L11: Algebraic Path Problems with applications to Internet Routing Lectures 02, 03

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2014

< ロ > < 同 > < 回 > < 回 >

Semigroups

Definition (Semigroup)

A semigroup (S, \oplus) is a non-empty set S with a binary operation such that

ASSOCIATIVE : $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

S	\oplus	where
\mathbb{N}^{∞}	min	
\mathbb{N}^{∞}	max	
\mathbb{N}^{∞}	+	
2 ^{<i>W</i>}	U	
2 ^{<i>W</i>}	\cap	
S^*	0	$(abc \circ de = abcde)$
S	left	(a left b = a)
S	right	(a right b = b)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Special Elements

Definition

 α ∈ S is an identity if for all a ∈ S

 $a = \alpha \oplus a = a \oplus \alpha$

- A semigroup is a monoid if it has an identity.
- ω is an annihilator if for all $a \in S$

 $\omega = \omega \oplus \mathbf{a} = \mathbf{a} \oplus \omega$

S	\oplus	α	ω
\mathbb{N}^{∞}	min	∞	0
\mathbb{N}^{∞}	max	0	∞
\mathbb{N}^{∞}	+	0	∞
2 ^{<i>W</i>}	U	{}	W
2 ^{<i>W</i>}	\cap	Ŵ	{}
S^*	0	ϵ	
S	left		
S	right		

A

4 3 5 4 3

Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE	:	$\pmb{a} \oplus \pmb{b}$	=	$b \oplus a$
SELECTIVE	:	$\pmb{a} \oplus \pmb{b}$	\in	{ <i>a</i> , <i>b</i> }
IDEMPOTENT	:	<i>a</i> ⊕ <i>a</i>	=	а

S	\oplus	COMMUTATIVE	SELECTIVE	IDEMPOTENT
\mathbb{N}^{∞}	min	*	*	*
\mathbb{N}^{∞}	max	*	*	*
\mathbb{N}^{∞}	+	*		
2 ^W	U	*		*
2 ^W	\cap	*		*
S *	0			
S	left		*	*
S	right		*	*

э

(a)

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

- REFLEXIVE : $a \le a$
- TRANSITIVE : $a \leq b \land b \leq c \rightarrow a \leq c$
- ANTISYMMETRIC : $a \leq b \land b \leq a
 ightarrow a = b$

TOTAL : $a \le b \lor b \le a$

	pre-order	partial order	preference order	total order
REFLEXIVE	*	*	*	*
TRANSITIVE	*	*	*	*
ANTISYMMETRIC		*		*
TOTAL			*	*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Canonical Pre-order of a Commutative Semigroup

Suppose \oplus is commutative.

Definition (Canonical pre-orders)

$$a \trianglelefteq_{\oplus}^{R} b \equiv \exists c \in S : b = a \oplus c$$

 $a \trianglelefteq_{\oplus}^{L} b \equiv \exists c \in S : a = b \oplus c$

Lemma (Sanity check)

Associativity of \oplus implies that these relations are transitive.

Proof.

Note that $a \trianglelefteq_{\oplus}^{R} b$ means $\exists c_{1} \in S : b = a \oplus c_{1}$, and $b \trianglelefteq_{\oplus}^{R} c$ means $\exists c_{2} \in S : c = b \oplus c_{2}$. Letting $c_{3} = c_{1} \oplus c_{2}$ we have $c = b \oplus c_{2} = (a \oplus c_{1}) \oplus c_{2} = a \oplus (c_{1} \oplus c_{2}) = a \oplus c_{3}$. That is, $\exists c_{3} \in S : c = a \oplus c_{3}$, so $a \trianglelefteq_{\oplus}^{R} c$. The proof for $\trianglelefteq_{\oplus}^{L}$ is similar.

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \oplus) is canonically ordered when $a \trianglelefteq_{\oplus}^{R} c$ and $a \trianglelefteq_{\oplus}^{L} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \oplus a^{-1} = a^{-1} \oplus a = \alpha$.

4 **A** N A **B** N A **B** N

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $a = \alpha_{\oplus} \oplus a = (b \oplus b^{-1}) \oplus a = b \oplus (b^{-1} \oplus a) = b \oplus c$, for $c = b^{-1} \oplus a$, so $a \leq_{\oplus}^{L} b$. In a similar way, $b \leq_{\oplus}^{R} a$. Therefore a = b.

4 3 5 4 3

< 🗇 🕨

Natural Orders

Definition (Natural orders)

Let (S, \oplus) be a semigroup.

$$a \leq_{\oplus}^{L} b \equiv a = a \oplus b$$

 $a \leq_{\oplus}^{R} b \equiv b = a \oplus b$

Lemma

If \oplus is commutative and idempotent, then $a \leq_{\oplus}^{D} b \iff a \leq_{\oplus}^{D} b$, for $D \in \{R, L\}$.

Proof.

$$\begin{array}{rcl} a \leq^R_{\oplus} b & \Longleftrightarrow & b = a \oplus c = (a \oplus a) \oplus c = a \oplus (a \oplus c) \\ & = & a \oplus b \iff a \leq^R_{\oplus} b \\ a \leq^L_{\oplus} b & \iff a = b \oplus c = (b \oplus b) \oplus c = b \oplus (b \oplus c) \\ & = & b \oplus a = a \oplus b \iff a \leq^L_{\oplus} b \end{array}$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all $a, a \leq_{\oplus}^{L} \alpha$ and $\alpha \leq_{\oplus}^{R} a$
- If ω exists, then for all $a, \omega \leq_{\oplus}^{L} a$ and $a \leq_{\oplus}^{R} \omega$
- If α and ω exist, then S is bounded.

$$\begin{array}{rcl} \omega & \leq^{\mathsf{L}}_{\oplus} & \mathsf{a} & \leq^{\mathsf{L}}_{\oplus} & \alpha \\ \alpha & \leq^{\mathsf{R}}_{\oplus} & \mathsf{a} & \leq^{\mathsf{R}}_{\oplus} & \omega \end{array}$$

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for $(\min, +)$ we have

$$egin{array}{rcl} 0 & \leq^L_{\min} & a & \leq^L_{\min} & \infty \ \infty & \leq^R_{\min} & a & \leq^R_{\min} & 0 \end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	\oplus	α	ω	$\leq^{\mathrm{L}}_{\oplus}$	$\leq^{\mathbb{R}}_{\oplus}$
$\mathbb{N}\cup\{\infty\}$	min	∞	0	\leq	\geq
$\mathbb{N}\cup\{\infty\}$	max	0	∞	\geq	\leq
$\mathcal{P}(W)$	U	{}	W	\subseteq	⊇
$\mathcal{P}(W)$	\cap	W	{}	\supseteq	\subseteq

T.G.Griffin © 2014 11 / 37

2

Property Management

Lemma

Let $D \in \{R, L\}$.

● IDEMPOTENT $((S, \oplus)) \iff$ REFLEXIVE $((S, \leq_{\oplus}^{D}))$

- ② COMMUTATIVE $((S, \oplus)) \implies$ ANTISYMMETRIC $((S, ≤_{\oplus}^{D}))$
- $\begin{array}{l} \textcircled{\begin{subarray}{l} \hline 0 COMMUTATIVE}((S, \oplus)) \implies ({\tt SELECTIVE}((S, \oplus)) \iff {\tt TOTAL}((S, $\leq^{D}_{\oplus}))) \end{array} } \end{array}$

Proof.

•
$$a \leq_{\oplus}^{D} a \iff a = a \oplus a,$$

• $a \leq_{\oplus}^{L} b \land b \leq_{\oplus}^{L} a \iff a = a \oplus b \land b = b \oplus a \implies a = b$
• $a = a \oplus b \lor b = a \oplus b \iff a \leq_{\oplus}^{L} b \lor b \leq_{\oplus}^{L} a$

A (10) A (10)

Bounds

Suppose (S, \leq) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written c = a glb b, if it is a lower bound ($c \le a$ and $c \le b$), and for every $d \in S$ with $d \le a$ and $d \le b$, we have $d \le c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the least upper bound of a and b, written c = a lub b, if it is an upper bound ($a \le c$ and $b \le c$), and for every $d \in S$ with $a \le d$ and $b \le d$, we have $c \le d$.

Semi-lattices

Suppose (S, \leq) is a partially ordered set.

meet-semilattice

S is a <u>meet-semilattice</u> if a glb b exists for each $a, b \in S$.

join-semilattice

S is a join-semilattice if a lub b exists for each $a, b \in S$.

3

Fun Facts

Fact 1

Suppose (S, \oplus) is a commutative and idempotent semigroup.

- (S, \leq_{\oplus}^{L}) is a meet-semilattice with a glb $b = a \oplus b$.
- (S, \leq_{\oplus}^{R}) is a join-semilattice with *a* lub $b = a \oplus b$.

Fact 2

Suppose (S, \leq) is a partially ordered set.

- If (S, ≤) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, ≤) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

Bi-semigroups and Pre-Semirings

$(\mathcal{S}, \oplus, \otimes)$ is a bi-semigroup when

- (S, \oplus) is a semigroup
- (S, \otimes) is a semigroup

(S, \oplus, \otimes) is a pre-semiring when

- ($\mathcal{S}, \oplus, \otimes$) is a bi-semigroup
- ⊕ is commutative

and left- and right-distributivity hold,

LD :
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

RD : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- ($\mathcal{S}, \oplus, \otimes$) is a pre-semiring
- $(S, \oplus, \overline{0})$ is a (commutative) monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

4 3 5 4 3 5

Examples

Pre-ser	niri	ng	S			
name)	S	\oplus ,	\otimes	$\overline{0}$	1
min_pl	us	\mathbb{N}	min	+		0
max_m	in	\mathbb{N}	max	min	0	
· · ·						
Semirir	igs					
name	S	5	\oplus ,	\otimes	$\overline{0}$	1
sn	Nc	∞	min	+	∞	0
sp						

Note the sloppiness — the symbols +, max, and min in the two tables represent different functions....

How about (max, +)?

Pre-semiri	ing				
name	S	\oplus ,	\otimes	$\overline{0}$	1
max_plus	\mathbb{N}	max	+	0	0

• What about " $\overline{0}$ is an annihilator for \otimes "? No!

Semiring (max_plus ^{$-\infty$} = add_zero($-\infty$, max_min))							
name	S	\oplus ,	\otimes	$\overline{0}$	ī		
$\max_{\text{plus}}^{-\infty}$	$\mathbb{N}\cup\{-\infty\}$	max	+	$-\infty$	0		

Matrix Semirings

• (S, \oplus , \otimes , $\overline{0}$, $\overline{1}$) a semiring

• Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

 \oplus and \otimes

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

 $(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$

 $\underbrace{\bigcup_{1 \leq q \leq n}}_{1 \leq q \leq n}$

J and I

$$\mathbf{J}(i, j) = \overline{\mathbf{0}}$$
$$\mathbf{I}(i, j) = \begin{cases} \overline{\mathbf{1}} & (\text{if } i = j) \\ \overline{\mathbf{0}} & (\text{otherwise}) \end{cases}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

$\mathbb{M}_n(S)$ is a semiring!

For example, here is left distribution

$$\mathbf{A}\otimes(\mathbf{B}\oplus\mathbf{C})=(\mathbf{A}\otimes\mathbf{B})\oplus(\mathbf{A}\otimes\mathbf{C})$$

$$= \bigoplus_{\substack{1 \le q \le n}}^{(\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j)} \\ = \bigoplus_{\substack{1 \le q \le n}}^{(\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j)} \\ = \bigoplus_{\substack{1 \le q \le n}}^{(\mathbf{A} \otimes (i, q) \otimes (\mathbf{B} \oplus \mathbf{C}))(q, j))} \\ = \bigoplus_{\substack{1 \le q \le n}}^{(\mathbf{A} \otimes (i, q) \otimes (\mathbf{B} \otimes \mathbf{C}))(q, j))} \\ = (\bigoplus_{\substack{1 \le q \le n}}^{(\mathbf{A} \otimes (i, q) \otimes \mathbf{B})(q, j)) \oplus ((\bigoplus_{\substack{1 \le q \le n}}^{(\mathbf{A} \otimes (i, q) \otimes \mathbf{C})} \mathbf{A}(i, q) \otimes \mathbf{C})(q, j))$$

$$= ((\mathbf{\bar{A}} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i, j)$$

Note : we only needed left-distributivity on S.

Matrix encoding path problems

- (S, \oplus , \otimes , $\overline{0}$, $\overline{1}$) a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p = i_1, i_2, i_3, \cdots, i_k$ is

$$w(p) = w(i_1, i_2) \otimes w(i_2, i_3) \otimes \cdots \otimes w(i_{k-1}, i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \\ \overline{0} & \text{otherwise} \end{cases}$$

L11: Algebraic Path Problems with applica

The general problem of finding globally optimal paths

Given an adjacency matrix **A**, find **R** such that for all $i, j \in V$

$$\mathbf{R}(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

How can we solve this problem?

4 3 5 4 3 5

< 6 k

Matrix methods

Matrix powers, \mathbf{A}^k $\mathbf{A}^0 = \mathbf{I}$ $\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$

Closure, **A***

$$\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist. Why?

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Matrix methods can compute optimal path weights

- Let P(i,j) be the set of paths from *i* to *j*.
- Let $P^k(i, j)$ be the set of paths from *i* to *j* with exactly *k* arcs.
- Let $P^{(k)}(i,j)$ be the set of paths from *i* to *j* with at most *k* arcs.

Theorem
(1)
$$\mathbf{A}^{k}(i, j) = \bigoplus_{\substack{p \in P^{k}(i, j) \\ p \in P^{(k)}(i, j)}} w(p)$$

(2) $\mathbf{A}^{(k)}(i, j) = \bigoplus_{\substack{p \in P^{(k)}(i, j) \\ p \in P(i, j)}} w(p)$

Warning again: for some semirings the expression $\mathbf{A}^*(i, j)$ might not be well-defeind. Why?

Proof of (1)

By induction on *k*. Base Case: k = 0.

$$P^0(i, i) = \{\epsilon\},$$

so $\mathbf{A}^0(i, i) = \mathbf{I}(i, i) = \overline{1} = w(\epsilon).$

And $i \neq j$ implies $P^0(i,j) = \{\}$. By convention

$$\bigoplus_{p\in\{\}} w(p) = \overline{0} = \mathbf{I}(i, j).$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2014 26 / 37

< ロ > < 同 > < 回 > < 回 >

Proof of (1)

Induction step.

$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^k)(i, j)$$

$$= \bigoplus_{\substack{1 \le q \le n}} \mathbf{A}(i, q) \otimes \mathbf{A}^k(q, j)$$

$$= \bigoplus_{\substack{1 \le q \le n}} \mathbf{A}(i, q) \otimes (\bigoplus_{\substack{p \in P^k(q, j)}} w(p))$$

$$= \bigoplus_{\substack{1 \le q \le n}} \bigoplus_{\substack{p \in P^k(q, j)}} \mathbf{A}(i, q) \otimes w(p)$$

$$= \bigoplus_{\substack{(i, q) \in E}} \bigoplus_{\substack{p \in P^k(q, j)}} w(i, q) \otimes w(p)$$

$$= \bigoplus_{\substack{p \in P^{k+1}(i, j)}} w(p)$$

2

イロト イヨト イヨト イヨト

When does $A^{(*)}$ exist? Try a general approach.

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

Closure, *a**

$$\begin{array}{rcl} a^{(k)} &=& a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \\ a^* &=& a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots \end{array}$$

Definition (q stability)

If there exists a *q* such that $a^{(q)} = a^{(q+1)}$, then *a* is *q*-stable. Therefore, $a^* = a^{(q)}$, assuming \oplus is idempotent.

More Fun Facts

Fact 3

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Fact 4

If *S* is 0-stable, then $M_n(S)$ is (n-1)-stable. That is,

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

3

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$

The adjacency matrix

А

T.G.Griffin © 2014 30 / 37

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$

Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \min_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from *i* to *j*.

A D b 4 A b

Widest paths example, (\mathbb{N}^{∞} , max, min)

Bold arrows indicate the widest-path tree rooted at 1.

The routing matrix

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \max_{p \in P(i, j)} w(p),$$

where w(p) is now the minimal edge weight in p.

4 A N

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap)$

We want a Matrix **R** to solve this global optimality problem:

$$\mathbf{R}(i, j) = \bigcup_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that there is at least one path from *i* to *j* with *x* in every arc weight along the path.

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap)$

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$

We want matrix **R** to solve this global optimality problem:

$$\mathbf{R}(i, j) = \bigcap_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that every path from *i* to *j* has at least one arc with weight containing *x*.

Another unfamiliar example, ($2^{\{a, b, c\}}, \cap, \cup$)

< 6 b

Homework number 1

- Prove that matrix multiplication (slide 20) is associative.
- Prove Fun Facts 1 and 2 (see slide 15)
- Prove Fun Facts 3 and 4 (see slide 29)

A B F A B F

< 6 k