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Semigroups

Definition (Semigroup)

A semigroup (S, @) is a non-empty set S with a binary operation such
that

ASSOCIATIVE : a@(bedc)=(a®db)®c

S @ where

N°° | min

N | max

N | +

2W U

2 n

S* o | (abco de = abcde)
S | left (aleft b= a)

S | right (aright b= b)
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Special Elements

o S D | a|w
Definition N© Tmin Too T 0
@ « € Sis an identity if for all N© | max | 0 | oo
acsS No© + 0 | o
a=—adba=adu«a 2 - U w
Wl N | w | {}
@ A semigroup is a monoid if it S| o |
has an identity. S | left
@ w is an annihilator if for all S | right
ac$S
w=wha=adw
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Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE : a®b = b®da
SELECTIVE : a®b € {a b}
IDEMPOTENT : a®a = a

S D COMMUTATIVE | SELECTIVE | IDEMPOTENT
N | min * * *
N | max * * *
N | + *

oW U * *

oW N * *

S* o

S | left * *

S | right * *
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Order Relations

We are interested in order relations <C S x S

Definition (Important Order Properties)

REFLEXIVE
TRANSITIVE
ANTISYMMETRIC
TOTAL

a<a
a<bAab<c—a<c
a<banb<a—a=b
a<bvb<a

partial preference total

pre-order order order order
REFLEXIVE * * * *
TRANSITIVE * * * *
ANTISYMMETRIC * *
TOTAL * *
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Canonical Pre-order of a Commutative Semigroup
Suppose @ is commutative.
Definition (Canonical pre-orders)

a<fb = IceS:b=asdc
a<tb = 3IceS:a=bac

Lemma (Sanity check)
Associativity of & implies that these relations are transitive.

Proof.

Note that a <F b means 3¢ € S: b= a ¢y, and b <Z c means
dc, € S:c=bd cy. Letting c3 = ¢1 @ ¢, we have
c=bac=(a®c)dc=ad(c1dc)=adcs. Thatis,

Jdoz € S:c=a®d cs, so0 a<f c. The proof for <L is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, @) is canonically ordered when a<f ¢
and a <% c are partial orders.

Definition (Groups)

A monoid is a group if for every a € S there exists a a~' € S such that
aca'=a'oa=o.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

Ifa, bc S,thena=agda=(badb )®a=bo(b'da =baec,
forc=b""® a, so a<t b. In a similar way, b <& a. Therefore

a=nb. O
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Natural Orders
Definition (Natural orders)
Let (S, &) be a semigroup.

a<tb = a=aaob
a<fb = b=aob

Lemma

If & is commutative and idempotent, then a<? b <= a <2 b, for
De{R, L}.

Proof.

a<fb < b=aoc=(ava)dc=ad(adc)
= aob <= a<fbp

adtb < a=baoc=(bob)ec=bd(bac)
= boa=adb = a<ghb

M
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Special elements and natural orders
Lemma (Natural Bounds)

o Ifa exists, then for all a, a <% o and a <f
e Ifw exists, then for all a, w <L aanda <f w
@ Ifa and w exist, then S is bounded.

w <L g <L

@ =g &
aggaggw

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

0 <L. g <L

IBIH Eln ce
0 <m|n a < O

—min

and still say that this is bounded, even though one might argue with the
terminology!

v
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Examples of special elements

S ® [a]w|<k[<E
NU{oco} [min oo | 0| < | >
NU{oo} max| 0 [c0| > | <

P(W) u | {JIWwW| C|D
PW) | n [WI{] 2] ¢
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Property Management

Lemma
LetD € {R, L}.

@ DEMPOTENT((S, ®)) «= REFLEXIVE((S, <))

@ COMMUTATIVE((S, ®)) = ANTISYMMETRIC((S, <2))

© COMMUTATIVE((S, ®)) = (SELECTIVE((S, ®)) <—
TOTAL((S, <2)))

Proof.
Qa2<la—= a=aoa

Q@ a<tbrb<la«— a=aebrb=bopa= a=b
Q@ a=adbvb=adb «— a<ibvb<ia
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Bounds

Suppose (S, <) is a partially ordered set.

greatest lower bound

For a, b € S, the element ¢ € S is the greatest lower bound of a and b,
written ¢ = a glb b, if it is a lower bound (¢ < aand ¢ < b), and for
every d € Swithd < aand d < b, we have d < c.

least upper bound

For a, b € S, the element ¢ € S is the least upper bound of a and b,
written ¢ = alub b, if it is an upper bound (a < ¢ and b < ¢), and for
every d € Switha<dand b < d, we have c < d.
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Semi-lattices

Suppose (S, <) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, b € S.

join-semilattice

S is a join-semilattice if a lub b exists for each a, b € S.
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Fun Facts

Fact 1

Suppose (S, @) is a commutative and idempotent semigroup.
e (S, <L) is a meet-semilattice with a glb b= a & b.
e (S, <f)is ajoin-semilattice with alub b= a® b.

Fact 2
Suppose (S, <) is a partially ordered set.

@ If (S, <) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.

e If (S, <) is ajoin-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.
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Bi-semigroups and Pre-Semirings

(S, @, ®) is a bi-semigroup when
@ (S, @) is a semigroup
@ (S, ®)is a semigroup

(S, @, ®) is a pre-semiring when
° (S, @, ®)is abi-semigroup
@ @ is commutative

and left- and right-distributivity hold,

LD : a®((bec) = (avb)d(a®c)
RD : (a¢b)ec = (a®c)@(b®c)
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Semirings

(S, ®, ®, 0, 1) is a semiring when
@, ®)is a pre-semiring

@, 0) is a (commutative) monoid
®, 1) is a monoid

0 is an annihilator for ®

(s
(S,
(S,
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Examples

Pre-semirings

name S &, ® 0 1
min_plus N min + 0
max_min N max min 0

Semirings
name S ®, ® 0 1
sp N* min + oo 0

bw N*® max min 0 oo

Note the sloppiness — the symbols +, max, and min in the two tables
represent different functions....
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How about (max, +)?

Pre-semiring
name S &,

0
0

o =

®
max_plus N max +

@ What about “0 is an annihilator for ©”? No!

Semiring (max_plus™ > = add_zero(—oo, max_min))
name S ® ® 0 1
max_plus™® NU{—-oc0o} max + —-oco 0
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Matrix Semirings

e (S, @, ®, 0, 1) asemiring
@ Define the semiring of n x n-matrices over S : (M,(S), @, ®, J, 1)

@ and ®
(AeB)(i, j) = A(, ))®B(, ))
(A®B)(i, j) = P A(, q9)®B(q, ))
1<g<n
Jandl
J(i, j) = 0

T (ifi=))

0 (otherwise)
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M,(S) is a semiring!
For example, here is left distribution J

A2 (BaC)=(AzB)® (A C)

(A® (B C))(/, j)
= P Al 9@ (B@C)a, j)
1<q<n
= P A(, 9)®(B(q, j)®C(q, j))
1<g<n
= P (A(, 99 ®B(q, j)) @ (A(i, 9) @ C(q, j))

1<g<n

— (P AG 9 eBg )e( @ Al q)=Ca 1)

1<qg<n 1<g<n

= (A®B)® (A®C))(, j)

Note : we only needed left-distributivity on S.
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Matrix encoding path problems

° (S, @, ®, 0, 1) asemiring
@ G = (V, E) adirected graph
@ w e E — S a weight function

Path weight
The weight of a path p = i3, o, i3, - - - , Ik iS
w(p) = w(iy, ) @ W(ip, i3) ® - @ W(lk—1, Ix)-

The empty path is given the weight 1.

Adjacency matrix A

w(i, j) if(i, j) € E,

0 otherwise
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The general problem of finding globally optimal paths

Given an adjacency matrix A, find R such that for all /i, j € V

R(, j)= @ wip)

PEP(i, J)

How can we solve this problem?
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Matrix methods

Matrix powers, A%
A0 = |

Ak+1 —_ A®Ak

Closure, A*
AK) = 1oA"oA2 - @ AK

A = IoA'oA’ .- . oA D ...
Note: A* might not exist. Why?
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Matrix methods can compute optimal path weights

@ Let P(i,j) be the set of paths from i/ to j.
@ Let PX(i,}) be the set of paths from i to j with exactly k arcs.
@ Let P(K(j, j) be the set of paths from i to j with at most k arcs.

Theorem
(1) A, j) = P wlp)
pEPX(i, j)

(@) AW j) = P wip)

peP®(i, )

B wip

peP(i, J)

3) A, )

Warning again: for some semirings the expression A*(i, j) might not
be well-defeind. Why?
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Proof of (1)

By induction on k. Base Case: k = 0.

PO(i, i) = {e},
so A°(i i) =I(i, i) = T = w(e).

And i # j implies PO(i, ) = {}. By convention

D wip) =0=1(i, ).

pe{}
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Proof of (1)

Induction step.
AL ) = (Ao AR, ))

= P A(, 92 A q. ))

1<g<n
- D aigel @ we)
1<q<n pePX(q, j)

= P P AL gewp)

1=9=npeP(q, )

- b D w w(p)

(i, Q)€E pePk(q.)

= EB w(p)

pePKTI(i, j)
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When does A exist? Try a general approach.

° (S, @ ®, 0, 1) asemiring

Powers, a*
aQ =1
atl = a@
Closure, a*
ak = dga oo @ a

g = el G ed E) aos G e cac

Definition (g stability)

If there exists a g such that al@ = a(9t1)| then ais g-stable. Therefore,
a* = a9, assuming @ is idempotent.

v
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More Fun Facts

Fact 3
If 1 is an annihiltor for @, then every a € S is 0-stable!

Fact 4
If Sis O0-stable, then M,(S) is (n — 1)-stable. That is,

A*:A(n_1):|@A1@A2@"'@An_1
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Shortest paths example, (N*°, min, +)

The adjacency matrix

1 2 3 4

2 5 4 1 oo 2 1 6
/J\ 2 2 oo 5 ™
\T/ 4 6 oo 4
6 \g) 5 c0c 4 3 o
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Shortest paths example, (N>, min, +)

The routing matrix

1 2 3 4 5

1[02154

% 220374
5') 3/1 3043
4|57 407

5044370

Matrix R solves this global
Bold arrows |nd|cate the optimality problem:

shortest-path tree rooted at 1.
R(i, j)= min w(p),
pEP(i, j)

where P(i, j) is the set of all paths
from i to j.
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Widest paths example, (N>, max, min)

/% The routing matrix

2

5 4
1 1%\3\@
®
4

d) Matrix R solves this global

Bold arrows indicate the optimality problem:
widest-path tree rooted at 1.

mpw,\,_.
PO RARY =
AR OIR AW
ARAR ORro®
AR AR O -
AR RAO

6

R(i i) —
(1, J) pg,?ifj) w(p),

where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (212 2 ¢ U, N)

We want a Matrix R to solve this
global optimality problem:

@ fabo) te} Ri. )= U wip)
oo
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € R(/, j) to mean that there is at least
one path from j to j with x in every arc weight along the path. J
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Unfamiliar example, (212 2 ¢ U, N)

The matrix R
1 2 3 4 5
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}
{ab} {ab} {ab} {abc} {b}
{bc} {bc} {bc} {b} {abc}

a » O N =
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Another unfamiliar example, (212 2 ¢} N, U)

We want matrix R to solve this
global optimality problem:

ta} {abo} {C} R(i, j) = ﬂ w(p),
G{{b c) {% (b} pertd)
where w(p) is now the union of all
{ab} {b} edge weights in p.

®

For x € {a, b, c}, interpret x € R(/, j) to mean that every path from i
to j has at least one arc with weight containing x. J
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Another unfamiliar example, (212 2 ¢} N, U)

The matrix R

1 2 3 4 5

{+ { {6 {bp {
{+ { {o {b} {}
{by {b} {} {b} {b}
{b} {b} {b} {} {b}
0 4 b {r {

a »~ W N =
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Homework number 1

@ Prove that matrix multiplication (slide 20) is associative.
@ Prove Fun Facts 1 and 2 (see slide 15)
@ Prove Fun Facts 3 and 4 (see slide 29)
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