , depending on the state i that is visited.
Thus,

P(Yn = t |Xn = i) = (bi)t

where (bi)t is the t th component of the distribution bi .
For an excellent introduction to HMM, see “A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition” Lawence R.
Rabiner. Proceedings of the IEEE, Vol 77, No 2, February 1988.
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Three central questions
There are many variants of this basic setup but three central
problems are usually addressed.

Definition (Evaluation problem)
Given a sequence y1,y2, . . . ,yn of observed output tokens and the
parameters of the HMM (namely, P, bi and the distribution for the
initial state X0) how do we compute

P(Y1 = y1,Y2 = y2, . . . ,Yn = yn|HMM parameters)

that is, the probability of the observed sequence given the model?
Such problems are solved in practice by the forward algorithm.
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A second problem that may occur in an application is the decoding
problem.

Definition (Decoding problem)
Given an observed sequence of output tokens y1,y2, . . . ,yn and the
full description of the HMM parameters, how do we find the best fitting
corresponding sequence of (hidden) states i1, i2, . . . , in of the MC?
Such problems are solved in practice by a dynamic programming
approach called the Viterbi algorithm.
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The third important problem is the learning problem.

Definition (Learning problem)
Given an observed sequence of output tokens y1,y2, . . . ,yn, how do
we adjust the parameters of the HMM to maximize

P(Y1 = y1,Y2 = y2, . . . ,Yn = yn|HMM parameters)

The observed sequence used to adjust the model parameters is
called a training sequence. Learning problems are crucial in most
applications since they allow us to create the “best” models in real
observed processes.
Iterative procedures, known as the Baum-Welch method, are used to
solve this problem in practice.
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Applications of Markov Chains
These and other applications of Markov Chains are important topics
in a variety of Part II courses, including
I Artificial Intelligence II
I Bioinformatics
I Computer Systems Modelling
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Case studies
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Case studies
Three short cases studies where probability has played a pivitol role:

1. Birthday problem (birthday attack)
I cryptographic attacks

2. Probabilistic classification (naive Bayes classifier)
I email spam filtering

3. Gambler’s ruin problem (Bitcoin)
I cryptocurrencies
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The birthday problem
Consider the problem of computing the probability, p(n), that in a
party of n people at least two people share a birthday (that is, the
same day and month but not necessarily same year).
It is easiest to first work out 1−p(n) = q(n), say,
where q(n) = P(none of the n people share a birthday) then

q(n) =
(

364
365

)(
363
365

)
· · ·
(

365−n+1
365

)
=

(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− n−1
365

)
=

n−1

∏
k=1

(
1− k

365

)
.

Surprisingly, n = 23 people suffice to make p(n) greater than 50%.
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Graph of p(n)
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Assumptions
We should record some of our assumptions behind the calculation
of p(n).

1. Ignore leap days (29 Feb)
2. Each birthday is equally likely
3. People are selected independently and without regard to their

birthday to attend the party (ignore twins, etc)
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Examples: coincidences on the football field
Ian Stewart writing in Scientific American illustrates the birthday
problem with an interesting example. In a football match there are 23
people (two teams of 11 plus the referee) and on 19 April 1997 out of
10 UK Premier Division games there were 6 games with birthday
coincidences and 4 games without.
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Examples: cryptographic hash functions
A hash function y = f (x) used in cryptographic applications is usually
required to have the following two properties (amongst others):

1. one-way function: computationally intractable to find an x
given y .

2. collision-resistant: computationally intractable to find distinct x1
and x2 such that f (x1) = f (x2).
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Probability of same birthday as you
Note that in calculating p(n) we are not specifying which birthday (for
example, your own) matches. For the case of finding a match to your
own birthday amongst a party of n other people we would calculate

1−
(

364
365

)n

.
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General birthday problem
Suppose we have a random sample X1,X2, . . . ,Xn of size n where Xi
are IID with Xi ∼ U(1,d) and let p(n,d) be the probability that there
are at least two outcomes that coincide.
Then

p(n,d) =

{
1−∏

n−1
k=1

(
1− k

d

)
n ≤ d

1 n > d .

The usual birthday problem is the special case when d = 365.
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Approximations
One useful approximation is to note that for x � 1 then 1−x ≈ e−x .
Hence for n ≤ d

p(n,d) = 1−
n−1

∏
k=1

(
1− k

d

)
≈ 1−

n−1

∏
k=1

e−
k
d

= 1−e−(∑
n−1
k=1 k)/d

= 1−e−n(n−1)/(2d) .

We can further approximate the last expression as

p(n,d)≈ 1−e−n2/(2d) .

MM4CS 2014/15 (115)



Inverse birthday problem
Using the last approximation

p(n,d)≈ 1−e−n2/(2d)

we can invert the birthday problem to find n = n(p,d), say, such
that p(n,d)≈ p so then

e−n(p,d)2/(2d) ≈ 1−p

−n(p,d)2

2d
≈ log(1−p)

n(p,d)2 ≈ 2d log
(

1
1−p

)
n(p,d)≈

√
2d log

(
1

1−p

)
.

In the special case of d = 365 and p = 1/2 this gives the
approximation n(0.5,365)≈

√
2×365× log(2)≈ 22.49.
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Expected waiting times for a collision/match
Let Wd be the random variable specifiying the number of iterations
when you choose one of d values independently and uniformly at
random (with replacement) and stop when any value is selected a
second time (that is, a “collision” or “match” occurs).
It is possible to show that

E(Wd )≈
√

πd
2

.

Thus in the special case of the birthday problem where d = 365 we

have that E(W365)≈
√

π×365
2 ≈ 23.94.

In the case that we have a cryptographic hash function with 160-bit
outputs (d = 2160) then E(W2160)≈ 1.25×280. This level of reduction
leads to so-called “birthday attacks”. (See the IB course Security I for
further details.)
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Further results
Persi Diaconis and Frederick Mosteller give results on the minimum
number nk required to give a probability greater than 1/2 of k or more
matches with d = 365 possible choices.

k 2 3 4 5 6 7 8 9 10
nk 23 88 187 313 460 623 798 985 1181
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Email spam filtering
Suppose that an email falls into exactly one of two classes (spam or
ham) and that various features F1,F2, . . . ,Fn of an email message can
be measured. Such features could be the presence or absence of
particular words or groups of words, etc, etc.
We would like to determine P(C |F1,F2, . . . ,Fn) the probability that an
email message falls into a class C given the measured
features F1,F2, . . . ,Fn. We can use Bayes’ theorem to help us.
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Bayes’ theorem for emails
We have that

P(C |F1,F2, . . . ,Fn) =
P(C)P(F1,F2, . . . ,Fn |C)

P(F1,F2, . . . ,Fn)

which can be expressed in words as

posterior probability =
prior probability× likelihood

evidence
.
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Naive Bayes classifier
In the naive Bayes classifier we make the assumption of
independence across features. So that

P(F1,F2, . . . ,Fn |C) =
n

∏
i=1

P(Fi |C)

and then

P(C |F1,F2, . . . ,Fn) ∝ P(C)
n

∏
i=1

P(Fi |C) .
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Decision rule for naive Bayes classifier
We then use the decision rule to classify an email with observed
features F1,F2, . . . ,Fn as spam if

P(C = spam)
n

∏
i=1

P(Fi |C = spam)> P(C = ham)
n

∏
i=1

P(Fi |C = ham) .

This decision rule is known as the maximum a posteriori (MAP) rule.
Surveys and a training set of manually classified emails are needed
to estimate the values of P(C) and P(Fi |C).
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Bitcoin
Bitcoin is based around a proof-of-work mechanism which uses a
decentralised peer-to-peer network of workers (known as miners) to
ensure (with high probability) that bitcoins are not double-spent. In
order to achieve double spending of a bitcoin the attacker would need
to create a longer block chain than the honest chain.
Suppose that the honest workers can produce blocks on average
every T/p time units while the attacker can do so on average
every T/q time units with q = 1−p < p. If the (honest) seller waits for
a given number n of blocks to be created then this would take on
average nT/p time units. Thus the average number of blocks that the
attacker could create, m, would be such that nT/p = mT/q.
Thus m = nq/p independent of T .
If q > p then surely the attacker can always catch up the honest
workers however large a head start, n, is considered. What is the
chance that the attacker could still catch up the honest chain
when q < p?
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Bitcoin analysis using Gambler’s ruin problem
The Bitcoin white paper proposes the simple probabilistic model that
the random number of blocks, X , that the attacker could produce as
the honest workers produce their n blocks has a Poisson distribution
with mean λ = nq/p. Thus,

P(X = k) =
λ k e−λ

k !
.

What is the chance that the attacker could then overtake the honest
workers? This is precisely the Gambler’s ruin problem starting from
initial assets of n−k with θ = q/p < 1 and in the limit that the total
wealth N→ ∞.
Recalling our expression for the ruin probabilities we have that

P(attacker catches up | k blocks) =

{
(q/p)n−k k ≤ n
1 k > n .
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Bitcoin: calculations
Hence, using the law of total probability,

P(attacker catches up) =
∞

∑
k=0

P(X = k)

{
(q/p)n−k k ≤ n
1 k > n

which we can re-write as the finite sum

1−
n

∑
k=0

P(X = k)

(
1−

(
q
p

)n−k
)

= 1−
n

∑
k=0

λ k e−λ

k !

(
1−

(
q
p

)n−k
)

where λ = nq/p is the mean number of blocks that an attacker can
produce while the honest workers produce n blocks.
The bitcoin white paper (section 11) provides a C program to
compute this probability for fixed q = 1−p and varying n and
observes that the probability of catching up the honest workers drops
off exponentially with n.
What other probabilistic models would you suggest in place of the
Poisson assumption?
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Properties of discrete RVs
RV, X Parameters Im(X) P(X = k) E(X) Var(X) GX (z)

Bernoulli p ∈ [0,1] {0,1} (1−p) if k = 0 or p if k = 1 p p(1−p) (1−p+pz)
Bin(n,p) n ∈ {1,2, . . .} {0,1, . . . ,n}

(n
k
)
pk (1−p)n−k np np(1−p) (1−p+pz)n

p ∈ [0,1]

Geo(p) 0 < p ≤ 1 {1,2, . . .} p(1−p)k−1 1
p

1−p
p2

pz
1−(1−p)z

U(1,n) n ∈ {1,2, . . .} {1,2, . . . ,n} 1
n

n+1
2

n2−1
12

z(1−zn)
n(1−z)

Pois(λ) λ > 0 {0,1, . . .} λk e−λ

k! λ λ eλ(z−1)
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Properties of continuous RVs

RV, X Parameters Im(X ) fX (x) E(X ) Var(X )

U(a,b) a,b ∈ R (a,b) 1
b−a

a+b
2

(b−a)2

12
a < b

Exp(λ ) λ > 0 R+ λe−λx 1
λ

1
λ 2

N(µ,σ2) µ ∈ R R 1√
2πσ2 e−(x−µ)2/(2σ2) µ σ2

σ2 > 0
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