L11: Algebraic Path Problems with applications to Internet Routing Lecture 01

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2014

4 **A** N A **B** N A **B** N

Let's start with shortest paths!

Can represent a problem instance with an adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & \infty & \infty & \infty \\ 1 & 0 & 2 & 1 & 1 \\ 0 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & \infty & \infty \\ 0 & 1 & 1 & \infty & \infty \end{bmatrix}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

But what problem are we solving?

Classic: globally optimal path weights

We want to find **A*** such that

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from *i* to *j*.

In the example:

$$\mathbf{A}^{*} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 3 & 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 & 2 \\ 4 & 2 & 1 & 1 & 2 & 0 \end{bmatrix}$$

An Algorithm: Dijkstra's

Input : adjacency matrix A and source vertex *i* ∈ *V*,
Output : the *i*-th row of R, where R(*i*, *j*) is the shortest distance from *i* to *j* in the graph represented by A.

$$\begin{array}{ll} (1) & \text{for each } q \in V \text{ do } \mathbf{R}(i, \ q) \leftarrow \infty \\ (2) & S \leftarrow \{\}; \ \mathbf{R}(i, \ i) \leftarrow 0 \\ (3) & \text{while } S \neq V \text{ do} \\ (4) & \text{find } q \in V - S \text{ such that } \mathbf{R}(i, \ q) \text{ is minimal} \\ (5) & S \leftarrow S \cup \{q\} \\ (6) & \text{for each } j \in V - S \text{ do} \\ (7) & \mathbf{R}(i, \ j) \leftarrow \mathbf{R}(i, \ j) \min (\mathbf{R}(i, \ q) + \mathbf{A}(q, \ j)) \end{array}$$

Run this |V| times to get **R** = **A**^{*}.

< ロ > < 同 > < 回 > < 回 >

But wait! What about the PATHS???

A bit of notation

Assume X and Y are sets of paths over E.

$$X \diamond Y \equiv \{pq \mid p \in X, q \in Y\}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2014 6 / 19

4 3 > 4 3

< 6 k

Dijkstra's Algorithm Augmented With Paths

Input : adjacency matrix **A** and source vertex $i \in V$,

- Output :
 - : the *i*-th row of **R** as before. Now with **P**(*i*, *j*) the set of **all** paths from *i* to *j* of distance **R**(*i*, *j*)

< 回 > < 回 > < 回 >

Solution(s)

$$\mathbf{R} = \begin{cases} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 3 & 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 & 2 \\ 2 & 1 & 1 & 0 & 2 \\ 2 & 1 & 1 & 2 & 0 \end{bmatrix}$$
$$\mathbf{P}(0,0) = \{\epsilon\}$$
$$\mathbf{P}(0,1) = \{(0,1)\}$$
$$\mathbf{P}(0,2) = \{(0,1,2), (0,1,3,2), (0,1,4,2)\}$$
$$\mathbf{P}(2,1) = \{(2,1), (2,3,1), (2,4,1)\}$$
$$\mathbf{P}(2,0) = \{(2,1,0), (2,3,1,0), (2,4,1,0)\}$$
$$\vdots \quad \vdots \quad \vdots$$

Note : could use just the next hop to implement hop-by-hop forwarding.

T.G.Griffin © 2014 8 / 19

э

< ロ > < 同 > < 回 > < 回 >

Let's enrich the metric to Widest Shortest-Paths

shortest paths	widest shortest paths
$\mathbb{N}\cup\{\infty\}$	$m{S}_{\mathrm{wsp}} \equiv (\mathbb{N} imes \{1, \ \ldots, \ op \}) \cup \{\infty\}$
min	0
+	•
0	(0, ⊤)

Can replace + by \bullet and min by \circ in both Dijkstra and Bellman-Ford.

$$(a, b) \circ (c, d) = \begin{cases} (a, b \max d) & (a = c) \\ (a, b) & (a < c) \\ (c, d) & (c < a) \end{cases}$$

 $(a, b) \bullet (c, d) = (a+c, b \min d)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2014 10/19

Weights are globally optimal

Widest shortest-path weights computed by Dijkstra and Bellman-Ford

Four optimal paths of weight (3, 10). Do our algorithms find all of them?

3

Surprise!

Four optimal paths of weight (3, 10)

$$\begin{array}{rcl} \textbf{P}_{optimal}(0,2) &=& \{(0,1,2),\; (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) &=& \{(2,1,0),\; (2,4,1,0)\} \end{array}$$

Paths computed by Dijkstra

Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text{Dijkstra}}(1,2) = \{(1,4,2)\}.$

Paths computed by **Distributed Bellman-Ford** (Explained in later lectures)

tgg22 (cl.cam.ac.uk)

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford

13/19

Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra

Observations

We will see that all of these path sets coincide exactly when the metric is <u>cancellative</u>. That is, when $a \otimes b = a \otimes c$ always implies that b = c.

3

What is going on here???

Help!

- Are the algorithms broken?
- Is the new metric broken?

L11

This course will provide you with the tools to answert these questions!

see also

On the Forwarding Paths Produced by Internet Routing Algorithms. Seweryn Dynerowicz and Timothy G. Griffin. To be presented at ICNP 2013 on 10 October, 2013.

3

The Tentative Plan

Classical Semiring-based path finding

- 1 10 October : The Paths Puzzle
- 2 14 October : Semigroups and Order Relations
 - 17 October : Semirings Theory
 - 21 October : Semirings Constructions
 - 24 October : Semirings Examples
 - 28 October : Semirings algorithms

3

4

5

6

A B F A B F

< 6 k

The Tentative Plan

Non-Classical methods : Local Optimality

7	31 October	•	Internet Routing Protocols : RIP, OSPF, IS-IS HW 1 due	l
8	4 November	:	Internet Routing Protocols : EIGRP, BGP	L
9	7 November	:	Beyond Semirings — "functions on arcs"	L
10	11 November	:	Beyond Semirings — Global vs Local optimalit	y
11	14 November	:	Bellman-Ford and Dijkstra revisited	L
12	18 November	:	Solving the Paths Puzzle	L
13	21 November	:	Graph (Network) decomposition	L
			HW 2 due	L
14	25 November	:	More on Global vs Local optimality	L
15	28 November	:	Internet's Route Redistribution	L
			and Administrative Distance	L
16	2 December	:	Metarouting project and open problems	L
	15 January	:	HW 3 due	ļ

э

Our Approach

Punch Line

A2A attempts to shift complexity from an algorithm to the metric, which is captured in an algebraic structure — the algebraic properties of that structure will determine what kind of solution is obtained (global or local optima).