L11: Algebraic Path Problems with applications to Internet Routing Lectures 05 — 07

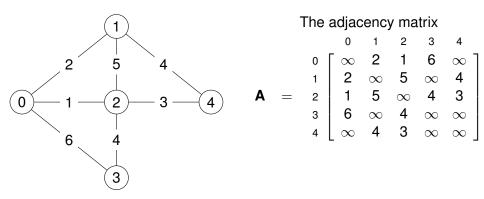
Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2014

< 回 > < 三 > < 三 >

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$



Note that the longest shortest path is (1, 0, 2, 3) of length 3 and weight 7.

(min, +) example

Our theorem tells us that $\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{A}^{(4)}$

$$\mathbf{A}^{*} = \mathbf{A}^{(4)} = \mathbf{I} \min \mathbf{A} \min \mathbf{A}^{2} \min \mathbf{A}^{3} \min \mathbf{A}^{4} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 3 & 4 & 1 & 3 & 7 & 0 \end{bmatrix}$$

3

A D F A B F A B F A B F

L11: Algebraic Path Problems with applica

tgg22 (cl.cam.ac.uk)

(min, +) example

∞ <u>4</u> <u>3</u> 4 8 7 2 3 7 8 6 3 8 7 1 <u>7</u> 6 5 **A**³ ∞ **A**²

First appearance of final value is in red and <u>underlined</u>. Remember: we are looking at all paths of a given length, even those with cycles!

A "better" way — our basic algorithm

$$\begin{array}{rcl} \mathbf{A}^{\langle 0 \rangle} &= & \mathbf{I} \\ \mathbf{A}^{\langle k+1 \rangle} &= & \mathbf{A} \mathbf{A}^{\langle k \rangle} \oplus \mathbf{I} \end{array}$$

Lemma

$$\mathbf{A}^{\langle k \rangle} = \mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

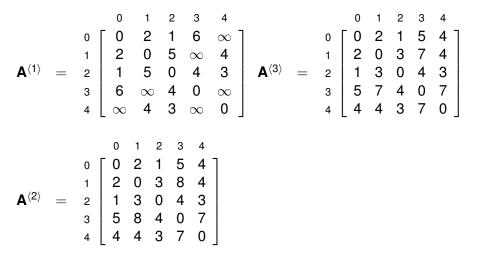
tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2014 5 / 31

э

back to (min, +) example



< 17 >

A note on \boldsymbol{A} vs. $\boldsymbol{A} \oplus \boldsymbol{I}$

Lemma 6.0

If \oplus is idempotent, then

$$(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}.$$

Proof. Base case: When k = 0 both expressions are I. Assume $(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}$. Then

$$\mathbf{A} \oplus \mathbf{I})^{k+1} = (\mathbf{A} \oplus \mathbf{I})(\mathbf{A} \oplus \mathbf{I})^k$$

$$= (\mathbf{A} \oplus \mathbf{I})\mathbf{A}^{(k)}$$

$$= \mathbf{A}\mathbf{A}^{(k)} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}(\mathbf{I} \oplus \mathbf{A} \oplus \dots \oplus \mathbf{A}^k) \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A} \oplus \mathbf{A}^2 \oplus \dots \oplus \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{(k+1)}$$

< 回 > < 回 > < 回 >

Solving (some) equations

Theorem 6.1

If **A** is q-stable, then **A**^{*} solves the equations

 $\textbf{L}=\textbf{AL}\oplus\textbf{I}$

and

 $\mathbf{R}=\mathbf{R}\mathbf{A}\oplus\mathbf{I}.$

For example, to show $\mathbf{L} = \mathbf{A}^*$ solves the first equation:

$$\begin{aligned}
\mathbf{A}^* &= \mathbf{A}^{(q)} \\
&= \mathbf{A}^{(q+1)} \\
&= \mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I} \\
&= \mathbf{A}(\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \ldots \oplus \mathbf{A} \oplus \mathbf{I}) \oplus \mathbf{I} \\
&= \mathbf{A}\mathbf{A}^{(q)} \oplus \mathbf{I} \\
&= \mathbf{A}\mathbf{A}^* \oplus \mathbf{I}
\end{aligned}$$

Note that if we replace the assumption "**A** is *q*-stable" with "**A**^{*} exists," then we require that \otimes distributes over <u>infinite</u> sums.

tgg22 (cl.cam.ac.uk)

A more general result

Theorem Left-Right

If **A** is *q*-stable, then $\mathbf{L} = \mathbf{A}^* \mathbf{B}$ solves the equation

 $\textbf{L}=\textbf{AL}\oplus\textbf{B}$

and $\mathbf{R} = \mathbf{B}\mathbf{A}^*$ solves

 $\mathbf{R}=\mathbf{R}\mathbf{A}\oplus\mathbf{B}.$

For the first equation:

$$\mathbf{A}^* \mathbf{B} = \mathbf{A}^{(q)} \mathbf{B} \\
= \mathbf{A}^{(q+1)} \mathbf{B} \\
= (\mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I}) \mathbf{B} \\
= (\mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A}) \mathbf{B} \oplus \mathbf{B} \\
= \mathbf{A} (\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \ldots \oplus \mathbf{A} \oplus \mathbf{I}) \mathbf{B} \oplus \mathbf{B} \\
= \mathbf{A} (\mathbf{A}^{(q)} \mathbf{B}) \oplus \mathbf{B} \\
= \mathbf{A} (\mathbf{A}^* \mathbf{B}) \oplus \mathbf{B}$$

4 15 14 15 15

< 🗇 ト

Use Theorem Left-Right to Work this out

Theorem (John Conway, 1971)

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{pmatrix}$$

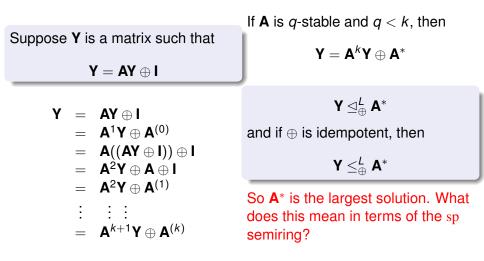
then \mathbf{A}^* can be written as

lf

$$\begin{pmatrix} (\mathbf{A}_{1,1} \oplus \mathbf{A}_{1,2}\mathbf{A}_{2,2}^*\mathbf{A}_{2,1})^* & | \mathbf{A}_{1,1}^*\mathbf{A}_{1,2}(\mathbf{A}_{2,2} \oplus \mathbf{A}_{2,1}\mathbf{A}_{1,1}^*\mathbf{A}_{1,2})^* \\ \hline \mathbf{A}_{2,2}^*\mathbf{A}_{2,1}(\mathbf{A}_{1,1} \oplus \mathbf{A}_{1,2}\mathbf{A}_{2,2}^*\mathbf{A}_{2,1})^* & | (\mathbf{A}_{2,2} \oplus \mathbf{A}_{2,1}\mathbf{A}_{1,1}^*\mathbf{A}_{1,2})^* \end{pmatrix}$$

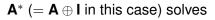
< ロ > < 同 > < 回 > < 回 >

The "best" solution



A (10) A (10)

Example with zero weighted cycles using sp semiring



 $\mathbf{X} = \mathbf{X}\mathbf{A} \oplus \mathbf{I}.$

But so does this (dishonest) matrix!

			0	-	2
		0	Γ0	9	9]
F	=	1	∞	0	0
		2	$\begin{bmatrix} 0 \\ \infty \\ \infty \end{bmatrix}$	0	0

For example :

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ \infty & 10 & 10 \\ 2 & \infty & 0 \\ \infty & 0 & \infty \end{bmatrix}$$

 $= \inf_{\substack{q \in \{0,1,2\}\\ min (0,1) = min (0,1) = 0}} F(0,q) + A(q,1)$

$$= \min(0 + 10, 9 + \infty, 9 + 0) \\ = 9 \\ = \mathbf{F}(0, 1)$$

10

10

n

Goal: we need simple operations for constructing complex semirings

Example: elementary paths?

G = (V, E). A semiring *S*, such that if *A* is an adjaceny matrix over *S* with

then

 $A^*(i,j)$ = the set of all elementary (no loops) paths from *i* to *j*.

We could attempt to directly define such an algebra. But instead we will build it step-by-step using simple constructions ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lifted Product

Lifted product semigroup

Assume (S, \otimes) is a semigroup. Let $lift_{\times}(S) \equiv (\mathcal{P}_{fin}(S), \hat{\otimes})$ where

$$X \hat{\otimes} Y = \{ x \otimes y \mid x \in X, y \in Y \}$$

, where $X, Y \in \mathcal{P}_{fin}(S)$, the set of finite subsets of S.

Lifted semiring

If $\overline{1}$ is the identity for \otimes , then

$$\operatorname{lift}(\boldsymbol{S}) = (\mathcal{P}_{\operatorname{fin}}(\boldsymbol{S}), \cup, \hat{\otimes}, \{\}, \{\overline{1}\})$$

is a semiring. Note that $\{\}$ is an annihilator for $\hat{\otimes}$.

When does lift(S) have an annihilator for \cup ?

tgg22 (cl.cam.ac.uk)

Reductions

If (S, \oplus, \otimes) is a semiring and *r* is a function from *S* to *S*, then *r* is a reduction if for all *a* and *b* in *S*

•
$$r(a) = r(r(a))$$

• $r(a \oplus b) = r(r(a) \oplus b) = r(a \oplus r(b))$
• $r(a \otimes b) = r(r(a) \otimes b) = r(a \otimes r(b))$

Note that if either operation has an identity, then the first axioms is not needed. For example,

$$r(a) = r(a \oplus \overline{0}) = r(r(a) \oplus \overline{0}) = r(r(a))$$

→ ∃ → < ∃ →</p>

Reduce operation

If (S, \oplus, \otimes) is semiring and *r* is a reduction, then let red_{*r*} $(S) = (S_r, \oplus_r, \otimes_r)$ where $S_r = \{s \in S \mid r(s) = s\}$ $x \oplus_r y = r(x \oplus y)$ $x \otimes_r y = r(x \otimes y)$

Is the result always semiring?

Finally : A semiring of elementary paths

Semigroup of Sequences seq(X)

- carrier : finite sequences over elements of X
- operation : concatenation
- identity : the empty string ϵ

Let X be a set of sequences over lift(seq(E)), and let

 $r(X) = \{p \in X \mid p \text{ is an elementary path in } G\}$

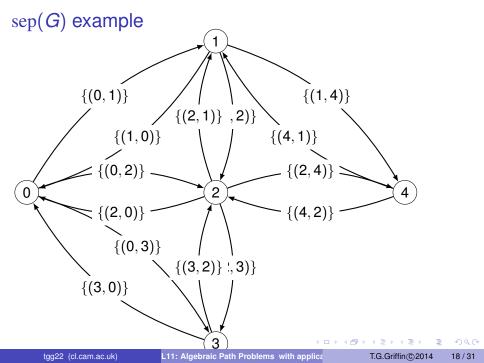
Semiring of Elementary Paths

 $sep(G) = red_r(lift(seq(E)))$

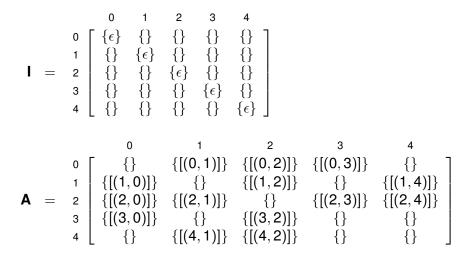
In order to check that sep(G) is indeed a semiring, we only need <u>understand</u> the functions lift(_) and red_(_).

tgg22 (cl.cam.ac.uk)

T.G.Griffin © 2014 17 / 31



sep(G) example, adjacency matrix



Here I write a non-empty path p as [p].

tgg22 (cl.cam.ac.uk)

sep(G) example, solution

$$\begin{aligned} \mathbf{A}^{*}(0,0) &= \{\epsilon\} \\ \\ \mathbf{A}^{*}(0,4) &= \begin{cases} & [(0,1),(1,4)], \\ & [(0,1),(1,2),(2,4)], \\ & [(0,2),(2,4)], \\ & [(0,2),(2,1),(1,4)], \\ & [(0,3),(3,2),(2,4)], \\ & [(0,3),(3,2),(2,1),(1,4)] \end{cases}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2014 20 / 31

æ

More constructions: Direct Product of Semigroups

Let (S, \oplus_S) and (T, \oplus_T) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted $(S, \oplus_S) \times (T, \oplus_T) = (S \times T, \oplus)$, where $\oplus = \oplus_S \times \oplus_T$ is defined as

$$(s_1, t_1) \oplus (s_2, t_2) = (s_1 \oplus_S s_2, t_1 \oplus_T t_2).$$

4 **A** N A **B** N A **B** N

Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup)

Suppose that semigroup (S, \oplus_S) is commutative, idempotent, and selective and that (T, \oplus_T) is a semigroup. The lexicographic product is denoted $(S, \oplus_S) \times (T, \oplus_T) = (S \times T, \vec{\oplus})$, where $\vec{\oplus} = \oplus_S \times \oplus_T$ is defined as

$$(s_1, t_1) \vec{\oplus} (s_2, t_2) = \begin{cases} (s_1 \oplus_S s_2, t_1 \oplus_T t_2) & s_1 = s_1 \oplus_S s_2 = s_2 \\ (s_1 \oplus_S s_2, t_1) & s_1 = s_1 \oplus_S s_2 \neq s_2 \\ (s_1 \oplus_S s_2, t_2) & s_1 \neq s_1 \oplus_S s_2 = s_2 \end{cases}$$

4 **A** N A **B** N A **B** N

Lexicographic product of Bi-semigroups

$$(\boldsymbol{\mathcal{S}}, \ \oplus_{\boldsymbol{\mathcal{S}}}, \ \otimes_{\boldsymbol{\mathcal{S}}}) \stackrel{\scriptstyle \times}{\times} (\boldsymbol{\mathcal{T}}, \ \oplus_{\boldsymbol{\mathcal{T}}}, \ \otimes_{\boldsymbol{\mathcal{T}}}) = (\boldsymbol{\mathcal{S}} \times \boldsymbol{\mathcal{T}}, \ \oplus_{\boldsymbol{\mathcal{S}}} \stackrel{\scriptstyle \times}{\times} \oplus_{\boldsymbol{\mathcal{T}}}, \ \otimes_{\boldsymbol{\mathcal{S}}} \times \otimes_{\boldsymbol{\mathcal{T}}})$$

Theorem

If $\oplus_{\mathcal{S}}$ is commutative, idempotent, and selective, then

$$\mathtt{LD}(S \stackrel{\scriptstyle{ imes}}{\times} T) \iff \mathtt{LD}(S) \wedge \mathtt{LD}(T) \wedge (\mathtt{LC}(S) \lor \mathtt{LK}(T))$$

Where		
Property	Definition	
LD	$\forall a, b, c : c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b)$	
LC	$\forall a, b, c : c \otimes a = c \otimes b \implies a = b$	
LK	$\forall a, b, c : c \otimes a = c \otimes b$	

3 > 4 3

< 6 k

Prove

 $LD(S) \land LD(T) \land (LC(S) \lor LK(T)) \implies LD(S \times T)$ Assume S and T are bisemigroups, $LD(S) \land LD(T) \land (LC(S) \lor LK(T))$, and

$$(s_1, t_1), (s_2, t_2), (s_3, t_3) \in S \times T.$$

Then (dropping operator subscripts for clarity) we have

$$\begin{aligned} \text{rhs} &= ((\boldsymbol{s}_1, \boldsymbol{t}_1) \otimes (\boldsymbol{s}_2, \boldsymbol{t}_2)) \vec{\oplus} ((\boldsymbol{s}_1, \boldsymbol{t}_1) \otimes (\boldsymbol{s}_3, \boldsymbol{t}_3)) \\ &= (\boldsymbol{s}_1 \otimes \boldsymbol{s}_2, \boldsymbol{t}_1 \otimes \boldsymbol{t}_2) \vec{\oplus} (\boldsymbol{s}_1 \otimes \boldsymbol{s}_3, \boldsymbol{t}_1 \otimes \boldsymbol{t}_3) \\ &= ((\boldsymbol{s}_1 \otimes \boldsymbol{s}_2) \oplus_{\boldsymbol{S}} (\boldsymbol{s}_1 \otimes \boldsymbol{s}_3), \boldsymbol{t}_{\text{rhs}}) \\ &= (\boldsymbol{s}_1 \otimes (\boldsymbol{s}_2 \oplus \boldsymbol{s}_3), \boldsymbol{t}_{\text{rhs}}) \end{aligned}$$

where t_{lhs} and t_{rhs} are determined by the definition of $\vec{\oplus}$. We need to show that lhs = rhs, that is $t_{\text{rhs}} = t_1 \otimes t_{\text{lhs}}$

tgg22 (cl.cam.ac.uk)

Case 1 : LC(S)

Note that we have

$$(\star) \quad \forall a, b, c : a \neq b \implies c \otimes a \neq c \otimes b$$

Case 1.1 : $s_2 = s_2 \oplus s_3 = s_3$. Then $t_{\text{lhs}} = t_2 \oplus t_3$ and $t_1 \otimes t_{\text{lhs}} = t_1 \otimes (t_2 \oplus t_3) = (t_1 \otimes t_2) \oplus (t_1 \otimes t_3)$, by LD(*S*). Also, $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$ and $s_1 \otimes s_2 = s_1 \otimes (s_2 \oplus s_3) = (s_1 \otimes s_2) \oplus (s_1 \otimes s_3)$, again by LD(*S*). Therefore $t_{\text{rhs}} = (t_1 \otimes t_2) \oplus (t_1 \otimes t_3) = t_1 \otimes t_{\text{lhs}}$.

Case 1.2 : $s_2 = s_2 \oplus s_3 \neq s_3$. Then $t_1 \otimes t_{\text{lhs}} = t_1 \otimes t_2$ Also $s_2 = s_2 \oplus s_3 \implies s_1 \otimes s_2 = s_1 \otimes (s_2 \oplus s_3)$ and by \star $s_2 \oplus s_3 \neq s_3 \implies s_1 \otimes (s_2 \oplus s_3) \neq s_1 \otimes s_3$. Thus, by LD(*S*), $(s_1 \otimes s_2) \oplus (s_1 \otimes s_3) \neq s_1 \otimes s_3$ and we get $t_{\text{rhs}} = t_1 \otimes t_2 = t_1 \otimes t_{\text{lhs}}$.

Case 1.3 : $s_2 \neq s_2 \oplus_S s_3 = s_3$. Similar to case 1.2.

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ う へ つ や

Case 2 : LK(T)

Case 2.1 : $s_2 = s_2 \oplus_S s_3 = s_3$. Same as Case 1.1.

Case 2.2 : $s_2 = s_2 \oplus_S s_3 \neq s_3$. Then $t_1 \otimes t_{\text{lhs}} = t_1 \otimes t_2$. Now, $(s_1 \otimes s_2) \oplus_S (s_1 \otimes s_3) = s_1 \otimes (s_2 \oplus s_3) = s_1 \otimes s_2$. So $t_{\text{rhs}} = (t_1 \otimes t_2) \oplus (t_1 \otimes t_3) = t_1 \otimes (t_2 \oplus t_3)$ or $t_{\text{rhs}} = (t_1 \otimes t_2)$. In either case, t_{rhs} is of the form $t_1 \otimes t$, so by LK(*T*) we know that $t_{\text{rhs}} = t_1 \otimes t_{\text{lhs}}$.

Case 2.3 : $s_2 \neq s_2 \oplus_S s_3 = s_3$. Similar to case 2.2.

イヨト イラト イラト ニヨー

Examples

na	ame LD	LC	LK
min	_plus Yes	Yes	No
max	_min Yes	No	No
sej	p(G) Yes	No	No

So we have

LD(min_plus $\times \max_{\min}$) LD(min_plus $\times \operatorname{sep}(G)$)

But

 \neg (LD(max_min $\times in_plus)))$ $<math>\neg$ (LD(sep(G) $\times in_plus)))$

< ロ > < 同 > < 回 > < 回 >

Operation for inserting a zero

$$\operatorname{add_zero}(\overline{0}, (S, \oplus, \otimes)) = (S \uplus \{\overline{0}\}, \oplus_{\overline{0}}, \otimes_{\overline{0}})$$

$$a \oplus_{\overline{0}} b = \begin{cases} a & (\text{if } b = \text{inr}(\overline{0})) \\ b & (\text{if } a = \text{inr}(\overline{0})) \\ \text{inl}(x \oplus y) & (\text{if } a = \text{inl}(x), b = \text{inl}(y)) \end{cases}$$
$$a \otimes_{\overline{0}} b = \begin{cases} \text{inr}(\overline{0}) & (\text{if } b = \text{inr}(\overline{0})) \\ \text{inr}(\overline{0}) & (\text{if } a = \text{inr}(\overline{0})) \\ \text{inl}(x \otimes y) & (\text{if } a = \text{inl}(x), b = \text{inl}(y)) \end{cases}$$

disjoint union

where

$$A \uplus B \equiv {\operatorname{inl}(a) \mid a \in A} \cup {\operatorname{inr}(b) \mid b \in B}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

2

イロト イヨト イヨト イヨト

Operation for inserting a one

add_one(1, (S, \oplus, \otimes)) = $(S \uplus \{1\}, \oplus_{\overline{1}}, \otimes_{\overline{1}})$ where $a \oplus_{\overline{1}} b = \begin{cases} \operatorname{inr}(\overline{1}) & (\text{if } b = \operatorname{inr}(\overline{1})) \\ \operatorname{inr}(\overline{1}) & (\text{if } a = \operatorname{inr}(\overline{1})) \\ \operatorname{inl}(x \oplus y) & (\text{if } a = \operatorname{inl}(x), b = \operatorname{inl}(y)) \end{cases}$ $a \otimes_{\overline{1}} b = \begin{cases} a & (\text{if } b = \text{inr}(\overline{1})) \\ b & (\text{if } a = \text{inr}(\overline{1})) \\ \text{inl}(x \otimes y) & (\text{if } a = \text{inl}(x), b = \text{inl}(x)) \end{cases}$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

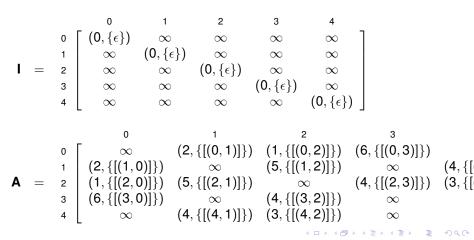
T.G.Griffin@2014 29/31

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

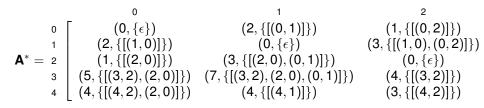
Shortest paths with best paths

Let's use

add_zero(∞ , min_plus \times sep(G))



Solution



T.G.Griffin © 2014 31 / 31

-