
Kleene’s Theorem
Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

L6 79

Example of a regular language

Recall the example DFA we used earlier:

M ! q0
a

b

q1

b

a q2

b

a q3

a

b

In this case it’s not hard to see that L(M) = L(r) for

r = (a|b)∗aaa(a|b)∗

L6 80

Example

M ! 1

a0

ba

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗

L6 81

Example

M ! 1

a0

ba

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗

WRONG!
since baabaa ∈ L(M)
but baabaa ̸∈ L(a∗|a∗b(ab)∗aaa∗)

We need an algorithm for constructing a suitable r for each M
(plus a proof that it is correct).

L6 81

Lemma. Given an NFA M = (Q, Σ, δ, s, F), for each
subset S ⊆ Q and each pair of states q, q′ ∈ Q, there is a
regular expression rS

q,q′ satisfying

L(rS
q,q′) = {u ∈ Σ

∗ | q
u
−→∗ q′ in M with all inter-

mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
q1, . . . , qk say, then L(M) = L(r) with r ! r1| · · · |rk where

ri = rQ
s,qi (i = 1, . . . , k)

(in case k = 0, we take r to be the regular expression ∅).

L6 83

M ! 1

a0

ba

2

b

a

By direct inspection we have:

r
{0}
i,j 0 1 2

0
1 ∅ ε a
2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b
1
2

(we don’t need the unfilled entries in the tables)

L6 87

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

L6 89

Not(M)

Given DFA M = (Q, Σ, δ, s, F),
then Not(M) is the DFA with

! set of states = Q
! input alphabet = Σ

! next-state function = δ

! start state = s
! accepting states = {q ∈ Q | q ̸∈ F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u ∈ Σ
∗ | u ̸∈ L(M)}

L6 91

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ∗ \ ((Σ∗ \ L1)∪ (Σ∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2, then
L1 ∩ L2 = L(Not(PM)) where M is the NFAε

Union(Not(M1), Not(M2)). !

[It is not hard to directly construct a DFA And(M1, M2) from M1 and M2 such that
L(And(M1, M2)) = L(M1)∩ L(M2) – see Exercise 4.7.]

L6 92

Regular languages are
closed under intersection

Corollary: given regular expressions r1 and r2,there is a
regular expression, which we write as r1 & r2, such that

a string u matches r1 & r2 iff it matches both r1

and r2.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1)∩ L(r2). Then we can use
Kleene (b) to construct a regular expression r1 & r2 with
L(r1 & r2) = L(r1)∩ L(r2). !

L6 93

