L3

Abstract Syntax Trees



L1

An extensional view of what constitutes a formal language is that it is
completely determined by the set of ‘words in the dictionary':

Given an alphabet X, we call any subset of X* a (formal)
language over the alphabet X.

|

11



L3

Concrete syntax: strings of symbols

» possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

» or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =
if x > 100 then x — 10
else £ (£ ( x + 11 ) )
in £ 1 end

(x v a 1 u e i s 9 9 x)

25



Abstract syntax: finite rooted trees

» vertexes with n children are labelled by operators expecting n

arguments (n-ary operators) — in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

» label of the root gives the ‘outermost form’ of the whole phrase

let
E.g. for the ML expression / \

on Slide 25: fun @
f/X \if f/ \1
>/ \_\@
X/ \100 X/ \10 f \@

/ N\
£+
/ N\

X 11

L3 26



Regular expressions (concrete syntax)

over a given alphabet X. \C{E. 3, I % (, ) }
G
Let £/ be the ¥-element set {&,35,*} (assumed disjoint from X)

U= (xUux')*

axioms:

a € 0,

| r s r s r
rules: — —
(r) r|s rs r

(where a € X and r,s € U)




L3

Some derivations of regular expressions

(assuming a,b € X)

b a b
a b* ¢ a b ab
ab™ €|a b* | e ab™
€|ab™ €|ab™ €|ab®
b a b
b* ab
a (b*) | € a b (ab)
a(b™) €|a b* (ab)*
@) | () ) |e  ((ab))
el(a(b™)) (e|a)(b™) e[((ab)™)

28



Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X)) consists of

» binary operators Union and Concat
» unary operator Star

> nullary operators (constants) Null, Empty and Sym
(one for each a € X).

nnnnnnnnnnnnn AI//‘/'A*\\ ~ ~ +IAA ﬂlﬂﬁ

hlol A rlv-luv w1l W e W U]lluul\ VI\V

gowm

L3 29



Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X) as an ML datatype declaration:

datatype ‘aRE = Union of (aRE) * ("aRE)
Concat of ("aRE) * ('aRE)
Star of "aRE

Null

Empty

Sym of 'a

(the type ’aRE is parameterised by a type variable "a standing for the alphabet X.)

L3 30



Some abstract syntax trees of regular expressions
(assuming a,b € X)

1. 2. 3.
Union Concat Union
AN , /"
Null Concat Union Star |Null Star
Syni. Star |Null  Sym. Sy Concat
m ar |Nu m m onca
y a | y a y b / \
Sym, Sym_, ~ Sym,

(cf. examples on Slide 28)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Sym , Star(Sym,)))
2. Concat(Union(Null, Sym ), Star(Sym,))
3. Union(Null, Star(Concat(Sym , Sym,)))

L3 31



Relating concrete and abstract syntax

for regular expressions over an alphabet X, via an
inductively defined relation ~ between strings and trees:

a ~ Sym, € ~ Null @ ~ Empty
r~ R r~ R s~ S
(r) ~ R r|s ~ Union(R,S)
r~ R s~ S r~ R

rs ~ Concat(R,S) r* ~ Star(R)




For example:

e|(a(b®)) ~ Union(Null, Concat(Sym , Star(Sym,)))
e|ab™ ~ Union(Null, Concat(Sym , Star(Sym,)))
elab™ ~ Concat(Union(Null, Sym ), Star(Sym,))

Thus ~ is a ‘'many-many’ relation between strings and trees.

» Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying

r ~ parse(r).
» Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying

pp(R) ~ R. )

(See CST IB Compiler construction course.)
L3

33






= rabc  snds fr (ab)c
= {Q\\b\c N { (O\\EJ\C



Prom Wow oN WE L US

>

—

ANCRETE YNTAX 8F REMULAR.

EXPRESSIONVS O REFER TO THEIK
ABSTRACT SYNTAX, RELYING OV

SPER KTor  PReEcE penuce (KASSDUATVITY)
CONVVENT(ONS T AVoIn AMB 16 TY



Lop3y]

RQ@«AW xS ion O\Ssocjml—\\;ﬁy/
%C\W\Wmﬁm } ove, W assoviafive
AN\ own

Less impotamk $ham aperator preadonce
hecomse fira W\O.aw\{\/\j (Sewxavxhcg)c)f

C Hrave, 1S a«lwowy 0830 AF e




L3

Each regular expression r over an alphabet X determines a
language L(r) C L*. The strings u in L(r) are by
definition the ones that match r, where

>

>

u matches the regular expression a (where a € X) iff u = a
u matches the regular expression € iff u is the null string €
no string matches the regular expression @

u matches r|s iff it either matches 7, or it matches s

u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

u# matches r* iff either u = &, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

35



L3

Inductive detinition of matching

U = X* X {regular expressions over X}

abstract syntax trees

axlior.ns: (a, a) (8’ e) (8’ r*)
(u,r) (u,s)
(u,7|s) (u,7|s)
(v,7) (w,s) (u,7) (v, 1)
(ow, rs) (uv, r*)

(No axiom/rule involves the empty regular expression @ — why?)




Examples of matching

Assuming & = {a, b}, then:

> a|b is matched by each symbol in X

» b(a|b)* is matched by any string in X* that starts with a ‘b’

> ((a|b)(a|b))* is matched by any string of even length in X*
» (a|b)* (a|b)* is matched by any string in X*
» (&|la)(e|b)|bb is matched by just the strings €, a, b, ab, and bb

> @b|a is just matched by a

L3 37



L3

(a)

Is there an algorithm which, given a string # and a
regular expression r, computes whether or not u
matches r?

n formulating the definition of regular expressions,
nave we missed out some practically useful notions of
pattern?

s there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(7) and L(s) are
equal sets?

s every language (subset of X*) of the form L(r) for
some 17/

38



