Kleene's Theorem

Definition. A language is **regular** iff it is equal to L(M), the set of strings accepted by some deterministic finite automaton M.

Theorem.

- (a) For any regular expression r, the set L(r) of strings matching r is a regular language.
- (b) Conversely, every regular language is the form L(r) for some regular expression r.

Example of a regular language

Recall the example DFA we used earlier:

In this case it's not hard to see that L(M) = L(r) for

 $r = (a|b)^*aaa(a|b)^*$

Example

L(M) = L(r) for which regular expression r? Guess: $r = a^* |a^*b(ab)^*aaa^*$

Example

L(M) = L(r) for which regular expression r?

Guess: $r = a^* |a^*b(ab)^* aaa^*$

WRONG! since $baabaa \in L(M)$ but $baabaa \notin L(a^*|a^*b(ab)^*aaa^*)$

We need an algorithm for constructing a suitable r for each M (plus a proof that it is correct).

Lemma. Given an NFA $M = (Q, \Sigma, \Delta, s, F)$, for each subset $S \subseteq Q$ and each pair of states $q, q' \in Q$, there is a regular expression $r_{q,q'}^S$ satisfying

$$L(r_{q,q'}^{S}) = \{ u \in \Sigma^* \mid q \xrightarrow{u} r q' \text{ in } M \text{ with all inter-}$$

mediate states of the sequence of transitions in $S \}.$

Hence if the subset F of accepting states has k distinct elements, q_1, \ldots, q_k say, then L(M) = L(r) with $r \triangleq r_1 | \cdots | r_k$ where

$$r_i = r_{s,q_i}^Q \qquad (i = 1,\ldots,k)$$

(in case k = 0, we take r to be the regular expression \emptyset).

Lemma on p23 is proved
by induction on # of elements in S
Base case
$$S = \emptyset$$
:
Given states q,q' in M , if
 $q \xrightarrow{a} q'$
hilds for just $a = a_1, \dots, a_k$ then can take
 $\binom{\emptyset}{q,q} \xrightarrow{a} \begin{cases} a_1 \\ a_1 \\ \dots \\ a_k \end{cases} \in fq = q'$

Lemma on p23 is proved
by induction on # of elements in S
Base case
$$S = \phi$$
:
Given states q,q' in M, if
 $q \stackrel{a}{\rightarrow} q'$
hads for no a then can take
 $(\stackrel{\emptyset}{q,q}, \stackrel{a}{=} \begin{cases} \emptyset & \text{if } q \neq q' \\ \varepsilon & \text{if } q = q' \end{cases}$

Induction step: S has not elements Pick any $q_0 \in S$. So can apply induction hyp. to $S \setminus \{q_0\} = \{q \in S \mid q \neq q_0\}$ since if has netts.

Induction step: S has not elements Pick any $q_0 \in S$. So can apply induction hyp. to $S \setminus \{q_0\} = \{q \in S \mid q \neq q_0\}$ since if has netts.

Induction step: S has not elements
Pick any
$$q_0 \in S$$
. So can apply induction hyp.
to $S \setminus \{q_0\}_{=}^{\infty} = \{q \in S \mid q \neq q_0\}$ since if has n etts.

$$r_{q,q'}^{S} = r_{q,q'}^{S \setminus \{q_b\}} \dots$$

Induction step: Shas not elements Pick any $q_0 \in S$. So can apply induction hyp. to $S \setminus \{q_0\}_{\sigma} = \{q \in S \mid q \neq q_0\}$ since if has netts.

Induction step: Shas not elements Pick any $q_0 \in S$. So can apply induction hyp. to $S \setminus \{q_0\}_{\sigma} = \{q \in S \mid q \neq q_0\}$ since if has netts.

Induction step: Shas not elements Pick any $q_0 \in S$. So can apply induction hyp. to $S \setminus \{q_0\}_{\sigma} = \{q \in S \mid q \neq q_0\}$ since if has netts.

Induction step: Shas not elements Pick any $q_0 \in S$. So can apply induction hyp. to $S \setminus \{q_0\}_{\sigma} = \{q \in S \mid q \neq q_0\}$ since if has netts.

By direct inspection we have:

(we don't need the unfilled entries in the tables)

Example p87 Want r[0,1,2} Remore 1 from (0,1,2) $r_{0,0}^{(0,1,2)} \triangleq r_{0,0}^{(0,2)} [r_{0,2}^{(0,2)} (r_{1,1}^{(0,2)}) r_{1,0}^{(0,2)}]$ CAX CAN

Example p87 Want r[0,1,2]

 $r_{0,0}^{(0,1,2)} = \alpha^{*} | \alpha^{*} b (r_{1,1}^{(0,1,3)} r_{1,0}^{(0,1)})$

 $r_{11}^{(0,2)} \triangleq r_{11}^{(0)} | r_{12}^{(0)} (r_{212}^{(0)}) * r_{211}^{(0)}$ $= \varepsilon | \alpha (\varepsilon)^* a^* b$ $\mathcal{E} = \mathcal{E} | a a^* b$ equivalence: $r = S \stackrel{\Delta}{=} l(r) = l(s)$

Example p87 Want r[0,1,2)

 $\gamma_{0,0}^{(0,1,2)} = \alpha^{*} | \alpha^{*} b (\epsilon | \alpha \alpha^{*} b)^{*} \gamma_{1,0}^{(0,2)}$

 $r_{10}^{(0,2)} \triangleq r_{10}^{(0)} | r_{12}^{(0)} (r_{212}^{(0)}) * r_{20}^{(0)}$ $= \emptyset | a (\varepsilon)^* aa^*$ $= aaa^*$

Example p87 Want r[0,1,2}

 $r_{0,0}^{(0),(2)} = \alpha^{*} | \alpha^{*}b (\varepsilon | \alpha \alpha^{*}b)^{*} \alpha \alpha \alpha^{*}$

Some questions

- (a) Is there an algorithm which, given a string *u* and a regular expression *r*, computes whether or not *u* matches *r*?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
- (c) Is there an algorithm which, given two regular expressions *r* and *s*, computes whether or not they are equivalent, in the sense that *L(r)* and *L(s)* are equal sets?
- (d) Is every language (subset of Σ^*) of the form L(r) for some r?

Not(M)

Given DFA $M = (Q, \Sigma, \delta, s, F)$, then Not(M) is the DFA with

- set of states = Q
- input alphabet = Σ
- next-state function $= \delta$
- start state = s
- accepting states = $\{q \in Q \mid q \notin F\}$.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a *deterministic* finite automaton, then u is accepted by Not(M) iff it is not accepted by M:

 $L(Not(M)) = \{ u \in \Sigma^* \mid u \notin L(M) \}$

[p90] Given reg. exp. r Can construct reg. exp. ~r such that $\lfloor (nr) = \{u \in \mathbb{Z} \mid n \notin L(r)\}$

[
$$p90$$
]
Given reg. exp. r
Can construct reg. exp. ~r
such that $L(-r) = \{u \in \mathbb{Z} \mid u \notin L(r)\}$

Kleone (a) $r \longrightarrow M$ L(M) = L(r)

[p90]
Given reg. exp. r
Can construct reg. exp. ~r
such that
$$L(-r) = \{u \in \mathbb{Z} \mid u \notin L(r)\}$$

Kleone (a) $r \longrightarrow M$ Kleene (b) $r \longrightarrow M$ Not (M) $\longrightarrow r$ L(M) = L(r) L(-r) = L(Not(M))

$$\begin{bmatrix} p \ 90 \end{bmatrix}$$
Given reg. exp. r
Can construct reg. exp. ~r
such that $\lfloor (-r) = \{u \in \mathbb{Z}^{k} | u \notin L(r)\}$
Kleene (a) Kleene (b)
 $r \longrightarrow M$ Not (M) ~~ ~r
 $L(M) = L(r)$ $L(-r) = L(Not(M))$
so: $L(-r) = L(Not(M)) = \mathbb{Z}^{k} \setminus L(M) = \mathbb{Z}^{k} \setminus L(r)$

Regular languages are closed under intersection

Theorem. If L_1 and L_2 are a regular languages over an alphabet Σ , then their intersection $L_1 \cap L_2 = \{ u \in \Sigma^* \mid u \in L_1 \& u \in L_2 \}$ is also regular.

Proof. Note that $L_1 \cap L_2 = \Sigma^* \setminus ((\Sigma^* \setminus L_1) \cup (\Sigma^* \setminus L_2))$

(*cf.* de Morgan's Law: $p \& q = \neg(\neg p \lor \neg q)$).

So if $L_1 = L(M_1)$ and $L_2 = L(M_2)$ for DFAs M_1 and M_2 , then $L_1 \cap L_2 = L(Not(PM))$ where M is the NFA^{ε} $Union(Not(M_1), Not(M_2))$.

[It is not hard to directly construct a DFA $And(M_1, M_2)$ from M_1 and M_2 such that $L(And(M_1, M_2)) = L(M_1) \cap L(M_2)$ – see Exercise 4.7.]

Regular languages are closed under intersection

Corollary: given regular expressions r_1 and r_2 , there is a regular expression, which we write as $r_1 \& r_2$, such that

a string u matches $r_1 \& r_2$ iff it matches both r_1 and r_2 .

Proof. By Kleene (a), $L(r_1)$ and $L(r_2)$ are regular languages and hence by the theorem, so is $L(r_1) \cap L(r_2)$. Then we can use Kleene (b) to construct a regular expression $r_1 \& r_2$ with $L(r_1 \& r_2) = L(r_1) \cap L(r_2)$.