
Workouts

for Part IA CST 2014/15

Discrete Mathematics

<cl.cam.ac.uk/teaching/1415/DiscMath>

Prof Marcelo Fiore

Marcelo.Fiore@cl.cam.ac.uk

— 470 —



Workout 1

from page 47

Prove or disprove the following statements.

1. The product of two even natural numbers is even.

2. The product of an even and an odd natural number is odd.

3. If x > 3 and y < 2 then x2 − 2 · y > 5.
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Workout 2

from page 54

Prove or disprove the following statements.

1. Suppose n is a natural number larger than 2, and n is not a

prime number. Then 2 · n+ 13 is not a prime number.

2. If x2 + y = 13 and y 6= 4 then x 6= 3.
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Workout 3

from page 65

1. Characterise those integers d and n such that:

(a) 0 | n,

(b) d | 0.

2. Write an ML function

divides: int * int -> bool

such that, for all integers m and n, divides(m,n) = true iff

m | n holds.

— 473 —



You may use div, but note that you cannot just define

divides as

fn (m,n) => ( n div m ) = 0 .

3. Let n be a natural number. Show that n | n.
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Workout 4

from page 68

1. Let i, j be integers and let m be a positive integer. Show that:

(a) i ≡ i (mod m)

(b) i ≡ j (mod m) =⇒ j ≡ i (mod m)

(c) i ≡ j (mod m) =⇒ i2 ≡ j2 (mod m)

2. Find integers i, j, natural numbers k, l, and a positive integer

m for which both i ≡ j (mod m) and k ≡ l (mod m) hold while

ik ≡ jl (mod m) does not.
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3. Find an integer i, natural numbers k, l, and a positive integer m

for which k ≡ l (mod m) holds while ik ≡ il (mod m) does not.

4. Formalise and prove the following statement: A natural number

is a multiple of 3 iff so is the number obtained by summing its

digits. Find analogous criteria for multiples of 9 and for multiples

of 11.

— 476 —



Workout 5

from page 70

1. Prove or disprove that: For an integer n, n2 is even if and only if

n is even.

2. Show that for all integers d and n the following statements are

equivalent:

(a) d | n.

(b) −d | n.

(c) d | −n.

(d) −d | −n.
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3. Let k, m, n be integers with k positive. Show that:

(k ·m) | (k · n) ⇐⇒ m | n .
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Workout 6

from page 79

1. Prove or disprove the following statements.

(a) For real numbers a and b, if 0 < a < b then a2 < b2.

(b) For real numbers a, b, and c with a > b, if a · c ≤ b · c then

c ≥ 0.

2. Prove or disprove that: For all natural numbers n, 2 | 2n.
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3. Let P(m) be a statement for m ranging over the natural

numbers, and consider the derived statement

P#(m) = ∀ natural k. 0 ≤ k ≤ m =⇒ P(k)

again for m ranging over the natural numbers.

Prove the following equivalences:

◮ P#(0) ⇐⇒ P(0)

◮
(

P#(n) =⇒ P#(n+ 1)
)

⇐⇒
(

P#(n) =⇒ P(n+ 1)
)

◮ ∀ natural number m.P#(m)
⇐⇒

∀ natural number m.P(m)
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Workout 7

from page 89

1. Taking inspiration from the proof of Theorem 20 (on page 87),

or otherwise, prove that for all integers n,

30 | n ⇐⇒
(

2 | n ∧ 3 | n ∧ 5 | n
)

.

Can you spot a pattern here? Can you formalise it, test it, and

prove it?

2. Find a counterexample to the statement: For all positive integers

k, m, n, if m | k ∧ n | k then (m · n) | k.
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3. Show that for all integers l, m, n,

l | m ∧ m | n =⇒ l | n .

4. Prove that for all integers d, k, l, m, n,

(a) d | m ∧ d | n =⇒ d | (m+ n),

(b) d | m =⇒ d | k ·m,

(c) d | m ∧ d | n =⇒ d | (k ·m+ l · n).

5. Prove that for all integers i, j, k, l, m, n with m positive and n

nonnegative,

(a) i ≡ j (mod m) ∧ j ≡ k (mod m) =⇒ i ≡ k (mod m)

(b) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i+ k ≡ j+ l (mod m)

(c) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i · k ≡ j · l (mod m)

(d) i ≡ j (mod m) =⇒ in ≡ jn (mod m)
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Workout 8

from page 104

Prove or disprove the following statements.

1. For every real number x, if x > 0 then there is a real number y

such that y(y+ 1) = x.

2. For all real numbers x and y there is a real number z such that

x+ z = y− z.

3. For all integers x and y there is an integer z such that x + z =

y− z.

4. For every real number x, if x 6= 2 then there is a unique real

number y such that 2y/(y+ 1) = x.
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5. The addition of two rational numbers is a rational number.

6. Prove that for all natural numbers p, p1, p2,

(a) min(p, p1 + p2) = min
(

p,min(p, p1) +min(p, p2)
)

, and

(b) min(p, p1 + p2) = min(p, p1) +min
(

p−min(p, p1), p2

)

.

7. Let P(x) be a predicate on a variable x and let Q be a

statement not mentioning x.a

Show that the equivalence
(

(

∃x. P(x)
)

=⇒ Q
)

⇐⇒
(

∀x.
(

P(x) =⇒ Q
)

)

holds.

aFor instance, P(x) could be the predicate “programmer x found a software

bug” and Q could be the statement “all the code has to be rewritten”.
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Workout 9

from page 106

1. Prove that for every real number x there is a unique real number

y such that x2 · y = x− y.

2. Prove that there is a unique real number x such that for every

real number y, x · y+ x− 4 = 4y.

3. Prove that for every real number x, if x 6= 0 and x 6= 1 then there

is a unique real number y such that y/x = y− x.

4. Prove that for every real number x, if x 6= 0 then there is a unique

real number y such that for every real number z, z · y = z/x.
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Workout 10

from page 113

1. Prove or disprove that: For all integers m and n, if m · n is

even, then either m is even or n is even.

2. If every pair of people in a group has met, then we will call the

group a club. If every pair of people in a group has not met,

then we will call it a group of strangers.

Prove that every collection of 6 people includes a club of 3

people or a group of 3 strangers.
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3. Show that for all integers m and n,

m | n ∧ n | m =⇒ m = n ∨ m = −n .

4. Prove or disprove that: For all positive integers k, m, n,

if k | (m · n) then k | m or k | n .

5. Prove that for all integers n, there exist natural numbers i and j

such that n = i2 − j2 iff either n ≡ 0 (mod 4), or n ≡ 1 (mod 4),

or n ≡ 3 (mod 4). [Hint: Recall Proposition 22 (on page 96).]

6. Prove that n3 ≡ n (mod 6) for all integers n.
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Workout 11

from page 134

1. Search for “Fermat’s Little Theorem” in YouTube and watch a

video or two about it.

2. Let i and n be positive integers and let p be a prime. Show that

if n ≡ 1 (mod p−1) then in ≡ i (mod p) for all i not multiple of p.
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3. (a) Taking inspiration from the proof of Theorem 20 on

page 87, or otherwise, prove that for all integers n,

42 | n ⇐⇒
(

2 | n ∧ 3 | n ∧ 7 | n
)

.

Can you spot a pattern here? Can you formalise it,

test it, and prove it?

(b) Prove that n7 ≡ n (mod 42) for all integers n.

4. Show that 66013 is not prime.
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Workout 12

from page 137

Justify the boolean equivalences:

¬
(

P =⇒ Q
)

⇐⇒ P ∧ ¬Q

¬
(

P ⇐⇒ Q
)

⇐⇒ P ⇐⇒ ¬Q

¬
(

P ∧ Q
)

⇐⇒ (¬P) ∨ (¬Q)

¬
(

P ∨ Q
)

⇐⇒ (¬P) ∧ (¬Q)

¬
(

¬P
)

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)

(P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P)

(false =⇒ P) ⇐⇒ true
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(

P1 =⇒ (P2 =⇒ Q)
)

⇐⇒
(

(P1 ∧ P2) =⇒ Q
)

(P ⇐⇒ Q) ⇐⇒
(

(P =⇒ Q) ∧ (Q =⇒ P)
)

by means of truth tables, where the truth tables for the boolean

statements are:

P Q P =⇒ Q P ⇐⇒ Q P ∧ Q P ∨ Q ¬P

true true true true true true false

false true true false false true true

true false false false false true

false false true true false false
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Workout 13

from page 150

Give three justifications for the following scratch work:

Before using the strategy

Assumptions Goal

P =⇒ Q
...

After using the strategy

Assumptions Goal

contradiction
...

P , ¬Q
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Workout 14

from page 178

1. Show that for every integer n, the remainder when n2 is divided

by 4 is either 0 or 1.

2. Write the division algorithm in imperative code.

3. What is rem
(

2478, 79
)

?

4. Prove that for all natural numbers k, l, and positive integer m,

(a) rem(k+ l,m) = rem
(

k+ rem(l,m),m
)

, and

(b) rem(k · l,m) = rem
(

k · rem(l,m),m
)

.
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5. Prove the following Remainder-Linearity Property of the

Division Algorithm: for all positive integers k, m, n,

divalg(k ·m,k · n) =
(

quo(m,n), k · rem(m,n)
)

.

6. Prove the General Division Theorem for integers:

For every integer m and non-zero integer n, there exists

a unique pair of integers q and r such that 0 ≤ r < |n|,

and m = q · n+ r.

7. Prove that for all positive integers m and n,

(a) n < m =⇒ quo(n,m) = 0 ∧ rem(n,m) = n, and

(b) n ≤ m =⇒ rem(m,n) < m/2.
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Workout 15

from page 185

1. Calculate that 2153 ≡ 53 (mod 153).

Btw, at first sight this seems to contradict Fermat’s Little

Theorem, why isn’t this the case though?
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2. Let m be a positive integer.

(a) Prove the associativity of the addition and multiplication

operations in Zm; that is, that for all i, j, k in Zm,

(i+m j) +m k = i+m (j+m k) , and

(i ·m j) ·m k = i ·m (j ·m k) .

[Hint: Use Workout 14.4 on page 493.]

(b) Prove that the additive inverse of k in Zm is [−k]m.

3. Calculate the addition and multiplication tables, and the

additive and multiplicative inverses tables for Z3, Z6, and Z7.

Can you spot any patterns?
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Workout 16

from page 222

1. Write Euclid’s Algorithm in imperative code.

2. Calculate the set CD(666, 330) of common divisors of 666 and

330.

3. Find the gcd of 21212121 and 12121212.
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4. Show that for all integers k, the conjunction of the two

statements

◮ k | m ∧ k | n, and

◮ for all positive integers d, d | m ∧ d | n =⇒ d | k

is equivalent to the single statement

for all positive integers d, d | m ∧ d | n ⇐⇒ d | k .

5. Prove that for all positive integers m and n,

gcd(m,n) = m ⇐⇒ m | n .

6. Prove that, for all positive integers m and n, and integers k and

l,

gcd(m,n) | (k ·m+ l · n) .
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7. Prove that, for all positive integers m and n, there exist integers

k and l such that k ·m+ l · n = 1 iff gcd(m,n) = 1.

8. For all positive integers m and n, define

m ′ = m
gcd(m,n)

and n ′ = n
gcd(m,n)

.

Prove that

(a) m ′ and n ′ are positive integers, and that

(b) gcd(m ′, n ′) = 1.

Conclude that the representation in lowest terms of the fraction

m/n is m ′/n ′.
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9. Use the Key Lemma 56 (on page 196) to show the

correctness of the following algorithm

fun gcd0( m , n )

= if m = n then m

else

let

val p = min(m,n) ; val q = max(m,n)

in

gcd0( p , q - p )

end

for computing the gcd of two positive integers. Give an analysis

of the time complexity.
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10. Prove that for all positive integers a and b,

gcd
(

13 · a+ 8 · b , 5 · a+ 3 · b
)

= gcd(a, b) .
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Workout 17

from page 230

1. Revisit Theorem 20 (on page 87), Workout 7.1 (on page 481),

and Workout 11.3a (on page 489) using Euclid’s Theorem

(Corollary 64 on page 64) to give new proofs for them. Can you

now state and prove a general result from which these follow?

2. (a) Prove that if an integer n is not divisible by 3, then

n2 ≡ 1 (mod 3).

(b) Show that if an integer n is odd, then n2 ≡ 1 (mod 8)

(c) Conclude that if p is a prime greater than 3, then p2 − 1 is

divisible by 24.
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3. Prove that n13 ≡ n (mod 10) for all integers n.

4. Write an ML function to calculate the multiplicative inverse of a

number in Zp to a given prime modular base p.
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Workout 18

from page 244

1. Write the Extended Euclid’s Algorithm in imperative code.

2. Find integers x and y such that x · 30+ y · 22 = gcd(30, 22).

Now find integers x ′ and y ′ with 0 ≤ y ′ < 30 such that

x ′ · 30+ y ′ · 22 = gcd(30, 22).

3. Prove Theorem 69 (on page 235).

4. Let m and n be positive integers with gcd(m,n) = 1. Prove that

for every natural number k,

m | k ∧ n | k =⇒ (m · n) | k .
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5. Prove that for all positive integers l, m, and n, if

gcd(l,m · n) = 1 then gcd(l,m) = 1 and gcd(l, n) = 1.

6. Prove that for all integers n and primes p, if n2 ≡ 1 (mod p)

then either n ≡ 1 (mod p) or n ≡ −1 (mod p).

7. Solve the following congruences:

(a) 77 · x ≡ 11 (mod 40)

(b) 12 · y ≡ 30 (mod 54)

(c)





z ≡ 13 (mod 21)

3 · z ≡ 2 (mod 17)

8. What is the multiplicative inverse of: 2 in Z7, 7 in Z40, and 13 in

Z23?
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9. Write an ML function to calculate the multiplicative inverse,

whenever it exists, of a number in Zm to a given modular

base m. Test your answers to the previous item.

10. Prove that 2212001 has a multiplicative inverse in Z175.

11. (a) Show that the gcd of two linear combinations of positive

integers m and n is itself a linear combination of m and n.

(b) Argue that the output
(

(s, t), r
)

of calling egcditer with input
(

(

(s1, t1) , s1 ·m+ t1 · n
)

,
(

(s2, t2) , s2 ·m+ t2 · n
)

)

is such that

gcd
(

s1 ·m+ t1 ·n , s2 ·m+ t2 ·n
)

= r = s ·m+ t ·n .
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Workout 19

from page 249

1. Search for “Diffie-Hellman Key Exchange” in YouTube and

watch a video or two about it.
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Workout 20

from page 268

1. State the Principle of Induction for the ML

datatype

N = zero | succ of N

2. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·∑m−1
i=0 2i·n = 2m·n − 1 .

(b) Suppose k is a positive integer that is not prime. Then

2k − 1 is not prime.
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3. Prove that

∀n ∈ N. ∀ x ∈ R. x ≥ −1 =⇒ (1+ x)n ≥ 1+ n · x .

4. Recall that the Fibonacci numbers Fn for n ranging over the

natural numbers are defined by F0 = F1 = 1 and

Fn = Fn−1 + Fn−2 for n ≥ 2.

(a) Prove that for all natural numbers n,

Fn · Fn+2 = Fn+1
2 + (−1)n .

(b) Prove that for all natural numbers k and n,

Fn+k+1 = Fk+1 · Fn+1 + Fk · Fn .

(c) Deduce that Fn | Fℓ·n for all positive integers ℓ.

(d) Prove that gcd(Fn+1, Fn) terminates with output 1 in

n+ 1 steps for all natural numbers n.
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(e) Deduce also that, for natural numbers n ≤ m,

gcd(Fm, Fn) = gcd(Fm−n, Fn)

and hence that, for all positive integers m and n,

gcd(Fm, Fn) = Fgcd(m,n) .

(f) Show that for all positive integers m and n, Fm · Fn | Fm·n if

gcd(m,n) = 1.

(g) Conjecture and prove a theorem concerning the sum∑n
i=0 F2·i for n any natural number.

(h) Conjecture and prove a theorem concerning the sum∑n
i=0 F2·i+1 for n any natural number.
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Workout 21

from page 292

1. Equation (⋆) on page 291 gives a Transfer Principle of additive

properties of min as multiplicative properties of gcd. To see this,

prove that for all positive integers m, m1, m2,

(a) gcd(m,m1 ·m2) = gcd
(

m, gcd(m,m1) · gcd(m,m2)
)

, and

(b) gcd(m,m1 ·m2) = gcd(m,m1) · gcd
(

m
gcd(m,m1)

,m2

)

.

[Hint: Use Workout 8.6 on page 484.]
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2. Give two proofs of the following proposition

For all positive integers m, n, p, q such that

gcd(m,n) = gcd(p, q) = 1, if m · q = p · n then

m = p and n = q.

respectively using Theorem 63 and Equation (⋆) on page 291.
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Workout 22

from page 305

1. Write an ML function

subset: ’’a list * ’’a list -> bool

such that for every list xs representing a finite set X and every

list ys representing a finite set Y, subset(xs,ys)=true iff X ⊆ Y.
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2. Prove the following statements:

(a) Reflexivity.

∀ sets A.A ⊆ A.

(b) Transitivity.

∀ sets A,B,C. (A ⊆ B ∧ B ⊆ C) =⇒ A ⊆ C.

(c) Antisymmetry.

∀ sets A,B. (A ⊆ B ∧ B ⊆ A) ⇐⇒ A = B.
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Workout 23

from page 310

Prove the following statements:

1. ∀ set S. ∅ ⊆ S.

2. ∀ set S. (∀x. x 6∈ S) ⇐⇒ S = ∅.
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Workout 24

from page 326

1. Referring to the definitions on pages 193 and 194, show that

CD(m,n) = D(m) ∩D(n).

2. Find the union and intersection of:

(a) {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7};

(b) {x ∈ R | x > 7} and {x ∈ N | x > 5}.
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3. Write ML functions

union: ’a list * ’a list -> ’a list

intersection: ’’a list * ’’a list -> ’a list

such that for every list xs representing a finite set X and every

list ys representing a finite set Y, the lists union(xs,ys) and

intersection(xs,ys) respectively represent the finite sets X∪Y
and X ∩ Y.

Use these functions to check your answer to the first part of the

previous item.

4. Give an explicit description of P
(

P(P(∅))
)

, and draw its Hasse

diagram.
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5. Write an ML function

powerset: ’a list -> ’a list list

such that for every list as representing a finite set A, the list of

lists powerset(as) represents the finite set P(A).

6. Establish the laws of the powerset Boolean algebra.

7. Either prove or disprove that, for all sets A and B,

(a) A ⊆ B =⇒ P(A) ⊆ P(B),

(b) P(A ∪ B) ⊆ P(A) ∪ P(B),

(c) P(A) ∪ P(B) ⊆ P(A ∪ B).

(d) P(A ∩ B) ⊆ P(A) ∩ P(B),

(e) P(A) ∩ P(B) ⊆ P(A ∩ B).
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8. Let U be a set. For all A,B ∈ P(U) prove that the following

statements are equivalent.

(a) A ∪ B = B.

(b) A ⊆ B.

(c) A ∩ B = A.

(d) Bc ⊆ Ac.

9. Let U be a set. For all A,B ∈ P(U) prove that

(a) Ac = B ⇐⇒ (A ∪ B = U ∧ A ∩ B = ∅),
(b) (Ac)c = A, and

(c) the De Morgan’s laws:

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc .
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10. Draw Venn diagrams for the following constructions on sets.

(a) Difference:

A \ B = { x ∈ A | x 6∈ B }

(b) Symmetric difference:

A △ B = (A \ B) ∪ (B \A)

11. Prove that for all sets A,B,C,

(a) A \ B = A \ (A ∩ B), and

(b) A \ B ⊆ C =⇒ A \ C ⊆ B.
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If you like this kind of stuff, push on.

12. Let U be a set. Prove that, for all A,B ∈ P(U),

(a) A ⊆ B =⇒
(

A \ B = ∅ ∧ A △ B = B \A
)

.

(b) A ∩ B = ∅ =⇒ A △ B = A ∪ B,

(c) (A △ B) ∩ (A ∩ B) = ∅ ∧ (A △ B) ∪ (A ∩ B) = A ∪ B,

and establish as corollaries that

(d) Ac = U △ A.

(e) A ∪ B = (A △ B) △ (A ∩ B),

thereby expressing complements and unions in terms of

symmetric difference and intersections.
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13. The purpose of this exercise is to show that, for a set U, the

structure
(

P(U), ∅,△, U,∩
)

is a commutative ring.

(a) Prove that (P(U), ∅,△) is a commutative group; that is, a

commutative monoid (refer to page 161) in which every

element has an inverse (refer to page 166).

(b) Prove that P(U) with additive structure (∅,△) and

multiplicative structure (U,∩) is a commutative semiring.
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Workout 25

from page 335

1. Find the product of {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7}.

2. Write an ML function

product: ’a list * ’b list -> ( ’a * ’b ) list

such that for every list as representing a finite set A and every

list bs representing a finite set B, the list of pairs

product(as,bs) represents the product set A× B.

Use this function to check your answer to the previous item.
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3. For sets A,B,C,D, either prove or disprove the following

statements.

(a) (A ⊆ B ∧ C ⊆ D) =⇒ A× C ⊆ B×D.

(b) (A ∪ C)× (B ∪D) ⊆ (A× B) ∪ (C×D).

(c) (A× B) ∪ (C×D) ⊆ (A ∪ C)× (B ∪D).

(d) A× (B ∪D) ⊆ (A× B) ∪ (A×D).

(e) (A× B) ∪ (A×D) ⊆ A× (B ∪D).

What happens with the above when A ∩ C = ∅ and/or

B ∩D = ∅?
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Workout 26

from page 347

1. Let I = {2, 3, 4, 5}, and for each i ∈ I let Ai = {i, i+ 1, i− 1, 2 · i}.
(a) List the elements of all the sets Ai for i ∈ I.

(b) Let
{
Ai | i ∈ I

}
stand for

{
A2, A3, A4, A5

}
.

Find
⋃

{Ai | i ∈ I} and
⋂

{Ai | i ∈ I}.
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2. Write ML functions

bigunion: ’a list list -> ’a list

bigintersection: ’a list list -> ’a list

such that for every list of lists as representing a finite set of

finite sets A, the lists bigunion(as) and bigintersection(as)

respectively represent the finite sets
⋃

X and
⋂

X.

Use these functions to check your answer to the previous item.

3. For F ⊆ P(A), let U =
{
X ⊆ A | ∀S ∈ F. S ⊆ X

}
⊆ P(A).

Prove that
⋃

F =
⋂

U.

Analogously, define L ⊆ P(A) such that
⋂

F =
⋃

L. Also

prove this statement.
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NB For intuition when tackling the following exercises it might

help considering the case of finite collections first.

4. Prove that, for all collections F, it holds that

∀ set U.
⋃

F ⊆ U ⇐⇒
(

∀X ∈ F. X ⊆ U
)

.

State and prove the analogous property for big intersections of

non-empty collections.

5. Prove that for all collections F1 and F2,
(
⋃

F1

)

∪
(
⋃

F2

)

=
⋃

(F1 ∪ F2) .

State and prove the analogous property for intersections of

non-empty collections.
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Workout 27

from page 354

1. Find the disjoint union of {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7}.

2. Let

datatype (’a,’b) sum = one of ’a | two of ’b .

Write an ML function

dunion: ’a list * ’b list -> (’a ,’b) sum list

such that for every list as representing a finite set A and every

list bs representing a finite set B, the list of tagged elements

dunion(as,bs) represents the disjoint union A ⊎ B.

Use this function to check your answer to the previous item.

— 528 —



3. Prove or disprove the following statements for all sets A, B, C,

D:

(a) (A ⊆ B ∧ C ⊆ D) =⇒ A ⊎ C ⊆ B ⊎D,

(b) (A ∪ B) ⊎ C ⊆ (A ⊎ C) ∪ (B ⊎ C),

(c) (A ⊎ C) ∪ (B ⊎ C) ⊆ (A ∪ B) ⊎ C,

(d) (A ∩ B) ⊎ C ⊆ (A ⊎ C) ∩ (B ⊎ C),

(e) (A ⊎ C) ∩ (B ⊎ C) ⊆ (A ∩ B) ⊎ C.

4. Give a proof of Workout 10.2 (on page 486) using the

Generalised Pigeonhole Principle (on page 353).
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Workout 28

from page 378

1. Let A = {1, 2, 3, 4} and B = {a, b, c, d}, and C = {x, y, z}. Let

R =
{
(1, a), (2, d), (3, a), (3, b), (3, d)

}
: A−→p B and

S =
{
(b, x), (b, x), (c, y), (d, z)

}
: B−→p C. What is their

composition S ◦ R : A−→p C?

2. Prove Theorem 101 (on page 362).
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3. For a relation R : A−→p B, let its opposite, or dual , Rop : B−→p A

be defined by

bRop a ⇐⇒ aRb .

For R, S : A−→p B, prove that

(a) R ⊆ S =⇒ Rop ⊆ Sop.

(b) (R ∩ S)op = Rop ∩ Sop.

(c) (R ∪ S)op = Rop ∪ Sop.

4. Show that in a directed graph on a finite set with cardinality n

there is a path between two nodes iff there is a path of length

n− 1.
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Workout 29

from page 383

1. For a relation R on a set A, prove that R is antisymmetric iff

R ∩ Rop ⊆ idA.

2. Let F ⊆ P(A× B) be a collection of relations from A to B.

Prove that,

(a) for all R : X−→p A,
(
⋃

F
)

◦ R =
⋃
{
S ◦ R | S ∈ F

}
: X−→p B ,

and that,

(b) for all R : B−→p Y,

R ◦
(
⋃

F
)

=
⋃
{
R ◦ S | S ∈ F

}
: A−→p Y .

What happens in the case of big intersections?
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3. For a relation R on a set A, let

TR =
{
Q ⊆ A×A | R ⊆ Q ∧ Q is transitive

}
.

For R◦+ = R ◦ R◦∗, prove that (i) R◦+ ∈ TR and (ii) R◦+ ⊆ ⋂

TR.

Hence, R◦+ =
⋂

TR.
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Workout 30

from page 394

1. Let A2 = {1, 2} and A3 = {a, b, c}. List the elements of the four

sets (Ai⇀⇀Aj) for i, j ∈ {2, 3}.

2. Prove that a relation R : A−→p B is a partial function iff

R ◦ Rop ⊆ idB .

[Hint: Workout 8.7 on page 484 will be handy here.]

3. Prove Theorem 120 (on page 388).
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4. Show that
(

PFun(A,B),⊆
)

is a partial order.

5. Show that the intersection of a collection of partial functions in

PFun(A,B) is a partial function in PFun(A,B).
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6. Show that the union of two partial functions in PFun(A,B) is a

relation that need not be a partial function. But that for

f, g ∈ PFun(A,B) such that f ⊆ h ⊇ g for some h ∈ PFun(A,B),

the union f ∪ g is a partial function in PFun(A,B).
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Workout 31

from page 400

1. Let A2 = {1, 2} and A3 = {a, b, c}. List the elements of the four

sets (Ai ⇒ Aj) for i, j ∈ {2, 3}.

2. A relation R : A−→p B is said to be total whenever

∀a ∈ A.∃b ∈ B. aRb .

Prove that this is equivalent to idA ⊆ Rop ◦ R.

Conclude that a relation R : A−→p B is a function iff R ◦ Rop ⊆ idB

and idA ⊆ Rop ◦ R.

— 537 —



3. Prove Theorem 125 (on page 399).

4. Find endofunctions f, g : A→ A such that f ◦ g 6= g ◦ f. Prove

your claim.

5. The aim of this exercise is to show the Knaster-Tarski

Fixed-Point Theorem:

Every monotone endofunction on a powerset has a

least and a greatest fixed-point.

We start with the definitions of monotonicity and fixed-points:

◮ A function f : P(A)→ P(A) is said to be monotone

whenever

∀X, Y ∈ P(A). X ⊆ Y =⇒ f(X) ⊆ f(Y) .
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◮ A fixed-point of f : P(A)→ P(A) is an element X ∈ P(A)

such that

f(X) = X .

Henceforth, let f : P(A)→ P(A) be a monotone function.

(a) The least pre-fixed point.

A pre-fixed point is an element X ∈ P(A) such that

f(X) ⊆ X .

Consider the set

F =
{
X ∈ P(A) | f(X) ⊆ X

}
⊆ P(A)

of pre-fixed points.

You will now show that

f
(
⋂

F
)

=
⋂

F .

i. Show that

∀X ∈ F. X ∈ F =⇒ f(X) ∈ F .
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ii. Prove that

f
(
⋂

F
)

⊆ ⋂

F

by establishing the following equivalent statement:

∀X ∈ F. f
(
⋂

F
)

⊆ X .

iii. Use the above two items to conclude that

f
(
⋂

F
)

∈ F

and thereby argue that
⋂

F ⊆ f
(
⋂

F
)

.

(b) The greateast post-fixed point.

A post-fixed point is an element X ∈ P(A) such that

X ⊆ f(X) .

Consider the set

G =
{
X ∈ P(A) | X ⊆ f(X)

}
⊆ P(A)

of post-fixed points.
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You will now show that

f
(
⋃

G
)

=
⋃

G .

i. Show that

∀X ∈ G. X ∈ G =⇒ f(X) ∈ G .

ii. Prove that
⋃

G ⊆ f
(
⋃

G
)

by establishing the following equivalent statement:

∀X ∈ G. X ⊆ f
(
⋃

G
)

.

iii. Use the above two items to conclude that

f
(
⋃

G
)

∈ G

and thereby argue that

f
(
⋃

G
)

⊆ ⋃

G .

(c) Finally, conclude that

∀X ∈ P(A). f(X) = X =⇒
⋂

F ⊆ X ⊆ ⋃

G .
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Workout 32

from page 406

1. (a) Give examples of functions that have

(i) none,

(ii) exactly one, and

(iii) more than one

retraction.

(b) Give examples of functions that have

(i) none,

(ii) exactly one, and

(iii) more than one

section.
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2. Let n be an integer.

(a) How many sections are there for the absolute-value map

[−n..n]→ [0..n] : x 7→ |x |?

(b) How many retractions are there for the exponential map

[0..n]→ [0..2n] : x 7→ 2x?

3. Give an example of two sets A and B and a map f : A→ B

satisfying both:

(i) there is a retraction for f, and

(ii) there is no section for f.

Explain how you know that f has these two properties.

4. Prove Theorem 129 (on page 404).
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5. For f : A→ B, prove that if there are g, h : B→ A such that

g ◦ f = idA and f ◦ h = idB then g = h.

Conclude as a corollary that, whenever it exists, the inverse of

a function is unique.

6. We say that two functions s : A→ B and r : B→ A are a

section-retraction pair whenever r ◦ s = idA; and that a function

e : B→ B is an idempotent whenever e ◦ e = e.

(a) Show that if s : A→ B and r : B→ A are a section-retraction

pair then the composite s ◦ r : B→ B is an idempotent.

(b) Prove that for every idempotent e : B→ B there exists a

set A and a section-retraction pair s : A→ B and r : B→ A

such that s ◦ r = e.

— 544 —



7. Let p : C→ D and q : D→ C be functions such that

p ◦ q ◦ p = p. Can you conclude that

◮ p ◦ q is idempotent? If so, how?

◮ q ◦ p is idempotent? If so, how?
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Workout 33

from page 412

1. For a relation R on a set A, prove that

◮ R is reflexive iff idA ⊆ R,

◮ R is symmetric iff R ⊆ Rop,

◮ R is transitive iff R ◦ R ⊆ R.

2. Prove that the isomorphism relation ∼= between sets is an

equivalence relation.

3. Prove that the identity relation idA on a set A is an equivalence

relation and that A/idA
∼= A.
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4. Let E1 and E2 be two equivalence relations on a set A. Either

prove or disprove the following statements.

(a) E1 ∪ E2 is an equivalence relation on A.

(b) E1 ∩ E2 is an equivalence relation on A.

5. For an equivalence relation E on a set A, show that [a1]E = [a2]E

iff a1 Ea2, where [a]E = { x ∈ A | xEa } as on page 410.
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6. Let E be an equivalence relation on a set A. We want to show

here that to define a function out of the quotient set A/E
is,

essentially, to define a function out of A that identifies

equivalent elements.

To formalise this, you are required to show that for any function

f : A→ B such that f(x) = f(y) for all (x, y) ∈ E there exists a

unique function f/E
: A/E

→ B such that f/E
◦ q = f, where

q : A։ A/E
denotes the quotient function a 7→ [a]E.

Btw This proof needs some care, so please revise your

argument. Sample applications of its use follow.
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7. For a positive integer m, let ≡m be the equivalence relation on

Z given by

x ≡m y ⇐⇒ x ≡ y (mod m) .

Define a mapping Z/≡m
→ Zm and prove it bijective.

8. Show that the relation ≡ on Z× N+ given by

(a, b) ≡ (x, y) ⇐⇒ a · y = x · b
is an equivalence relation. Define a mapping (Z× N+)/≡ → Q

and prove it bijective.

9. Let B be a subset of a set A. Define the relation E on P(A) by
(

X, Y
)

∈ E ⇐⇒ X ∩ B = Y ∩ B .

Show that E is an equivalence relation. Define a mapping

P(A)/E
→ P(B) and prove it bijective.
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10. For a function f : A→ B define a relation ≡f on A by the rule

a ≡f a
′ ⇐⇒ f(a) = f(a ′)

for all a, a ′ ∈ A.

(a) Show that for every function f : A→ B, the relation ≡f is

an equivalence on A.

(b) Prove that every equivalence relation E on a set A is equal

to ≡q for q the quotient function A։ A/E
: a 7→ [a]E.

(c) Prove that for every surjection f : A։ B,

B ∼=
(

A/≡f

)

.
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11. We will see here that there is a canonical way in which every

preorder can be turned into a partial order.

(a) Let
(

P,⊑
)

be a preorder. Define ≃ ⊆ P × P by setting

x ≃ y ⇐⇒
(

x ⊑ y ∧ y ⊑ x
)

for all x, y ∈ P.

Prove that ≃ is an equivalence relation on P.

(b) Consider now P/≃ and define ⊏∼ ⊆ P/≃ × P/≃ by setting

X ⊏∼ Y ⇐⇒ ∀ x ∈ X.∃y ∈ Y. x ⊑ y

for all X, Y ∈ P/≃.

Prove that
(

P/≃,⊏∼

)

is a partial order.
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Workout 34

from page 417

1. Make sure that you understand the calculus of bijections on

pages 413 and 414.

2. Write ML functions describing the calculus of bijections, where

the set-theoretic product × is interpreted as the product type *,

the set-theoretic disjoint union ⊎ is interpreted as the sum

datatype sum (see page 528), and the set-theoretic function⇒
is interpreted as the arrow type ->.

Btw The theory underlying this question is known as the

Curry-Howard correspondence.
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For instance,

◮ for the bijection
(

(A× B)⇒ C
)

∼=
(

A⇒ (B⇒ C)
)

you need provide ML functions of types

((’a*’b)->’c) -> (’a->(’b->’c))

and

((’a->(’b->’c)) -> ((’a*’b)->’c)

such that when understood as functions on sets yield a

bijection, and
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◮ for the implication

(X ∼= A ∧ B ∼= Y ) =⇒ (A⇒ B) ∼= (X⇒ Y)

you need provide an ML function of type

(’x->’a)*(’b->’y) -> (’a->’b)->(’x->’y)

such that when understood as a function between sets it

constructs the required compound bijection from the two

given component ones.
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3. Let χ : P(U)→ (U⇒ [2]) be the function mapping subsets S of

U to their characteristic (or indicator) functions χS : U→ [2].

(a) Prove that, for all x ∈ U,

◮ χA∪B(x) =
(

χA(x) OR χB(x)
)

= max
(

χA(x), χB(x)
)

,

◮ χA∩B(x) =
(

χA(x) AND χB(x)
)

= min
(

χA(x), χB(x)
)

,

◮ χAc(x) = NOT
(

χA(x)
)

=
(

1− χA(x)
)

.

(b) For what construction A?B on sets A and B it holds that

χA?B(x) =
(

χA(x) XOR χB(x)
)

=
(

χA(x) +2 χB(x)
)

for all x ∈ U? Prove your claim.
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Workout 35

from page 420

1. Prove Theorem 136 (on page 419).

2. For sets A ⊆ B, show that B ∼= A ⊎ (B \A), and argue that for

finite B, #
(

B \A
)

= #B−#A.

3. For sets A and B, show that

A ∪ B ∼=
(

A \ (A ∩ B)
)

⊎ (A ∩ B) ⊎
(

B \ (A ∩A)
)

.

Argue that for finite A and B,

#
(

A ∪ B
)

= #A+#B−#(A ∩ B) .
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4. The Sieve Principle (or Principle of Inclusion and Exclusion).

Prove by the Principle of Induction that, for all natural numbers

n,

for all families of finite sets {A1, . . . , An},

#
(
⋃
{
Ai | i ∈ [1..n]

} )

=
∑

k∈[1..n](−1)k+1 ·∑
S∈Pk([1..n])

#
(
⋂

{Ai | i ∈ S}
)

where Pk(X) =
{
S ⊆ X | #S = k

}
.
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Workout 36

from page 428

1. Give three examples of functions that are surjective and three

examples of functions that are not.

2. Prove Theorem 139 (on page 425).

3. From surjections A։ B and X։ Y define, and prove

surjective, functions A× X։ B× Y and A ⊎ X։ B ⊎ Y.

4. For an infinite set S, prove that if there is a surjection N→ S

then there is a bijection N→ S.
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Workout 37

from page 435

1. Prove Proposition 143 (on page 434).
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Workout 38

from page 441

1. Give three examples of functions that are injective and three of

functions that are not.

2. Prove Theorem 145 (on page 439).

3. For a set X, prove that there is no injection P(X)→ X.

[Hint: By way of contradiction, assume an injection

f : P(X)→ X, consider

W =
{
x ∈ X | ∃Z ∈ P(X). x = f(Z) ∧ x 6∈ Z

}
∈ P(X) ,

and ask whether or not f(W) ∈ X is in W.]
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4. For an infinite set S, prove that the following are equivalent:

(a) There is a bijection N→ S.

(b) There is an injection S→ N.

(c) There is a surjection N→ S
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Workout 39

from page 446

1. What is the direct image of N under the integer square root

relation R2 = { (m,n) | m = n2 } : N−→p Z? And the inverse

image of N?

2. For a relation R : A−→p B, show that

(a)
−→
R (X) =

⋃

x∈X

−→
R
(

{x}
)

for all X ⊆ A, and

(b)
←−
R (Y) =

{
a ∈ A |

−→
R
(

{a}
)

⊆ Y
}

for all Y ⊆ B.
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3. For a relation R : A−→p B, prove that

(a)
−→
R
(
⋃

F
)

=
⋃
{−→
R (X) | X ∈ F

}
∈ P(B) for all F ∈ P(P(A)),

and

(b)
←−
R
(
⋂

G
)

=
⋂
{←−
R (Y) | Y ∈ G

}
∈ P(A) for all G ∈ P(P(B)).
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4. Show that

the inverse and direct images of a relation form a

Galois connectiona

That is, for all R : A−→p B, the direct image and inverse image

functions

P(A)

−→
R

//

P(B)
←−
R

oo

are such that

◮ for all X ⊆ X ′ in P(A),
−→
R (X) ⊆ −→

R (X ′);

◮ for all Y ⊆ Y ′ in P(B),
←−
R (Y) ⊆←−R (Y ′);

◮ for all X ∈ P(A) and Y ∈ P(B),
−→
R (X) ⊆ Y ⇐⇒ X ⊆←−R (Y).

aThis is a fundamental mathematical concept, with many applications in com-

puter science (e.g. in the context of abstract interpretations for static analysis).
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Workout 40

from page 449

1. What is the direct image of Z under the negative-doubling

function Z→ Z : n 7→ −2 · n? And the direct image of N?

2. Prove that

(a) for all sets A,
−→
idA = idP(A) and

←−
idA = idP(A) ,

and

(b) for all functions f : A→ B and g : B→ C,
−−→
g ◦ f = −→g ◦−→f and

←−−
g ◦ f =←−f ◦←−g .
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3. For X ⊆ A, prove that the direct image
−→
f (X) ⊆ B under an

injective function f : A B is in bijection with X; that is,

X ∼=
−→
f (X).

4. (a) How many sections are there for a surjective function

between finite sets?

(b) How many retractions are there for an injective function

between finite sets?

5. Prove that for a surjective function f : A։ B, the direct image

function
−→
f : P(A)→ P(B) is surjective.

6. For sets A and X, show that the mapping

f 7→
{
b ⊆ A | ∃ x ∈ X. b =

←−
f
(

{x}
)}

yields a function Sur(A,X)→ Part(A). Is it surjective? And

injective?
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7. Show that, by inverse image,

every map A→ B induces a

Boolean algebra map P(B)→ P(A) .

That is, for every function f : A→ B,

◮
←−
f (∅) = ∅

◮
←−
f (X ∪ Y) =

←−
f (X) ∪←−f (Y)

◮
←−
f (B) = A

◮
←−
f (X ∩ Y) =

←−
f (X) ∩←−f (Y)

◮
←−
f
(

Xc
)

=
(←−
f (X)

)c

for all X, Y ⊆ B.

(If you like this kind of stuff, investigate what happens with

partial functions and relations; and also look at direct images.)
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8. The aim of this exercise is to give a proof of the

Cantor-Schroeder-Bernstein Theorem (Theorem 148 on

page 443).

Given functions f : A→ B and g : B→ A define the relation

⊥ ⊆ P(A)× P(B) by letting

X ⊥ Y ⇐⇒ Xc ∼=
−→g (Y) ∧

−→
f (X) ∼= Yc .

(a) Prove that,

for injections f and g, if ⊥ is non-empty then A ∼= B .

[Hint: Use that A ∼= X ⊎ Xc, Yc ⊎ Y ∼= B, the calculus of

bijections (see page 413), and that every set is in bijection

with its direct image under an injection (Workout 40.3 on

page 566).]
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(b) Prove that ⊥ is non-empty.

[Hint: Show that the function h : P(A)→ P(A) given by

h(X) =
(−→g

((−→
f (X)

)c))c
is monotone, and hence by the

Knaster-Tarski Fixed-Point Theorem (Workout 31.5 on

page 538) has fixed-points, and consider pairs
(

F,
(−→
f (F)

)c) ∈ P(A)× P(B) where F is a fixed-point of h.a]

aAlternatively, you may learn about the more general Tarski’s Fixed-Point

Theorem, use it to show that the function h : P(A)× P(B)→ P(A)× P(B)

given by h(X, Y) =
( (−→g (Y)

)c
,
(−→
f (X)

)c )

has fixed-points, and consider such

pairs.
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Workout 41

from page 458

1. Prove Corollary 154 on page 455.

2. Make sure that you understand the calculus of bijections on

page 456.
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Workout 42

from page 465

1. Which of the following sets are finite, which are infinite but

countable, and which are uncountable?

(a)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) ≤ f(n+ 1)
}

(b)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(2 · n) 6= f(2 · n+ 1)
}

(c)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) 6= f(n+ 1)
}

(d)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) ≤ f(n+ 1)
}

(e)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) ≥ f(n+ 1)
}
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Workout 43

from page 468

1. Let f : P(A)→ P(B) be a monotone function. Show that for all

F ⊆ P(A),
⋃

α∈F f(α) ⊆ f
(
⋃

F
)

.

In particular, note that
⋃

α∈Pfin(X)
f(α) ⊆ f

(

X)

for all X ∈ P(A).
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2. A function f : P(A)→ P(B) is said to be continuous whenever:

◮ it is monotone, and

◮ for all X ∈ P(A),

f(X) =
⋃

α∈Pfin(X)
f(α) .

We write Cont
(

P(A),P(B)
)

for the set of continuous functions

from P(A) to P(B).

Prove that

Cont
(

P(A),P(B)
)

∼=
(

Pfin(A)⇒ P(B)
)

∼= P
(

Pfin(A)× B
)

.

3. Deduce that for D = P(N),

D ∼= Cont(D,D) .
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