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Recall our basic iterative algorithm

A〈0〉 = I
A〈k+1〉 = AA〈k〉 ⊕ I

A closer look ...

A〈k+1〉(i , j) = I(i , j)⊕
⊕

u

A(i ,u)A〈k〉(u, j)

= I(i , j)⊕
⊕

(i,u)∈E

A(i ,u)A〈k〉(u, j)

This is the basis of distributed Bellman-Ford algorithms — a node i
computes routes to a destination j by applying its link weights to the
routes learned from its immediate neighbors. It then makes these
routes available to its neighbors and the process continues...
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What if we start iteration in an arbitrary state M?

In a distributed environment the topology (captured here by A) can
change and the state of the computation can start in an arbitrary state
(with respect to a new A).

A〈0〉M = M
A〈k+1〉

M = AA〈k〉M ⊕ I

Lemma 6.4
For 1 ≤ k ,

A〈k〉M = AkM⊕ A(k−1)

If A is q-stable and q < k , then

A〈k〉M = AkM⊕ A∗
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RIP-like example — counting to convergence (1)

0

1

2 3

1 11

1 10

Adjacency matrix A1


0 1 2 3

0 ∞ 1 1 ∞
1 1 ∞ 1 1
2 1 1 ∞ 10
3 ∞ 1 10 ∞



0

1

2 3

11

1 10

Adjacency matrix A2


0 1 2 3

0 ∞ 1 1 ∞
1 1 ∞ 1 ∞
2 1 1 ∞ 10
3 ∞ ∞ 10 ∞


See RFC 1058.
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RIP-like example — counting to convergence (2)

0

1

2 3

1 11

1 10

The solution A∗1


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



0

1

2 3

11

1 10

The solution A∗2


0 1 2 3

0 0 1 1 11
1 1 0 1 11
2 1 1 0 10
3 11 11 10 0
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RIP-like example — counting to convergence (3)

The scenario: we arrived at A∗1, but then links {(1,3), (3,1)} fail. So
we start iterating using the new matrix A2.

Let BK represent A2
〈k〉
M , where M = A∗1.
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RIP-like example — counting to convergence (4)

B0 =


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



B1 =


0 1 2 3

0 0 1 1 2
1 1 0 1 3
2 1 1 0 2
3 11 11 10 0



B2 =


0 1 2 3

0 0 1 1 3
1 1 0 1 3
2 1 1 0 3
3 11 11 10 0



B3 =


0 1 2 3

0 0 1 1 4
1 1 0 1 4
2 1 1 0 4
3 11 11 10 0



B4 =


0 1 2 3

0 0 1 1 5
1 1 0 1 5
2 1 1 0 5
3 11 11 10 0



B5 =


0 1 2 3

0 0 1 1 6
1 1 0 1 6
2 1 1 0 6
3 11 11 10 0
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RIP-like example — counting to convergence (5)

B6 =


0 1 2 3

0 0 1 1 7
1 1 0 1 7
2 1 1 0 7
3 2 1 2 0



B7 =


0 1 2 3

0 0 1 1 8
1 1 0 1 8
2 1 1 0 8
3 11 11 10 0



B8 =


0 1 2 3

0 0 1 1 9
1 1 0 1 9
2 1 1 0 9
3 11 11 10 0



B9 =


0 1 2 3

0 0 1 1 10
1 1 0 1 10
2 1 1 0 10
3 11 11 10 0



B10 =


0 1 2 3

0 0 1 1 11
1 1 0 1 11
2 1 1 0 10
3 11 11 10 0
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RIP-like example — counting to infinity (1)

0

1

2 3

1 11

1 10

The solution A∗1


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



0

1

2 3

11

1

The solution A∗3


0 1 2 3

0 0 1 1 ∞
1 1 0 1 ∞
2 1 1 0 ∞
3 ∞ ∞ ∞ 0


Now let BK represent A3

〈k〉
M , where M = A∗1.
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RIP-like example — counting to infinity (2)

B0 =


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



B1 =


0 1 2 3

0 0 1 1 2
1 1 0 1 3
2 1 1 0 2
3 ∞ ∞ ∞ 0



B2 =


0 1 2 3

0 0 1 1 3
1 1 0 1 3
2 1 1 0 3
3 ∞ ∞ ∞ 0



...
...

...

B376 =


0 1 2 3

0 0 1 1 377
1 1 0 1 377
2 1 1 0 377
3 ∞ ∞ ∞ 0


...

...
...

B998 =


0 1 2 3

0 0 1 1 999
1 1 0 1 999
2 1 1 0 999
3 ∞ ∞ ∞ 0


...

...
...

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 10 — 11T.G.Griffin c©2014 10 / 19



RIP-like example — What’s going on?

Recall

A〈k〉M (i , j) = AkM(i , j)⊕ A∗(i , j)

A∗(i, j) may be arrived at very quickly
but AkM(i , j) may be better until a very large value of k is reached
(counting to convergence)
or it may always be better (counting to infinity).

Solutions?
RIP:∞ = 16
We will explore various ways of adding paths to metrics and
eliminating those paths with loops ....
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Starting in an arbitrary state? No!

Let’s use our friend

add_zero(∞, min_plus ~× sep(G))

Problem:

...
...

...

B998 =


0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (999, {})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) (999, {})
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (999, {})
3 ∞ ∞ ∞ (0, {ε})


...

...
...
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Starting in an arbitrary state?

Solution: use another reduction!

r(∞) = ∞

r(s,W ) =

{
∞ if W = {}

(s,W ) otherwise

Now use this instead

redr (add_zero(∞, min_plus ~× sep(G)))
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Starting in an arbitrary state?

B0 and B1


0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (2, {[(0,1), (1,3)]})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) (1, {[(1,3)]})
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (2, {[(2,1), (1,3)]})
3 (2, {[(3,1), (1,0)]}) (1, {[(3,1)]}) (2, {[(3,1), (1,2)]}) (0, {ε})




0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (2, {[(0,1), (1,3)]})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) ∞
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (2, {[(2,1), (1,3)]})
3 ∞ ∞ ∞ (0, {ε})



rcl
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Starting in an arbitrary state?

B2 and B3


0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (3, {[(0,2), (2,1), (1,3)]})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) ∞
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (3, {[(2,0), (0,1), (1,3)]})
3 ∞ ∞ ∞ (0, {ε})




0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) ∞
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) ∞
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) ∞
3 ∞ ∞ ∞ (0, {ε})



rcl
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Homework 2: Recall

(S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T ) = (S × T , ⊕S ~×⊕T , ⊗S ×⊗T )

Theorem
If ⊕S is commutative, idempotent, and selective, then

LD(S ~× T ) ⇐⇒ LD(S) ∧ LD(T ) ∧ (LC(S) ∨ LK(T ))

Where
Property Definition
LD ∀a,b, c : c ⊗ (a⊕ b) = (c ⊗ a)⊕ (c ⊗ b)
LC ∀a,b, c : c ⊗ a = c ⊗ b =⇒ a = b
LK ∀a,b, c : c ⊗ a = c ⊗ b
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Homework 2: Problem 1 (40 points)

Prove this

LD(S ~× T ) =⇒ LD(S) ∧ LD(T ) ∧ (LC(S) ∨ LK(T ))
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Homework 2: Recall the operation for inserting a one

add_one(1, (S, ⊕, ⊗)) = (S ] {1},⊕1, ⊗1)

where

a⊕1 b =


inr(1) (if b = inr(1))
inr(1) (if a = inr(1))

inl(x ⊕ y) (if a = inl(x), b = inl(y))

a⊗1 b =


a (if b = inr(1))
b (if a = inr(1))

inl(x ⊗ y) (if a = inl(x), b = inl(x))
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Homework 2: Problem 2 (60 points)

Problem 2
Find predicates P and Q and a proof of a theorem of the following form:
If P(⊕, ⊗), then

LD(add_one(1, (S, ⊕, ⊗))) ⇐⇒ Q(S, ⊕, ⊗)

Note: this is a bit open-ended.
Hint: As with the lexicographic product, you may need some auxiliary
property or properties (as lexicigraphic needed LC and LK).
Full marks for a complete proof with the most general result (weakest
assumption P).
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