Formal Languages and Automata

7 lectures for
University of Cambridge
2015 Computer Science Tripos
Part IA Discrete Mathematics
by Prof. Andrew Pitts

© 2014,2015 AM Pitts

Syllabus for this part of the course

- ► Inductive definitions using rules and proofs by rule induction.
- ► Abstract syntax trees.
- Regular expressions and pattern matching.
- ► Finite automata and regular languages: Kleene's theorem.
- ▶ The Pumping Lemma.

mathematics needed for computer science

L1

Common theme: mathematical techniques for defining formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

- Part IB Compiler Construction, Computation Theory, Complexity Theory, Semantics of Programming Languages
- Part II Natural Language Processing, Optimising Compilers, Denotational Semantics, Temporal Logic and Model Checking

N.B. we do <u>not</u> cover the important topic of <u>context-free grammars</u>, which prior to 2013/14 was part of the CST IA course *Regular Languages and Finite Automata* that has been subsumed into this course.

see course web page for relevant Tripos questions,

Formal Languages

L1

į

Alphabets

An **alphabet** is specified by giving a finite set, Σ , whose elements are called **symbols**. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:

- ► {0,1,2,3,4,5,6,7,8,9}, 10-element set of decimal digits.
- ▶ $\{a, b, c, ..., x, y, z\}$, 26-element set of lower-case characters of the English language.
- ▶ $\{S \mid S \subseteq \{0,1,2,3,4,5,6,7,8,9\}\}$, 2^{10} -element set of all subsets of the alphabet of decimal digits.

Non-example:

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$, set of all non-negative whole numbers is not an alphabet, because it is infinite.

Strings over an alphabet

A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered *n*-tuple of elements of Σ , written without punctuation.

 Σ^* denotes set of all strings over Σ of any finite length.

Examples:

notation for the

- string of length 0If $\Sigma = \{a, b, c\}$, then ε , a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- ▶ If $\Sigma = \{a\}$, then Σ^* contains ε , a, aa, aaa, aaaa, etc.

In general, a^n denotes the string of length n just containing a symbols

Strings over an alphabet

A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered n-tuple of elements of Σ , written without punctuation.

 Σ^* denotes set of all strings over Σ of any finite length.

Examples:

- ▶ If $\Sigma = \{a, b, c\}$, then ε , a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- ▶ If $\Sigma = \{a\}$, then Σ^* contains ε , a, aa, aaa, aaaa, etc.
- ▶ If $\Sigma = \emptyset$ (the empty set), then what is Σ^* ?

L1

Strings over an alphabet

A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered n-tuple of elements of Σ , written without punctuation.

 Σ^* denotes set of all strings over Σ of any finite length.

Examples:

- ▶ If $\Sigma = \{a, b, c\}$, then ε , a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- ▶ If $\Sigma = \{a\}$, then Σ^* contains ε , a, aa, aaa, aaaa, etc.
- If $\Sigma = \emptyset$ (the empty set), then $\Sigma^* = \{\varepsilon\}$.

L1

Concatenation of strings

The **concatenation** of two strings u and v is the string uv obtained by joining the strings end-to-end. This generalises to the concatenation of three or more strings.

Examples:

```
If \Sigma = \{a, b, c, ..., z\} and u, v, w \in \Sigma^* are u = ab, v = ra and w = cad, then
```

```
vu = raab
uu = abab
wv = cadra
uvwuv = abracadabra
```

NB

Concatenation of strings

The **concatenation** of two strings u and v is the string uv obtained by joining the strings end-to-end. This generalises to the concatenation of three or more strings.

Examples:

If $\Sigma=\{a,b,c,\ldots,z\}$ and $u,v,w\in\Sigma^*$ are $u=ab,\,v=ra$ and w=cad, then

$$egin{aligned} vu &= raab \ uu &= abab \ wv &= cadra \ uvwuv &= abracadabra \end{aligned}$$

NB (uv)
$$w = uvw = u(vw)$$

 $u = u = \varepsilon u$ (any u_1v_1w)

Formal languages

An extensional view of what constitutes a formal language is that it is completely determined by the set of 'words in the dictionary':

Given an alphabet Σ , we call any subset of Σ^* a (formal) language over the alphabet Σ .

We will use inductive definitions to describe languages in terms of grammatical rules for generating subsets of Σ^* .

Inductive Definitions

Axioms and rules

for inductively defining a subset of a given set U

 \rightarrow axioms $\frac{}{a}$ are specified by giving an element a of U

rules $\frac{h_1 \ h_2 \ \cdots \ h_n}{c}$

are specified by giving a finite subset $\{h_1, h_2, ..., h_n\}$ of U (the **hypotheses** of the rule) and an element c of U (the **conclusion** of the rule)

Derivations

Given a set of axioms and rules for inductively defining a subset of a given set U, a **derivation** (or proof) that a particular element $u \in U$ is in the subset is by definition

a finite rooted tree with vertexes labelled by elements of \boldsymbol{U} and such that:

- ▶ the root of the tree is u (the conclusion of the whole derivation),
- each vertex of the tree is the conclusion of a rule whose hypotheses are the children of the node,
- each leaf of the tree is an axiom.

Example

```
U = \{a,b\}^*
axiom: \frac{}{\varepsilon}
rules: \frac{u}{aub} \frac{u}{bua} \frac{u}{uv} (for all u,v \in U)
```

Example derivations:

$$\begin{array}{c|cc}
\varepsilon & ab & \varepsilon & \varepsilon \\
\hline
ab & aabb & baab \\
\hline
abaabb & abaabb
\end{array}$$

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of U inductively defined by the axioms and rules consists of all and only the elements $u \in U$ for which there is a derivation with conclusion u.

For example, for the axioms and rules on Slide 15

- ► *abaabb* is in the subset they inductively define (as witnessed by either derivation on that slide)
- ▶ abaab is not in that subset (there is no derivation with that conclusion why?)

(In fact $u \in \{a, b\}^*$ is in the subset iff it contains the same number of a and b symbols.)

Example: transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **transitive closure** R^+ is the smallest (for subset inclusion) binary relation on X which contains R and which is **transitive** $(\forall x, y, z \in X. (x, y) \in R^+ \& (y, z) \in R^+ \Rightarrow (x, z) \in R^+).$

$$R^+$$
 is equal to the subset of $X \times X$ inductively defined by axioms $\overline{(x,y)}$ (for all $(x,y) \in R$)

rules
$$\frac{(x,y) \quad (y,z)}{(x,z)}$$
 (for all $x,y,z \in X$)

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** $(\forall x \in X. (x,x) \in R^*)$.

 \mathbb{R}^* is equal to the subset of $X \times X$ inductively defined by

axioms
$$\overline{(x,y)}$$
 (for all $(x,y) \in R$) $\overline{(x,x)}$ (for all $x \in X$) rules $\overline{(x,y)}$ $\overline{(y,z)}$ (for all $x,y,z \in X$)

L2 19

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** $(\forall x \in X. (x,x) \in R^*)$.

$$R^*$$
 is equal to the subset of $X \times X$ inductively defined by axioms $\overline{(x,y)}$ (for all $(x,y) \in R$) $\overline{(x,x)}$ (for all $x \in X$) rules $\overline{(x,y)}$ $\overline{(y,z)}$ (for all $x,y,z \in X$)

.2

we can use Rule Induction (Slide 20) to prove this

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

Given axioms and rules for inductively defining a subset of a set U, we say that a subset $S \subseteq U$ is closed under the axioms and rules if

- for every axiom $\frac{a}{a}$, it is the case that $a \in S$
- ▶ for every rule $\frac{h_1 \ h_2 \cdots h_n}{c}$, if $h_1, h_2, \dots, h_n \in S$, then $c \in S$.

L2 20

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

We use the theorem as method of proof: given a property P(u) of elements of U, to prove $\forall u \in I$. P(u) it suffices to show

- ▶ base cases: P(a) holds for each axiom $\frac{1}{a}$
- ▶ induction steps: $P(h_1) \& P(h_2) \& \cdots \& P(h_n) \Rightarrow P(c)$ holds for each rule $\frac{h_1 \ h_2 \ \cdots \ h_n}{c}$

(To see this, apply the theorem with $S = \{u \in U \mid P(u)\}$.)

2

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** $(\forall x \in X. (x,x) \in R^*)$.

R* is equal to the subset of
$$X \times X$$
 inductively defined by axioms
$$(x,y) \quad (\text{for all } (x,y) \in R) \quad \overline{(x,x)} \quad (\text{for all } x \in X)$$
 rules
$$(x,y) \quad (y,z) \quad (\text{for all } x,y,z \in X)$$
 we can use Rule Induction (Slide 20) to prove this, since
$$S \subseteq X \times X \text{ being closed under the axioms \& rules is the same }$$

as it containing \mathbf{R} , being reflexive and being transitive.

L2