Latent Variable Models and Hidden Markov Models

Mark Gales

Lent 2014

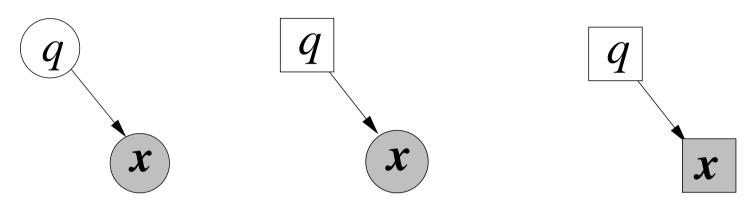
Machine Learning for Language Processing: Lecture 4

MPhil in Advanced Computer Science

Latent Variable Models

- The models generated to date have "meaning" for each variable
 - for topic detection, topic and words in text
- It is possible to introduce latent variables into the model
 - do not have to have any "meaning"
 - these variables are never observed in test (possibly in training)
 - marginalised over to get probabilities
 - may be discrete (mixture models, HMMs), continuous (factor-analysis)
- This lecture will concentrate on two forms model
 - mixture models
 - hidden Markov models

"Static" Latent Variable Models



Factor Analysis Gaussian Mixture Model Discrete Mixture Model

- ullet Consider three forms of Byesian Network (BN) for an observation x
 - indicator variable q (or q) shows value of continuous z or discrete c_m space
 - probability found by marginalising over the latent variable

$$\begin{array}{ll} \text{factor analysis} & \int p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})d\boldsymbol{z} \\ \text{Gaussian mixture models} & \sum_{m=1}^{M} P(\mathbf{c}_m)p(\boldsymbol{x}|\mathbf{c}_m) \\ \text{discrete mixture model} & \sum_{m=1}^{M} P(\mathbf{c}_m)P(\boldsymbol{x}|\mathbf{c}_m) \end{array}$$

- these models are extensively used in many machine learning applications

Gaussian Mixture Models

- Gaussian mixture models (GMMS) are based on (multivariate) Gaussians
 - form of the Gaussian distribution:

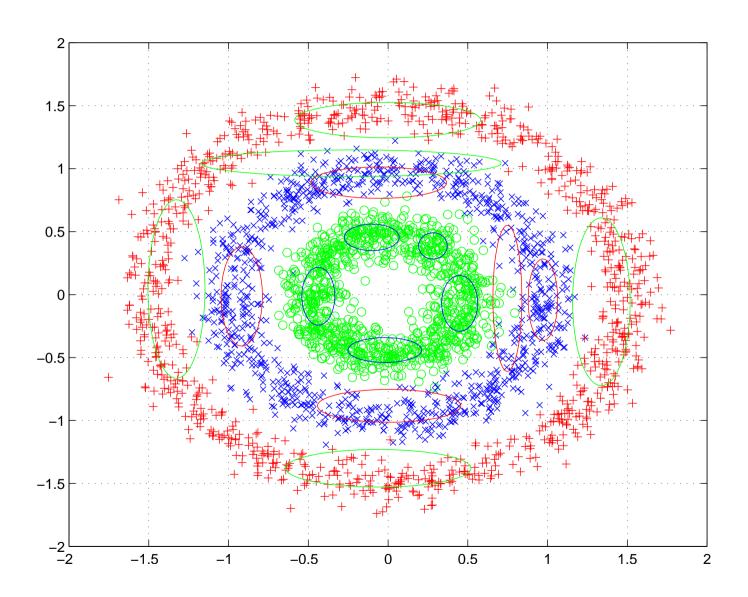
$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

For GMM each component modelled using a Gaussian distribution

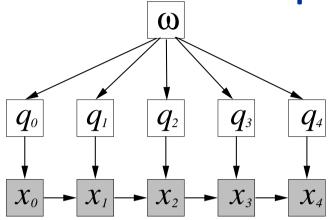
$$p(\boldsymbol{x}) = \sum_{m=1}^{M} P(c_m) p(\boldsymbol{x} | c_m) = \sum_{m=1}^{M} P(c_m) \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$$

- component prior: $P(c_m)$
- component distribution: $p(\boldsymbol{x}|\mathbf{c}_m) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$
- Highly flexible model, able to model wide-range of distributions

Classifying Doughnut Data using GMMs



Sequence Mixture Models



- Add latent variable to a sequence classifier
 - sequence x_1, \ldots, x_3 , $(x_0 \text{ start } x_4 \text{ end})$
 - feature additionally dependent on latent variable
 - latent variable is not observed
- Consider conditional independence and marginalising over the latent variable

$$P(x_i|x_o,...,x_{i-1},q_0,...,q_i,\omega_j) = P(x_i|x_{i-1},q_i)$$

$$P(x_i|x_{i-1},\omega_j) = \sum_{m=1}^{M} P(c_m|\omega_j)P(x_i|x_{i-1},c_m)$$

• So the overall probability (similar to a mixture-model class-dependent LM)

$$P(\boldsymbol{x}|\omega_j) = \prod_{i=1}^4 \left(\sum_{m=1}^M P(\mathbf{c}_m|\omega_j) P(x_i|x_{i-1}, \mathbf{c}_m) \right); \quad \text{Note } P(x_0|\omega_j) = 1$$

Mixture Language Model

• The general form of a mixture language model (for a trigram) is:

$$P(w_k|w_i, w_j) = \sum_{m=1}^{M} \lambda_m P_m(w_k|w_i, w_j); \quad \lambda_m = P(\mathbf{c}_m)$$

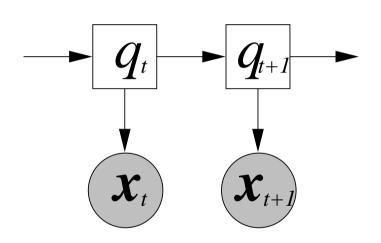
- M is the number of mixture components
- $P_m(w_k|w_i,w_j)$ is the language model probability for component m
- λ_m is the language model component prior (tuned for the task) note

$$\sum_{m=1}^{M} \lambda_m = 1, \quad \lambda_m \ge 0$$

- Each of the individual component language is trained on a different sources
- ullet Component prior, λ_m , tuned for a particular task using development data

Hidden Markov Models

- An important model for sequence data is the hidden Markov model (HMM)
 - an example of a dynamic Bayesian network (DBN)
 - consider a sequence of multi-dimensional observations $oldsymbol{x}_1,\dots,oldsymbol{x}_T$



- add discrete latent variables
 - $-q_t$ describes discrete state-space
 - conditional independence assumptions

$$P(q_t|q_0,...,q_{t-1}) = P(q_t|q_{t-1})$$

 $p(\mathbf{x}_t|\mathbf{x}_1,...,\mathbf{x}_{t-1},q_0,...,q_t) = p(\mathbf{x}_t|q_t)$

• The likelihood of the data is

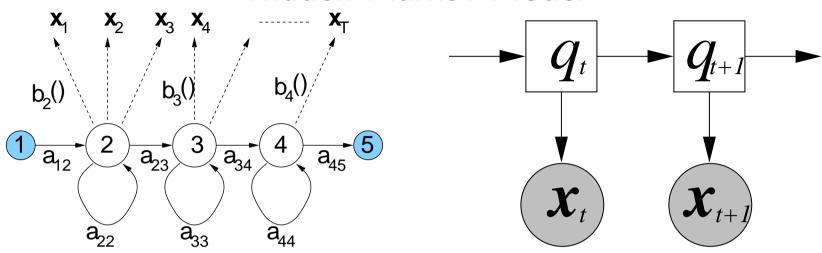
$$p(x_1, ..., x_T) = \sum_{q \in Q_T} P(q) p(x_1, ..., x_T | q) = \sum_{q \in Q_T} P(q_0) \prod_{t=1}^{T} P(q_t | q_{t-1}) p(x_t | q_t)$$

 $q = \{q_0, \dots, q_{T+1}\}$ and Q_T is all possible state sequences for T observations

HMM Parameters

- ullet Two types of states are often defined for HMMs (total N states)
 - emitting states: produce the observation sequence
 - non-emitting states: used to define valid state and end states
- ullet The parameters are normally split into two (assume s_1 and s_N are non-emitting)
 - transition matrix A: $a_{ij}=P(q_t=\mathbf{s}_j|q_{t-1}=\mathbf{s}_i)$ is the probability of transitioning from state \mathbf{s}_i to state \mathbf{s}_j
 - state output probability $\{b_2(\boldsymbol{x}_t), \dots, b_{N-1}(\boldsymbol{x}_t)\}$: $b_j(\boldsymbol{x}_t) = p(\boldsymbol{x}_t|q_t = \mathbf{s}_j)$ is the output distribution for state \mathbf{s}_j
- The estimation of the parameters $\lambda = \{A, b_2(x_t), \dots, b_{N-1}(x_t)\}$ will be discussed later in the course
 - usually trained using Expectation-Maximisation (EM)

Hidden Markov Model



- To design a classifier need to determine:
 - transition matrix: discrete state-space and allowed transitions (diagram left)
 - state output distribution: form of distribution $p(\boldsymbol{x}_t|q_t)$
- Can then be used as a generative classifier

$$\hat{\omega} = \underset{\omega}{\operatorname{argmax}} \{ P(\omega | \boldsymbol{x}_1, \dots, \boldsymbol{x}_T) \} = \underset{\omega}{\operatorname{argmax}} \{ P(\omega) p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T | \omega) \}$$

need to be able to compute $p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T|\omega)$ efficiently

Viterbi Approximation

- An important technique for HMMs (and other models) is the Viterbi Algorithm
 - here the likelihood is approximated as (ignoring dependence on class ω)

$$p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T) = \sum_{\boldsymbol{q}\in\boldsymbol{Q}_T} p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T,\boldsymbol{q}) \approx p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T,\hat{\boldsymbol{q}})$$

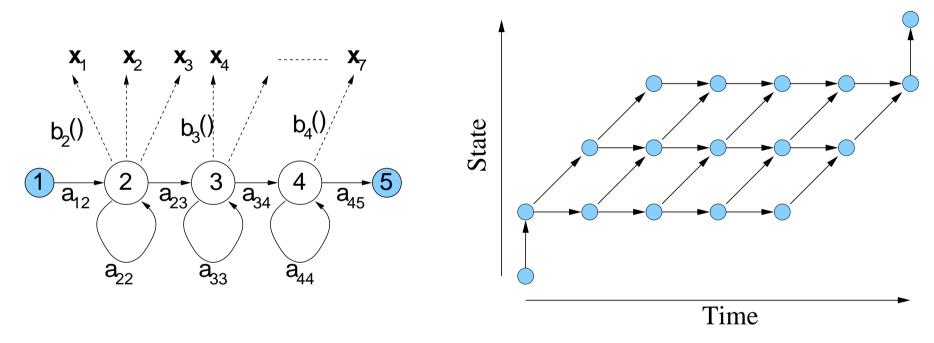
where

$$\hat{\boldsymbol{q}} = \{\hat{q}_0, \dots, \hat{q}_{T+1}\} = \underset{\boldsymbol{q} \in \boldsymbol{Q}_T}{\operatorname{argmax}} \{p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T, \boldsymbol{q})\}$$

- This yields:
 - an approximate likelihood (lower bound) for the model
 - the best state-sequence through the discrete-state space

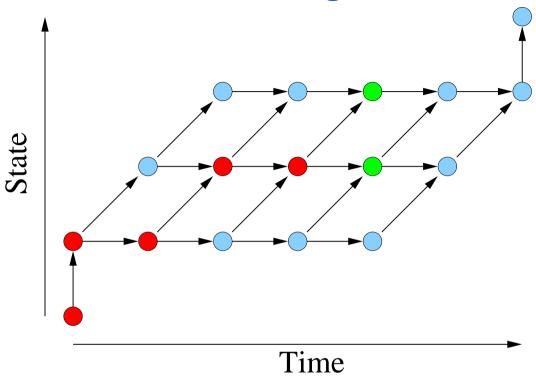
Viterbi Algorithm

- ullet Need an efficient approach to obtaining the best state-sequence, \hat{q} ,
 - simply searching through all possible state-sequences impractical ...



- ullet Consider generating the observation sequence $oldsymbol{x}_1,\ldots,oldsymbol{x}_7$
 - HMM topology 3 emitting states with strict left-to-right topology (left)
 - representation of all possible state sequences on the right

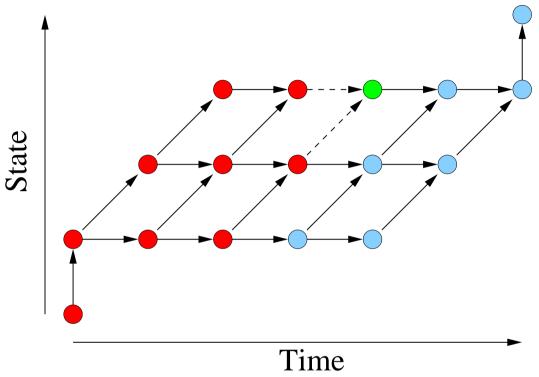
Extending Partial Paths with Time



- Red partial path to time 4
- Green possible extensions

- Partial path state sequence $\{1,2,2,3,3\}$ with cost $\phi_3(4)$: now extend path
 - cost of staying in state s_3 and generating observation x_5 : $\log(a_{33}b_3(x_5))$
 - cost of moving to state s_4 and generating observation $m{x}_5$: $\log(a_{34}b_4(m{x}_5))$
- Hence: $\phi_3(5) = \phi_3(4) + \log(a_{33}b_3(\boldsymbol{x}_5))$ and $\phi_4(5) = \phi_3(4) + \log(a_{34}b_4(\boldsymbol{x}_5))$

Best Partial Path to a State/Time



- Red possible partial paths
- Green state of interest

- Require best partial path to state s_4 at time 5 (with associated cost $\phi_4(5)$)
 - cost of moving from state s_3 and generating observation x_5 : $\log(a_{34}b_4(x_5))$
 - cost of staying in state s_4 and generating observation x_5 : $\log(a_{44}b_4(x_5))$
- Select "best: $\phi_4(5) = \max \{\phi_3(4) + \log(a_{34}b_4(\boldsymbol{x}_5)), \phi_4(4) + \log(a_{44}b_4(\boldsymbol{x}_5))\}$

Viterbi Algorithm for HMMs

- The Viterbi algorithm for HMMs can then be expressed as:
 - Initialisation: (LZER0= $\log(0)$) $\phi_1(0) = 0.0, \quad \phi_j(0) = \text{LZER0}, 1 < j < N,$ $\phi_1(t) = \text{LZER0}, 1 \leq t \leq T$
 - Recursion:

for
$$t = 1, \ldots, T$$

for $j = 2, \ldots, N-1$
 $\phi_j(t) = \max_{1 \leq k < N} \left\{ \phi_k(t-1) + \log(a_{kj}) \right\} + \log(b_j(\boldsymbol{x}_t))$

– Termination:

$$\log(p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T, \hat{\boldsymbol{q}})) = \max_{1 < k < N} \{\phi_k(T) + \log(a_{kN})\}\$$

ullet Can also store the best previous state to allow best sequence \hat{q} to be found.

State-Space

- The state-space can define many different attributes e.g.
 - sub-parts of phones/words/sentences in a speech recognition system
 - part-of-speech tags
 - word-alignments in machine translation
 - named entities
- HMMs can be combined together to form models of sequences of labels
 - many "classes" can be formed from combining sub-classes together
 - for examples words into phones

number of observations and labels do not need to be the same