
L41: Lab 3 - Microarchitectural implications of IPC

Lent Term 2015

The goals of this lab are to:

• Introduce hardware performance counters (hwpmc)

• Explore microarchitectural implications of IPC

• Gather additional data to support the writing of your first assessed lab report

You will do this by applying PMC to analyse the behaviour of the same potted, kernel-intensive IPC benchmark
used in the last lab.

Note: You will need to pick up a new lab tarball that introduces PMC support in the IPC benchmark, and
corrects errata in the original benchmark (including a problem with bare mode). You will also need a new SD
Card that contains updates to the ARMv7 PMC implementation to better support the ARM Cortex A8.

Background: Performance Monitoring Counters (PMC)
Hardware performance counters are a low-level processor facility that gathers statistics about architectural and
micro-architectural performance properties of code execution and data access. Architectural features are those
exposed explicitly via the documented instruction set and device interfaces – e.g., the number of instructions
executed. Micro-architectural features have to do with the programmer-transparent implementation details, such
as pipelining, superscalar execution, caches, and so on – e.g., the number of L2 cache misses taken. The scope for
programmer transparency (e.g., what is included in the architecture vs. microarchitecture) varies by instruction-set
architecture: whereas MIPS exposes certain pipelining effects to the programmer (e.g., branch-delay slots), ARM
and x86 minimise the visible exposure other than performance impact. MIPS and ARM both require explicit
cache management by the operating system during I/O operations and code loading, whereas x86 also masks
those behaviours.

Performance counters can be used in two ways: counting, in which instances of a particular architectural
or microarchitectural event are counted during program execution; and sampling, in which 1/n instances of the
event will trigger a hardware trap that allows, for example, a stack trace to be taken (similar to historic timer-driven
profiling techniques). We will use PMC only in counting mode during this lab.

PMC support may be integrated into the operating system in a variety of ways. Typically, this is done by an
additional tracing and profiling framework: in FreeBSD, HWPMC; in Linux, OProfile and related tools. It is also
possible to integrate PMC support with DTrace, as has been done in Solaris, but not yet in FreeBSD. On FreeBSD,
HWPMC provides a programming API that allows applications to measure their own micro-architectural impacts.
As such, we have integrated explicit PMC support into the L41 IPC benchmark, allowing it to count events such
as memory accesses and cache misses at various points in the cache hierarchy. The ARM Cortex A8, used in
the BeagleBone Black, can track events using up to four sources at a time; we will typically track the number of
cycles, the number of instructions executed architecturally (i.e., that weren’t canceled in the pipeline due to, for
example, a branch mispredict), and then pairs of counters tracking a particular part of the cache hierarchy. We will
focus almost exclusively on memory-related counters, rather than looking at other microarchitectural performance
events such as branch prediction. This is because our IPC benchmark results will be most strongly affected by
memory footprint of our buffers and IPC primitives.

FreeBSD also includes tools to sample PMC behaviour by process or systemically, capturing stack traces via
sampling, and mapping them back to program symbols or annotated source code. You may wish to also use these
tools to help explain performance behaviour (i.e., not just that L2 cache misses were dominant at a particular

1



buffer size, but also that the majority of cache misses were taken in a particular part of the kernel), but that is not
required for this lab. If you wish to use these tools, please see the FreeBSD pmcstat(8) man page for details
on capturing counter data for whole-program and whole-system analysis.

The benchmark
The IPC benchmark has been extended with a new -P argument that requests use of performance counters to track
the IPC loop. Performance counters are configured in “process mode”, meaning that they track user and kernel
events associated with a process and its descendents, so should include events from all three of our benchmark
modes including their execution in kernel, but not other system events. Where events occur asynchronously in a
kernel thread not explicitly associated with the user process, those events will not be counted (e.g., kernel work
performed by a timer on behalf of a user process).

Compiling the benchmark
You will need to update your version of the IPC benchmark by downloading, untarring, and building the Lab 3
bundle, which may be found here:

scp /anfs/www/html/teaching/1415/L41/labs/lab3.tgz guest@192.168.141.100:/data

Or via the web:

https://www.cl.cam.ac.uk/teaching/1415/L41/labs/lab3.tgz

Please refer to the prior lab handout for build instructions. Note that as the filenames for source code and compiled
benchmarks are identical, you must take care to ensure you are working with the Lab 3 version of the benchmark.

Running the benchmark
As before, you can run the benchmark using the ipc-static and ipc-dynamic commands, specifying vari-
ous benchmark parameters. When the new performance-counter argument is used, additional information will be
printed about the processor-level behaviour of the IPC loop.

New performance-counter arguments
Performance-counter support are enabled using the -P flag, which accepts one argument identifying the set of
counters to track during execution. Due to the 4-counter limit in the Cortex A8, it is not possible to count all the
potential events of interest at the same time. As such, some care will be required to take multiple samples and
consider counter readings as members of a distribution. The following counter modes are supported:

l1d Track cache hits and misses on the L1 data cache. This counter may include the effects of speculated, but
canceled, instructions.

l1i Track cache hits on the L1 instruction cache; L1 cache misses are not directly countable on this processor.
This counter may include the effects of speculated, but canceled, instructions.

l2 Track cache hits on the L2 cache, which is used for both instruction and data access. L2 cache misses are
not directly countable on this processor. This counter may include the effects of speculated, but canceled,
instructions.

mem Count architecturally originated memory reads and writes: i.e., load and store instructions. This counter
will not include the effects of speculated, but canceled, instructions.

axi Track memory accesses issued over the AXI bus: i.e., to actual DRAM or to perform I/O. Note that I/O
accesses can be significant – e.g., network traffic will pass over the AXI bus – so attempt to minimise I/O
during the benchmark. This counter may include the effects of speculated, but canceled, instructions.

tlb Track misses in the instruction and data Translation Lookaside Buffers (TLBs), which cache page-table entries
in hardware. This counter may include the effects of speculated, but canceled, instructions.

2



Example benchmark commands
This command instructs the IPC benchmark to capture information on memory instructions issued when operating
on a socket with a 512-byte buffer from a single thread:

./ipc-static -i socket -b 512 -P mem 1thread

This command performs the same benchmark while tracking L1 data-cache hits and misses:

./ipc-static -i socket -b 512 -P l1d 1thread

This command performs the same benchmark while tracking L2 cache hits:

./ipc-static -i socket -b 512 -P l2 1thread

And this command performs the same benchmark while tracking memory operations that make it out the bus to
DRAM:

./ipc-static -i socket -b 512 -P axi 1thread

Cortex A8 caches
The ARM Cortex A8 has independent level-1 instruction and data caches (each 32k) and a shared instruction/data
level-2 cache (256k). The cache line size is 64 bytes, and most counters will refer to cache lines rather than bytes
of memory. For example, the rough utilised memory bandwidth of the system might be estimated as the sum of
AXI reads and writes multiplied by 64, although the actual data used will depend on how effectively software has
been able to pack data into cache lines. As we are working with virtually contiguous buffers and most access is
via memory copies, this may be a reasonable estimate.

Performance counters
The following performance counters are exposed by the IPC benchmark via its various PMC modes:

AXI READ The number of AXI-bus read transactions.

AXI WRITE The number of AXI-bus write transactions.

CLOCK CYCLES The number of clock cycles.

DTLB REFILL The number of data-TLB misses.

INSTR EXECUTED The number of instructions executed architecturally.

ITLB REFILL The number of instruction-TLB misses.

L1 DCACHE ACCESS The number of L1 data-cache hits.

L1 DCACHE REFILL The number of L1 data-cache misses.

L1 ICACHE REFILL The number of L1 instruction-cache misses.

L2 ACCESS The number of L2 cache hits.

MEM READ The number of memory read instructions that executed architecturally.

MEM WRITE The number of memory write instructions that executed architecturally.

3



Exploratory questions
These questions are intended to help you understand the behaviour of the IPC benchmark at an architectural and
microarchitectural level, and may provide supporting evidence for your experimental questions. However, they
are just suggestions – feel free to approach the problem differently!

1. Baseline benchmark performance analysis:

• How do requested memory accesses vary across our six benchmark configurations (IPC type × oper-
ational mode)?

• How does varying the buffer size (and in the case of sockets, also setting the kernel socket-buffer size)
affect the degree to which the L1 and L2 caches improve performance?

• In what situations might using a smaller buffer size allow the L1 or L2 cache to be used more effi-
ciently, while still reducing overall performance?

Experimental questions (part 2)
These questions supplement the experimental questions in the Lab 2 handout. As with the configuration described
in the prior handout, they are with respect to a fixed total IPC size, statically linked version of the benchmark, and
refer only to IPC-loop and not whole-program analysis.

• How does changing the IPC buffer size affect the architectural and microarchitectural aspects of memory
behaviour?

• Can we reach causal conclusions about the scalability of the kernel’s pipes and local socket implementations
given additional evidence from processor performance counters?

• How does using DTrace affect the architectural and microarchitectural aspects of memory behaviour – i.e.,
how does the probe effect impact processor features such as data caches?

4


