

Social and Technological Network Analysis: Spatial Networks, Mobility and Applications

Anastasios Noulas Computer Laboratory, University of Cambridge

February 2015

Today's Outline

- 1. Introduction to spatial networks
- 2. Geo-social networks
- 3. Location-based social networks
- 4. Special: Spatial economics & the sharing economy

www.pnas.org

What is a spatial network

A spatial network is a graph whose nodes are embedded in a **metric space**.

Hence, in spatial networks, one can apply a **distance function** between two nodes in the network.

The distance metric used to analyse spatial networks is often **geographic distance**.

Can you think of any spatial networks emerging in the real world?

Spatial Networks

http://www.gleamviz.org/model/

Spatial Networks

https://timstonor.wordpress.com/2014/01/03/skycycle-elevated-but-not-remote/

Spatial Networks

Spatial networks

Planar networks: networks that can be drawn in a manner so that edges do not intersect (e.g. transport: rail networks, road networks etc.)

Non-planar: airline networks, networks of social relationships.

Spatial Networks by Marc Berthelemy <u>http://arxiv.org/pdf/1010.0302v2.pdf</u>

FOURSQUARE CHECK-INS SHOW THE PULSE OF **TOKYO**

Network of places in New York City

special thanks to Blake Shaw @ Foursquare

Geo-social networks

Geo-social networks are social networks embedded in geographic space.

Geography and network topology are key to network's function and evolution.

Location is everywhere

Mobile services that are focused (based) on places.

Users check in to places & connect with friends.

A social network is formed above real world places.

Popular in urban environments.

Socio-spatial properties of Online Location-based Social Networks, Scellato et al, ICWSM 2011.

Link length distribution: friends vs random user pairs.

Probability of friendship as a function of geographic distance.

geo model: wire nodes based on distance.

social model: shuffle nodes' geographic location.

Geographic distance or social connectivity alone cannot explain data!

1.0GΝ Data Data G٨ PM PM G G

0.8 P P ${\overset{0.6}{\text{O}}}_{0.4}$ 0.60.4 0.40.20.20.0 0.0 10^{2} 10^{3} 10¹ 10^{3} 10^{2} 10^{0} 10^{4} 10^{4} 10^{1} 10^{0} Link length [km] Link length [km] (a) Without global attachment (b) With global attachment

$$P_g[u \to v] \propto \frac{m_u . m_v}{d(u, v)^b}$$

1.0

gravity model: attraction

proportional to the degree of target node and repulsion proportional to distance.

Alamanis et. al, ICM 2012. http://www.cl.cam.ac.uk/~cm542/papers/imc2012.pdf

Location-based social networks

Friendship and geographic distance

Friendship as a function of distance in Livejournal.

Geographic routing in social networks Liben-Nowell et. al, PNAS 2005

Friendship and geographic distance

Variations in population densities and friendship probability over geographic distance.

Geographic routing in social networks Liben-Nowell et. al, PNAS 2005

Defining Rank-Distance

 $rank_u(v) = |\{w : d(u, w) < d(u, v)\}|$

Rank universality

Geographic routing in social networks Liben-Nowell et. al, PNAS 2005

Friendship & distance across services

Samuel A. Stouffer

Stouffer's **law of intervening opportunities** states, "The number of persons going a given distance is directly proportional to the number of opportunities at that distance and inversely proportional to the number of intervening opportunities." *

- Empirically proven using data for migrating families in the city of Cleveland.

- We investigate the plausibility of the theory for urban movements in Foursquare.

* S. Stouffer (1940) Intervening opportunities: A theory relating mobility and distance, American Sociological Review 5, 845-867

The importance of density

- Stouffer's Theory of Intervening Opportunities motivated us to inspect the impact of places(=opportunities) in human mobility.

- Place density by far more important than the city area size with respect to mean length of human movements ($R^2 = 0.59$ and 0.19 respectively).

Rank universality

The rank of all cities collapse to a single line.

We have measured a power law exponent $\alpha = 0.84 \pm 0.07$

A new model for urban mobility

and mind!
$$Pr[u \rightarrow v] \propto \frac{1}{rank_u(v)^a}$$

Simulation Results ...

The importance of Geography

Heterogeneities observed in human mobility is due to geographic variations. Cultural, organisational or other factors do not appear to play a role in urban movements.

The rank model, although simple, can cope with the complex spatial variations in densities observed in urban environments.

Location is not here for fun!

A big problem for locationbased services is how to monetise.

There are a host of potential revenue channels (venue claim, geo ads, data sales..)

New location-centric services emerge and old ones constantly transform.

MCDONALD'S

DUNKIN' DONUTS

Relatively speaking... McDonald's tend to "pull" check-ins from remote locations whereas Dunkin' and Starbucks attract local movements.

Exploit place type networks for retail area quality assessment

Intuition: certain place types attract each other (e.g. coffee shops at train stations)

Application: Can we exploit spatial, place-type configuration patterns to assess the retail quality of an area?

Pablo Jensen PRL E, 2006, http://journals.aps.org/pre/pdf/10.1103/PhysRevE.74.035101

Methodology for extracting the Jensen (retail) quality of an area.

Step I: Measure the frequency of a place type across all M sites. This can be checked for a city, a country or the locations of a chain depending on the goal of the application. Below is the normed frequency

of category B:

Step 2: To measure the attractiveness of a category (place type) B towards another type A do the following: iterate across all sites of A, retrieve the nearby places within a radius r, and measure the number of occurrences of B, n_B and its ratio with respect to all nearby places n_B/n_tot.

Step 3: Finally, measure for a given place type A, the average attractiveness score, M_AB, defined below. Effectively, you are measuring the chance of observing B next to A, over observing B at a random location. < n b/n tot >

Starbucks		Dunkin' Donuts		McDonalds	
Train Station	11.80	Hostel	5.02	Flower Shop	5.87
Light Rail	8.60	Gas Station	3.05	Office Supplies	3.16
Stadium	7.25	Automotive Shop	2.66	Train Station	3.08
Airport	6.24	Flower Shop	2.36	Theatre	2.84
Museum	5.10	Post Office	2.19	Light Rail	2.32
Convention Centre	4.93	Flea Market	1.84	Gift Shop	2.26
Hostel	4.82	School	1.72	Subway Station	2.21
Corporate Office	4.57	Drug Store	1.70	Department Store	2.17
Hotel	4.13	Subway Station	1.67	Bank / Financial	1.92
Bank / Financial	4.09	Bike shop	1.64	Drug Store	1.89

mobility

colocation

Does colocation imply movement?

Starbucks		Dunkin' Donuts		McDonalds	
Hostel	15.75	Laundry	11.89	Parks & Outdoor	16.00
Flea Market / Fair	8.38	Drug Store / Pharmacy	5.78	Gas Station	3.72
Sculpture	8.00	Subway Station	2.16	Gift Shop	3.56
Post Office	2.34	Food Shop	1.66	Theatre	3.20
Services	2.20	Medical	1.25	Office Supplies	3.05
Drug Store / Pharmacy	2.20	Home	1.24	Bank / Financial	2.91
Quad / Commons	1.72	Apparel	1.12	Plaza / Square	2.57
Bank / Financial	1.57	Bank / Financial	1.06	Drug Store	2.37
Airport	1.52	School	1.08	Apparel	1.04
Office Supplies	1.52	Post Office	1.07	Home	1.02

THE APP: "EVERYONE'S PRIVATE DRIVER"

THE NEW YORK CITY TAXI DATASET

FOILing NYC's Taxi Trip Data

Freedom of Information Law

2013 Trip Data, 11GB, zipped!

2013 Fare Data, 7.7GB

Idea: Uber Vs Yellow Taxi Price Comparison.

AN APP TO REDUCE COMMUTER COSTS

Carrier	२ 3:57 PM न ∎	1 🔳	
	Tríp origin		
	place in NY		
	where to go?		
	place in NY		
	Uber or Yellow Cab?		

Provide feedback on prices to users

Collect more data for research

Make cities smarter

QUESTIONS

Email: Anastasios.Noulas@cl.cam.ac.uk

