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Let’s start with shortest paths!
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Can represent a problem instance with an adjacency
matrix

A =



0 1 2 3 4

0 ∞ 1 ∞ ∞ ∞
1 1 ∞ 2 1 1
2 ∞ 2 ∞ 1 1
3 ∞ 1 1 ∞ ∞
4 ∞ 1 1 ∞ ∞
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But what problem are we solving?

Classic: globally optimal path weights
We want to find A∗ such that

A∗(i , j) = min
p∈P(i, j)

w(p),

where P(i , j) is the set of all paths from i to j .

In the example:

A∗ =



0 1 2 3 4

0 0 1 3 2 2
1 1 0 2 1 1
2 3 2 0 1 1
3 2 1 1 0 2
4 2 1 1 2 0
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An Algorithm: Dijkstra’s

Input : adjacency matrix A and source vertex i ∈ V ,
Output : the i-th row of R, where R(i , j) is the shortest distance

from i to j in the graph represented by A.

(1) for each q ∈ V do R(i , q)←∞
(2) S ← {}; R(i , i)← 0
(3) while S 6= V do
(4) find q ∈ V − S such that R(i , q) is minimal
(5) S ← S ∪ {q}
(6) for each j ∈ V − S do
(7) R(i , j)← R(i , j) min (R(i , q) + A(q, j))

Run this |V | times to get R = A∗.
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But wait! What about the PATHS???

A bit of notation
Assume X and Y are sets of paths over E .

X � Y ≡ {pq | p ∈ X , q ∈ Y}
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Dijkstra’s Algorithm Augmented With Paths

Input : adjacency matrix A and source vertex i ∈ V ,
Output : the i-th row of R as before. Now with P(i , j) the set

of all paths from i to j of distance R(i , j)

(1) for each q ∈ V do R(i , q)←∞; P(i , q)← {}
(2) S ← {}; R(i , i)← 0; P(i , i)← {ε}
(3) while S 6= V do
(4) find q ∈ V − S such that R(i , q) is minimal
(5) S ← S ∪ {q}
(6) for each j ∈ V − S do
(7) if R(i , j) = R(i , q) + A(q, j)
(8) then P(i , j)← P(i , j) ∪ (P(i , q) � {(q, j)})
(9) else if R(i , j) > R(i , q) + A(q, j)
(10) then R(i , j)← R(i , q) + A(q, j);
(11) P(i , j)← P(i , q) � {(q, j)}
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Solution(s)

R =



0 1 2 3 4

0 0 1 3 2 2
1 1 0 2 1 1
2 3 2 0 1 1
3 2 1 1 0 2
4 2 1 1 2 0


P(0,0) = {ε}
P(0,1) = {(0,1)}
P(0,2) = {(0,1,2), (0,1,3,2), (0,1,4,2)}
P(2,1) = {(2,1), (2,3,1), (2,4,1)}
P(2,0) = {(2,1,0), (2,3,1,0), (2,4,1,0)}

...
...

...

Note : could use just the next hop to implement hop-by-hop
forwarding.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 01T.G.Griffin c©2014 8 / 19



Let’s enrich the metric to Widest Shortest-Paths

shortest paths widest shortest paths
N ∪ {∞} Swsp ≡ (N× {1, . . . , >}) ∪ {∞}

min ◦
+ •
0 (0, >)

Can replace + by • and min by ◦ in both Dijkstra and Bellman-Ford.

(a, b) ◦ (c, d) =


(a, b max d) (a = c)

(a, b) (a < c)
(c, d) (c < a)

(a, b) • (c, d) = (a + c, b min d)
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Add bandwith to link weights

0 1 2

3

4

(1,10) (2,90)

(1,100)(1,5)

(1,100)(1,100)
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Weights are globally optimal

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford

R =



0 1 2 3 4

0 (0,>) (1,10) (3,10) (2,5) (2,10)
1 (1,10) (0,>) (2,100) (1,5) (1,100)
2 (3,10) (2,100) (0,>) (1,100) (1,100)
3 (2,5) (1,5) (1,100) (0,>) (2,100)
4 (2,10) (1,100) (1,100) (2,100) (0,>)


Four optimal paths of weight (3,10). Do our algorithms find all of
them?

Poptimal(0,2) = {(0,1,2), (0,1,4,2)}
Poptimal(2,0) = {(2,1,0), (2,4,1,0)}
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Surprise!
Four optimal paths of weight (3,10)

Poptimal(0,2) = {(0,1,2), (0,1,4,2)}
Poptimal(2,0) = {(2,1,0), (2,4,1,0)}

Paths computed by Dijkstra

PDijkstra(0,2) = {(0,1,2), (0,1,4,2)}
PDijkstra(2,0) = {(2,4,1,0)}

Notice that 0’s paths cannot both be implemented with next-hop
forwarding since PDijkstra(1,2) = {(1,4,2)}.

Paths computed by Distributed Bellman-Ford (Explained in
later lectures)

PBellman(0,2) = {(0,1,4,2)}
PBellman(2,0) = {(2,1,0), (2,4,1,0)}
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Optimal paths from 0 to 2. Computed by Dijkstra but
not by Bellman-Ford

0 1 2

3

4

(1,100)(1,5)

(1,10) (2,90)

(1,100) (1,100)
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Optimal paths from 2 to 1. Computed by Bellman-Ford
but not by Dijkstra
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(1,100)(1,5)

(2,90)(1,10)

(1,100)(1,100)
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Observations

For distributed Bellman-Ford
next-hop-paths(A) = computed-paths(A)

⊆ optimal-paths(A)

For Dijkstra’s algorithm

next-hop-paths(A) ⊆ computed-paths(A)
⊆ optimal-paths(A)

We will see that all of these path sets coincide exactly when the metric
is cancellative. That is, when a⊗ b = a⊗ c always implies that b = c.
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What is going on here???

Help!
Are the algorithms broken?
Is the new metric broken?

L11
This course will provide you with the tools to answert these questions!

see also ....
On the Forwarding Paths Produced by Internet Routing Algorithms.
Seweryn Dynerowicz and Timothy G. Griffin. To be presented at ICNP
2013 on 10 October, 2013.
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The Tentative Plan

Classical Semiring-based path finding

1 10 October : The Paths Puzzle
2 14 October : Semigroups and Order Relations
3 17 October : Semirings — Theory
4 21 October : Semirings — Constructions
5 24 October : Semirings — Examples
6 28 October : Semirings — algorithms
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The Tentative Plan

Non-Classical methods : Local Optimality
7 31 October : Internet Routing Protocols : RIP, OSPF, IS-IS

HW 1 due
8 4 November : Internet Routing Protocols : EIGRP, BGP
9 7 November : Beyond Semirings — “functions on arcs”
10 11 November : Beyond Semirings — Global vs Local optimality
11 14 November : Bellman-Ford and Dijkstra revisited
12 18 November : Solving the Paths Puzzle
13 21 November : Graph (Network) decomposition

HW 2 due
14 25 November : More on Global vs Local optimality
15 28 November : Internet’s Route Redistribution

and Administrative Distance
16 2 December : Metarouting project and open problems

15 January : HW 3 due
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Our Approach

The Algorithm to Algebra (A2A) method original metric
+

complex algorithm

→
 modified metric

+
generic algorithm


Punch Line
A2A attempts to shift complexity from an algorithm to the metric, which
is captured in an algebraic structure — the algebraic properties of that
structure will determine what kind of solution is obtained (global or
local optima).
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