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Suggested supervision schedule:

• §1 On proofs (basic exercises).

• §2 On proofs (advanced exercises) and §3 On numbers (basic exercises).

• §4 On numbers (advanced exercises) and §5 More on numbers (basic exercises).

• §6 More on numbers (advanced exercises) and §7 On induction (basic exercises).

1 On proofs (basic exercises)

The main aim here is to practice the analysis and understanding of mathemat-
ical statements (e.g. by isolating the different components of composite state-
ments), and exercise the art of presenting a logical argument in the form of a
clear proof (e.g. by following proof strategies and patterns).

1. Prove or disprove the following statements.

(a) Suppose n is a natural number larger than 2, and n is not a prime number. Then
2 · n + 13 is not a prime number.

(b) If x2 + y = 13 and y 6= 4 then x 6= 3.

(c) For an integer n, n2 is even if and only if n is even.

2. Characterise those integers d and n such that:

(a) 0 | n,

(b) d | 0.

3. Let k, m, n be integers with k positive. Show that:

(k ·m) | (k · n) ⇐⇒ m | n .

4. Prove or disprove that: For all natural numbers n, 2 | 2n.

5. Prove that for all integers n,
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30 | n ⇐⇒
(
2 | n ∧ 3 | n ∧ 5 | n

)
.

6. Find a counterexample to the statement: For all positive integers k, m, n,

if (m | k ∧ n | k) then (m · n) | k .

7. Show that for all integers l, m, n,

l | m ∧ m | n =⇒ l | n .

8. Prove that for all integers d, k, l, m, n,

(a) d | m ∧ d | n =⇒ d | (m + n),

(b) d | m =⇒ d | k ·m,

(c) d | m ∧ d | n =⇒ d | (k ·m + l · n).

9. Prove or disprove the following statements.

(a) For all real numbers x and y there is a real number z such that x + z = y − z.

(b) For all integers x and y there is an integer z such that x + z = y − z.

(c) For every real number x, if x 6= 2 then there is a unique real number y such that
2 · y/(y + 1) = x.

(d) The addition of two rational numbers is a rational number.

10. Prove or disprove that: For all integers m and n, if m · n is even, then either m is even
or n is even.

11. Show that for all integers m and n,

( m | n ∧ n | m ) =⇒ ( m = n ∨ m = −n ) .

12. Prove or disprove that: For all positive integers k, m, n,

if k | (m · n) then k | m or k | n .

2 On proofs (advanced exercises)

Having practised how to analyse and understand basic mathematical statements
and clearly present their proofs in the previous supervision, the aim here is to
prove some more challenging mathematical statements that further require thinking
about how to tackle and solve the problems.

1. [Adapted from David Burton]

(a) A natural number is said to be triangular if it is of the form
∑k

i=0 i = 0+1+· · ·+k,
for some natural number k. For example, the first three triangular numbers are
t0 = 0, t1 = 1, and t2 = 3. Find the next three triangular numbers t3, t4, and t5.

(b) Find a formula for the k-th triangular number tk.
Hints:
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• Geometric approach: Observe that

◦
◦ ◦
◦ ◦ ◦

+
• • •

• •
•

=
◦ • • •
◦ ◦ • •
◦ ◦ ◦ •

• Algebraic approach: Note that
(n + 1)2 =

∑n
i=0(i + 1)2 −

∑n
i=0 i2 .

(c) A natural number is said to be square if it is of the form k2 for some natural
number k.
[Plutarch, circ. 100BC] Show that n is triangular iff 8 · n + 1 is square.

(d) [Nicomachus, circ. 100BC] Show that the sum of every two consecutive triangular
numbers is square.

(e) [Euler, 1775] Show that, for all natural numbers n, if n is triangular, then so are
9 · n + 1, 25 · n + 3, and 49 · n + 6.

2. Formalise [and prove] the following statement: A natural number is a multiple of 3 iff
so is the number obtained by summing its digits. Do the same for analogous criteria
for multiples of 9 and for multiples of 11.

Prove the following statement: A natural number is a multiple of 3 iff so is the number
obtained by summing its digits. Do the same for analogous criteria for multiples of 9
and for multiples of 11.

3. Let P (m) be a statement for m ranging over the natural numbers, and consider the
derived statement

P#(m) = ∀ natural k. 0 ≤ k ≤ m =⇒ P (k)

again for m ranging over the natural numbers.

Prove the following equivalences:

• P#(0) ⇐⇒ P (0)

•
(
P#(n) =⇒ P#(n + 1)

)
⇐⇒

(
P#(n) =⇒ P (n + 1)

)
• ∀ natural number m.P#(m) ⇐⇒ ∀ natural number m.P (m)

4. Let P (x) be a predicate on a variable x and let Q be a statement not mentioning x.
(For instance, P (x) could be the predicate “programmer x found a software bug” and
Q could be the statement “all the code has to be rewritten”.)

Show that the equivalence((
∃x. P (x)

)
=⇒ Q

)
⇐⇒

(
∀x.

(
P (x) =⇒ Q

))
holds.
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3 On numbers (basic exercises)

Aim: To get familiar with the basics of: divisibility and congruences, the division
theorem and algorithm, modular arithmetic, and Fermat’s Little Theorem.

1. Let i, j be integers and let m be a positive integer. Show that:

(a) i ≡ i (mod m)

(b) i ≡ j (mod m) =⇒ j ≡ i (mod m)

(c) i ≡ j (mod m) =⇒ i2 ≡ j2 (mod m)

2. Find an integer i, natural numbers k, l, and a positive integer m for which k ≡ l (mod m)
holds while ik ≡ il (mod m) does not.

3. Prove that for all integers i, j, k, l, m, n with m positive and n nonnegative,

(a) i ≡ j (mod m) ∧ j ≡ k (mod m) =⇒ i ≡ k (mod m)

(b) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i + k ≡ j + l (mod m)

(c) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i · k ≡ j · l (mod m)

(d) i ≡ j (mod m) =⇒ in ≡ jn (mod m)

4. Prove the following statement: A natural number is a multiple of 3 iff so is the number
obtained by summing its digits. Do the same for analogous criteria for multiples of 9
and for multiples of 11.

5. Show that for every integer n, the remainder when n2 is divided by 4 is either 0 or 1.

6. Prove that for all natural numbers k, l, and positive integer m,

(a) rem(k ·m + l,m) = rem(l,m)

(b) rem(k + l,m) = rem
(
rem(k, m) + l,m

)
, and

(c) rem(k · l, m) = rem
(
k · rem(l,m),m

)
.

7. What are rem(552, 79), rem(232, 79), rem(23 · 55, 79), and rem(5578, 79)?

8. Calculate that 2153 ≡ 53 (mod 153).

(Btw, at first sight this seems to contradict Fermat’s Little Theorem, why isn’t this the
case though?)

9. Let m be a positive integer.

(a) Prove the associativity of the addition and multiplication operations in Zm; that
is, that for all i, j, k in Zm,

(i +m j) +m k = i +m (j +m k) and (i ·m j) ·m k = i ·m (j ·m k) .

(b) Prove that the additive inverse of k in Zm is [−k]m.

10. Calculate the addition and multiplication tables, and the additive and multiplicative
inverses tables for Z3, Z6, and Z7.
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4 On numbers (advanced exercises)

Modular arithmetic is a corner stone of number theory, an area of mathematics in
which one very easily hits very hard problems. The aim here is to solve problems
on congruences that are more challenging than those of the previous supervision
and will give you a taste of this.

1. Prove that for all integers n, there exist natural numbers i and j such that n = i2 − j2

iff either n ≡ 0 (mod 4), or n ≡ 1 (mod 4), or n ≡ 3 (mod 4).

2. Prove that n3 ≡ n (mod 6) for all integers n.

3. Let i and n be positive integers and let p be a prime. Show that if n ≡ 1 (mod p − 1)
then in ≡ i (mod p) for all i not multiple of p.

4. Prove that n7 ≡ n (mod 42) for all integers n.

5. [Adapted from David Burton]

A decimal (respectively binary) repunit is a natural number whose decimal (respectively
binary) representation consists solely of 1’s.

(a) What are the first three decimal repunits? And the first three binary ones?

(b) Show that no decimal repunit strictly greater than 1 is square, and that the same
holds for binary repunits. Is this the case for every base?
Hint: Use Lemma 26 of the notes.

5 More on numbers (basic exercises)

Aim: To get familiar with the basics of: the greatest common divisor, (the Ex-
tended) Euclid’s Algorithm, and Euclid’s Theorem.

1. Calculate the set CD(666, 330) of common divisors of 666 and 330.

2. Find the gcd of 21212121 and 12121212.

3. Prove that for all positive integers m and n,

gcd(m,n) = m ⇐⇒ m | n .

4. Prove that for all positive integers a, b, c,

gcd(a, c) = 1 =⇒ gcd(a · b, c) = gcd(b, c) .

5. Prove that for all positive integers m and n, and integers k and l,

gcd(m,n) | (k ·m + l · n) .

6. Find integers x and y such that x · 30 + y · 22 = gcd(30, 22). Now find integers x′ and
y′ with 0 ≤ y′ < 30 such that x′ · 30 + y′ · 22 = gcd(30, 22).
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7. Let m and n be positive integers with gcd(m,n) = 1. Prove that for every natural
number k,

m | k ∧ n | k ⇐⇒ (m · n) | k .

8. Prove that for all integers n and primes p, if n2 ≡ 1 (mod p) then either n ≡ 1 (mod p)
or n ≡ −1 (mod p).

9. Prove that for all positive integers m, n, p, q such that gcd(m,n) = gcd(p, q) = 1, if
q ·m = p · n then m = p and n = q.

6 More on numbers (advanced exercises)

Aim: To consolidate your knowledge and understanding of the basic number the-
ory that has been covered in the course.

1. Prove that, for all positive integers m and n, there exist integers k and l such that
k ·m + l · n = 1 iff gcd(m,n) = 1.

2. Show the correctness of the following algorithm

fun gcd0( m , n )
= if m = n then m
else
let
val p = min(m,n) ; val q = max(m,n)

in
gcd0( p , q - p )

end

for computing the gcd of two positive integers.

3. Prove that for all positive integers a and b,

gcd
(
13 · a + 8 · b , 5 · a + 3 · b

)
= gcd(a, b) .

4. (a) Prove that if an integer n is not divisible by 3, then n2 ≡ 1 (mod 3).

(b) Show that if an integer n is odd, then n2 ≡ 1 (mod 8)

(c) Conclude that if p is a prime greater than 3, then p2 − 1 is divisible by 24.

5. Prove that n13 ≡ n (mod 10) for all integers n.

6. Prove that for all positive integers l, m, and n, if gcd(l, m · n) = 1 then gcd(l,m) = 1
and gcd(l, n) = 1.

7. Solve the following congruences:

(a) 77 · x ≡ 11 (mod 40)

(b) 12 · y ≡ 30 (mod 54)

6



(c)
{

z ≡ 13 (mod 21)
3 · z ≡ 2 (mod 17)

8. What is the multiplicative inverse of: (i) 2 in Z7, (ii) 7 in Z40, and (iii) 13 in Z23?

9. Prove that [2212001]175 has a multiplicative inverse in Z175.

7 On induction (basic exercises)

Aim: To practise proofs by the mathematical Principle of Induction.

1. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·
∑m−1

i=0 2i·n = 2m·n − 1 .

(b) Suppose k is a positive integer that is not prime. Then 2k − 1 is not prime.

2. Prove that

∀n ∈ N. ∀x ∈ R. x ≥ −1 =⇒ (1 + x)n ≥ 1 + n · x .

3. Recall that the Fibonacci numbers Fn for n ranging over the natural numbers are defined
by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

(a) Prove Cassini’s Identity: For all natural numbers n,

Fn · Fn+2 = Fn+1
2 + (−1)n+1 .

(b) Prove that for all natural numbers k and n,

Fn+k+1 = Fk+1 · Fn+1 + Fk · Fn .

(c) Deduce that Fn | Fl·n for all natural numbers n and l.
(d) Prove that gcd(Fn+2, Fn+1) terminates with output 1 in n+1 steps for all natural

numbers n.
(e) Deduce also that,

(i) for positive integers n < m, gcd(Fm, Fn) = gcd(Fm−n, Fn)
and hence that,

(ii) for all positive integers m and n, gcd(Fm, Fn) = Fgcd(m,n).
(f) Show that for all positive integers m and n, (Fm · Fn) | Fm·n if gcd(m,n) = 1.
(g) Conjecture and prove theorems concerning the sums

(i)
∑n

i=0 F2·i, and
(ii)

∑n
i=0 F2·i+1

for n any natural number.

4. Prove that

For all natural numbers l ≥ 2, we have that for all positive integers m,n, if
m + n = l then gcd0(m,n) terminates.

by the Principle of Strong Induction from basis 2.
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