Abstract Syntax Trees

Formal languages

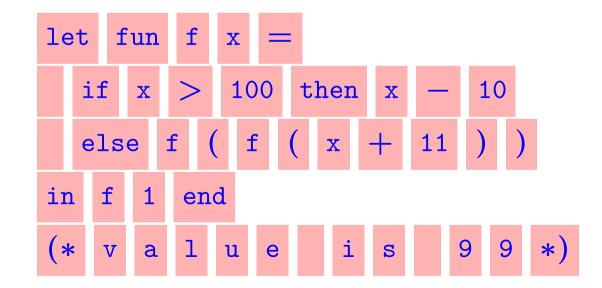
An extensional view of what constitutes a formal language is that it is completely determined by the set of 'words in the dictionary':

Given an alphabet Σ , we call any subset of Σ^* a (formal) **language** over the alphabet Σ .

Concrete syntax: strings of symbols

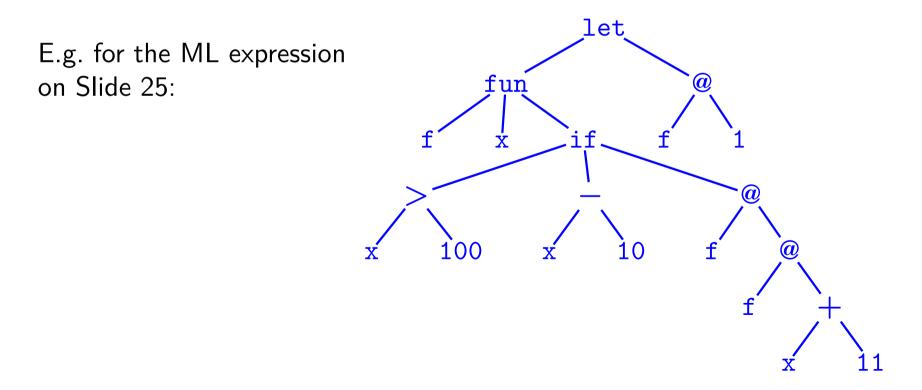
- possibly including symbols to disambiguate the semantics (brackets, white space, *etc*),
- ▶ or that have no semantic content (*e.g.* syntax for comments).

For example, an ML expression:



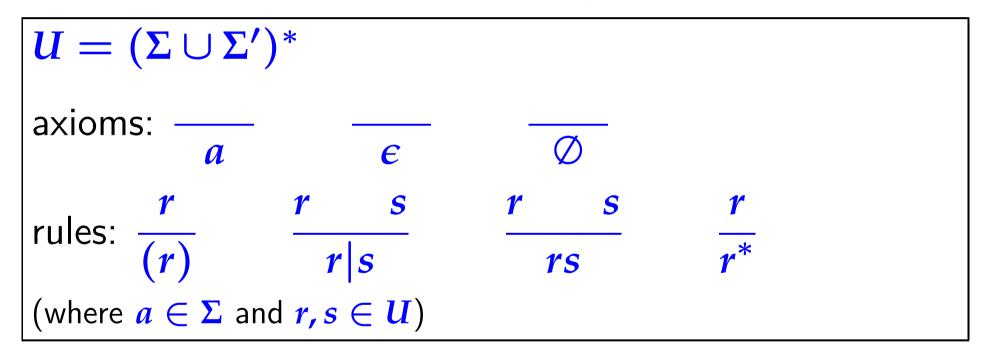
Abstract syntax: finite rooted trees

- vertexes with *n* children are labelled by operators expecting *n* arguments (*n*-ary operators) in particular leaves are labelled with 0-ary (nullary) operators (constants, variables, *etc*)
- Iabel of the root gives the 'outermost form' of the whole phrase



Regular expressions (concrete syntax)

over a given alphabet Σ . $\{\varepsilon, \emptyset, |, *, (,)\}$ Let Σ' be the 4-element set $\{\varepsilon, \emptyset, |, *\}$ (assumed disjoint from Σ)



Some derivations of regular expressions (assuming $a, b \in \Sigma$)

$\frac{a}{ab^{*}}$ $\frac{e}{ab^{*}}$	$\frac{\epsilon}{\epsilon} \frac{a}{a} \frac{b}{b^*}$ $\frac{\epsilon}{ab^*}$	$\frac{a b}{ab}$ $\frac{\epsilon ab^*}{\epsilon \mid ab^*}$	
$ \frac{b}{b^*} \\ \frac{a}{(b^*)} \\ \frac{a(b^*)}{a(b^*)} \\ \frac{\epsilon}{(a(b^*))} \\ \frac{\epsilon}{(a(b^*))} $	$ \frac{\begin{array}{ccc} \epsilon & a \\ \hline \epsilon & a \\ \hline (\epsilon & a) \\ \hline (\epsilon & a)(b^{*}) \end{array} $	$ \frac{a b}{ab} \\ \frac{ab}{(ab)} \\ \frac{(ab)^{*}}{(ab)^{*}} \\ \frac{\epsilon}{((ab)^{*})} \\ \frac{\epsilon ((ab)^{*})}{\epsilon ((ab)^{*})} $	

Regular expressions (abstract syntax)

The 'signature' for regular expression abstract syntax trees (over an alphabet Σ) consists of

- binary operators Union and Concat
- unary operator Star
- nullary operators (constants) *Null*, *Empty* and *Sym_a* (one for each $a \in \Sigma$).

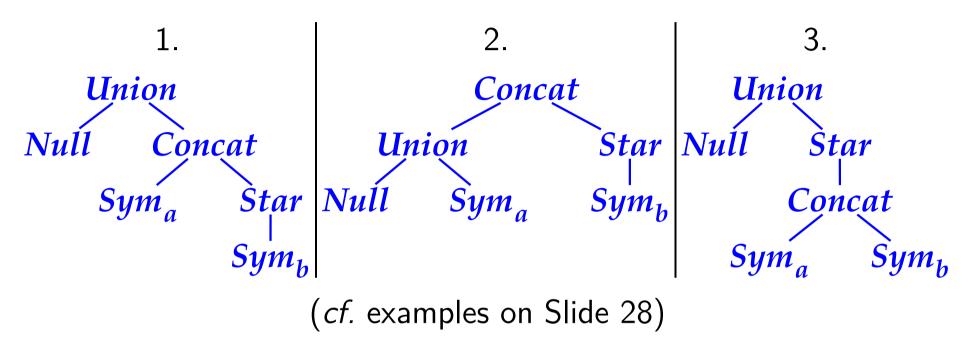
E.g. can parse concrete syntax $e|(a(b^*))|$ as the abstract syntax tree-(delefe)

Regular expressions (abstract syntax)

The 'signature' for regular expression abstract syntax trees (over an alphabet Σ) as an ML datatype declaration:

(the type $^{\prime}a RE$ is parameterised by a type variable $^{\prime}a$ standing for the alphabet Σ)

Some abstract syntax trees of regular expressions (assuming $a, b \in \Sigma$)

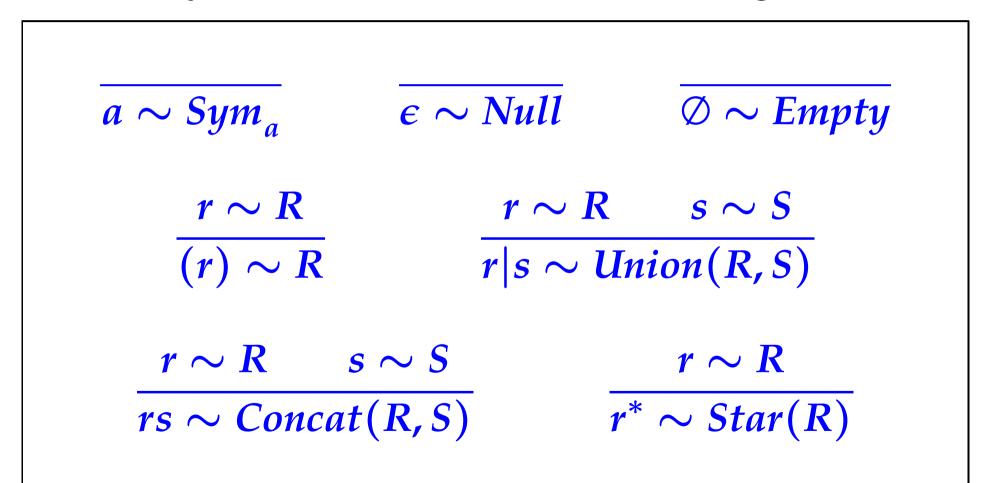


We will use a textual representation of trees, for example:

- 1. Union(Null, Concat(Sym_a, Star(Sym_b)))
- 2. Concat(Union(Null, Sym_a), Star(Sym_b))
- 3. *Union*(*Null*, *Star*(*Concat*(*Sym_a*, *Sym_b*)))

Relating concrete and abstract syntax

for regular expressions over an alphabet Σ , via an inductively defined relation \sim between strings and trees:



For example:

 $\begin{aligned} \epsilon | (a(b^*)) &\sim Union(Null, Concat(Sym_a, Star(Sym_b))) \\ \epsilon | ab^* &\sim Union(Null, Concat(Sym_a, Star(Sym_b))) \\ \epsilon | ab^* &\sim Concat(Union(Null, Sym_a), Star(Sym_b)) \end{aligned}$

Thus \sim is a 'many-many' relation between strings and trees.

- Parsing: algorithms for producing abstract syntax trees parse(r) from concrete syntax r, satisfying r ~ parse(r).
- Pretty printing: algorithms for producing concrete syntax pp(R) from abstract syntax trees R, satisfying pp(R) ~ R.

[p34] Regular expression associativity Concatenation } one left associative union

Egfabc [a]b[c	stands for		(ab)c		
Jalblc	N	ει	(a b		C

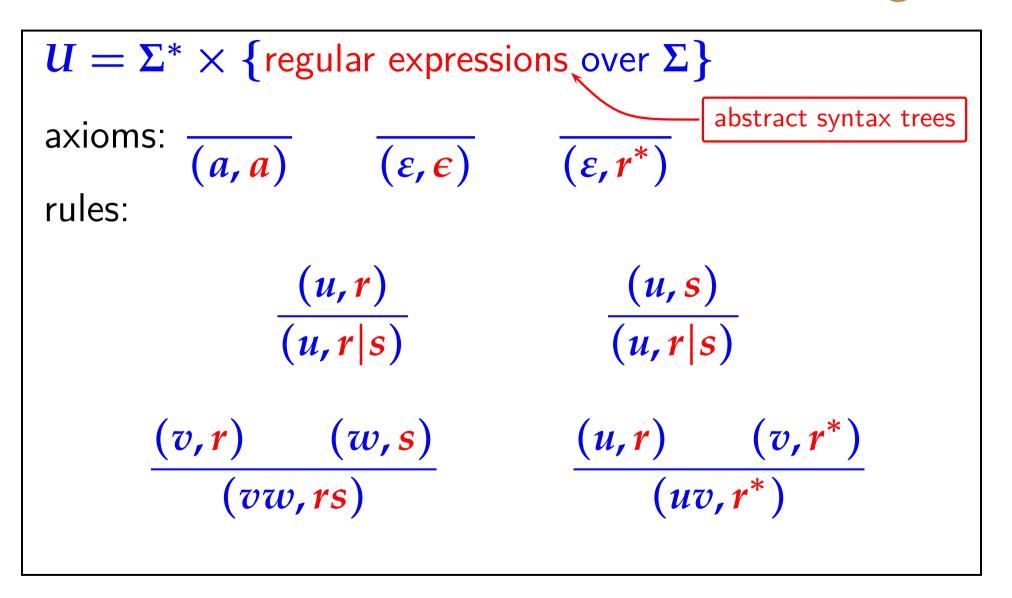
trom NOW ON WE'LL USE CONCRETE SYNTAX OF REGULAR EXPRESSIONS TO REFER TO THEIR ABSTRACT SYNTAX, RELYING ON OPERATOR PRECEDENCE (KASSOCIATIVITY) CONVENTIONS TO AVOID AMBIGUITY

Matching

Each regular expression r over an alphabet Σ determines a language $L(r) \subseteq \Sigma^*$. The strings u in L(r) are by definition the ones that match r, where

- *u* matches the regular expression *a* (where $a \in \Sigma$) iff u = a
- u matches the regular expression ϵ iff u is the null string ϵ
- ▶ no string matches the regular expression Ø
- *u* matches *r s* iff it either matches *r*, or it matches *s*
- u matches rs iff it can be expressed as the concatenation of two strings, u = vw, with v matching r and w matching s
- *u* matches *r*^{*} iff either *u* = ε, or *u* matches *r*, or *u* can be expressed as the concatenation of two or more strings, each of which matches *r*.

Inductive definition of matching



(No axiom/rule involves the empty regular expression \emptyset – why?)

Examples of matching

Assuming $\Sigma = \{a, b\}$, then:

- $a \mid b$ is matched by each symbol in Σ
- $b(a|b)^*$ is matched by any string in Σ^* that starts with a 'b'
- $((a|b)(a|b))^*$ is matched by any string of even length in Σ^*
- $(a|b)^*(a|b)^*$ is matched by any string in Σ^*
- $(\varepsilon | a)(\varepsilon | b) | bb$ is matched by just the strings ε , a, b, ab, and bb
- $\emptyset b | a$ is just matched by a

Some questions

- (a) Is there an algorithm which, given a string *u* and a regular expression *r*, computes whether or not *u* matches *r*?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
- (c) Is there an algorithm which, given two regular expressions *r* and *s*, computes whether or not they are equivalent, in the sense that *L(r)* and *L(s)* are equal sets?
- (d) Is every language (subset of Σ^*) of the form L(r) for some r?