Discrete Mathematics for Part I CST 2014/15 Sets Lent Supervision Exercises

Marcelo Fiore

January 15, 2015

1 Basic exercises

1.1 On sets

- 1. Prove the following statements:
 - (a) Reflexivity: \forall sets $A. A \subseteq A$.
 - (b) Transitivity: \forall sets $A, B, C. (A \subseteq B \land B \subseteq C) \implies A \subseteq C.$
 - (c) Antisymmetry: \forall sets $A, B. (A \subseteq B \land B \subseteq A) \iff A = B$.

2. Prove the following statements:

- (a) \forall set $S. \emptyset \subseteq S$.
- (b) \forall set $S. (\forall x. x \notin S) \iff S = \emptyset.$
- 3. Find the union and intersection of:
 - (a) $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$;
 - (b) $\{x \in \mathbb{R} \mid x > 7\}$ and $\{x \in \mathbb{N} \mid x > 5\}$.
- 4. Establish the laws of the powerset Boolean algebra.
- 5. Either prove or disprove that, for all sets A and B,
 - (a) $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B),$
 - (b) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$,
 - (c) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - (d) $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$,
 - (e) $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

6. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that the following statements are equivalent.

- (a) $A \cup B = B$.
- (b) $A \subseteq B$.

- (c) $A \cap B = A$.
- (d) $B^{c} \subseteq A^{c}$.
- 7. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that
 - (a) $A^{c} = B \iff (A \cup B = U \land A \cap B = \emptyset),$
 - (b) $(A^{c})^{c} = A$, and
 - (c) the De Morgan's laws:

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$
 and $(A \cap B)^{c} = A^{c} \cup B^{c}$.

- 8. Find the product of $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$.
- 9. For sets A, B, C, D, either prove or disprove the following statements.
 - (a) $(A \subseteq B \land C \subseteq D) \implies A \times C \subseteq B \times D.$ (b) $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D).$ (c) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D).$ (d) $A \times (B \cup D) \subseteq (A \times B) \cup (A \times D).$ (e) $(A \times B) \cup (A \times D) \subseteq A \times (B \cup D).$

What happens with the above when $A \cap C = \emptyset$ and/or $B \cap D = \emptyset$?

- 10. Let $I = \{2, 3, 4, 5\}$, and for each $i \in I$ let $A_i = \{i, i + 1, i 1, 2 \cdot i\}$.
 - (a) List the elements of all the sets A_i for $i \in I$.
 - (b) Let $\{A_i \mid i \in I\}$ stand for $\{A_2, A_3, A_4, A_5\}$. Find $\bigcup \{A_i \mid i \in I\}$ and $\bigcap \{A_i \mid i \in I\}$.
- 11. Find the disjoint union of $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$.
- 12. Prove or disprove the following statements for all sets A, B, C, D:
 - (a) $(A \subseteq B \land C \subseteq D) \implies A \uplus C \subseteq B \uplus D$,
 - (b) $(A \cup B) \uplus C \subseteq (A \uplus C) \cup (B \uplus C),$
 - (c) $(A \uplus C) \cup (B \uplus C) \subseteq (A \cup B) \uplus C$,
 - (d) $(A \cap B) \uplus C \subseteq (A \uplus C) \cap (B \uplus C),$
 - (e) $(A \uplus C) \cap (B \uplus C) \subseteq (A \cap B) \uplus C$.

1.2 On relations

- 1. Let $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}, \text{ and } C = \{x, y, z\}.$ Let $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\} : A \longrightarrow B \text{ and } S = \{(b, x), (b, x), (c, y), (d, z)\} : B \longrightarrow C.$ What is their composition $S \circ R : A \longrightarrow C$?
- 2. Prove that relational composition is associative and has the identity relation as neutral element.
- 3. For a relation $R: A \to B$, let its *opposite*, or *dual*, $R^{\text{op}}: B \to A$ be defined by

 $b R^{\mathrm{op}} a \iff a R b$.

For $R, S : A \rightarrow B$, prove that

- (a) $R \subseteq S \implies R^{\mathrm{op}} \subseteq S^{\mathrm{op}}$.
- (b) $(R \cap S)^{\mathrm{op}} = R^{\mathrm{op}} \cap S^{\mathrm{op}}$.
- (c) $(R \cup S)^{\operatorname{op}} = R^{\operatorname{op}} \cup S^{\operatorname{op}}.$
- 4. For a relation R on a set A, prove that R is antisymmetric iff $R \cap R^{\text{op}} \subseteq \text{id}_A$.

1.3 On partial functions

- 1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the elements of the four sets $(A_i \Rightarrow A_j)$ for $i, j \in \{2, 3\}$.
- 2. Prove that a relation $R: A \to B$ is a partial function iff $R \circ R^{\mathrm{op}} \subseteq \mathrm{id}_B$.
- 3. Prove that the identity relation is a partial function, and that the composition of partial functions yields a partial function.

1.4 On functions

- 1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the elements of the four sets $(A_i \Rightarrow A_j)$ for $i, j \in \{2, 3\}$.
- 2. A relation $R : A \to B$ is said to be total whenever $\forall a \in A. \exists b \in B. a R b$. Prove that this is equivalent to $\mathrm{id}_A \subseteq R^{\mathrm{op}} \circ R$.

Conclude that a relation $R: A \to B$ is a function iff $R \circ R^{\mathrm{op}} \subseteq \mathrm{id}_B$ and $\mathrm{id}_A \subseteq R^{\mathrm{op}} \circ R$.

- 3. Prove that the identity partial function is a function, and that the composition of functions yields a function.
- 4. Find endofunctions $f, g : A \to A$ such that $f \circ g \neq g \circ f$. Prove your claim.

1.5 On bijections

- 1. (a) Give examples of functions that have (i) none, (ii) exactly one, and (iii) more than one retraction.
 - (b) Give examples of functions that have (i) none, (ii) exactly one, and (iii) more than one section.
- 2. Let n be an integer.
 - (a) How many sections are there for the absolute-value map $[-n..n] \rightarrow [0..n] : x \mapsto |x|$?
 - (b) How many retractions are there for the exponential map $[0..n] \rightarrow [0..2^n] : x \mapsto 2^x$?
- 3. Give an example of two sets A and B and a function $f: A \to B$ satisfying both:
 - (i) there is a retraction for f, and
 - (ii) there is no section for f.

Explain how you know that f has these two properties.

- 4. Prove that the identity function is a bijection, and that the composition of bijections yields a bijection.
- 5. For $f : A \to B$, prove that if there are $g, h : B \to A$ such that $g \circ f = id_A$ and $f \circ h = id_B$ then g = h.

Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

- 6. We say that two functions $s : A \to B$ and $r : B \to A$ are a section-retraction pair whenever $r \circ s = id_A$; and that a function $e : B \to B$ is an *idempotent* whenever $e \circ e = e$.
 - (a) Show that if $s : A \to B$ and $r : B \to A$ are a section-retraction pair then the composite $s \circ r : B \to B$ is an idempotent.
 - (b) Prove that for every idempotent $e: B \to B$ there exists a set A and a section-retraction pair $s: A \to B$ and $r: B \to A$ such that $s \circ r = e$.
 - (c) Let $p: C \to D$ and $q: D \to C$ be functions such that $p \circ q \circ p = p$. Can you conclude that
 - $p \circ q$ is idempotent? If so, how?
 - $q \circ p$ is idempotent? If so, how?
- 7. Prove the isomorphisms of the Calculus of Bijections, I.
- 8. Prove that, for all $m, n \in \mathbb{N}$,
 - (a) $\mathcal{P}([n]) \cong [2^n]$
 - (b) $[m] \times [n] \cong [m \cdot n]$
 - (c) $[m] \uplus [n] \cong [m+n]$
 - (d) $([m] \Rightarrow [n]) \approx [(n+1)^m]$
 - (e) $([m] \Rightarrow [n]) \cong [n^m]$
 - (f) $Bij([n], [n]) \cong [n!]$

1.6 On equivalence relations

- 1. For a relation R on a set A, prove that
 - R is reflexive iff $id_A \subseteq R$,
 - R is symmetric iff $R \subseteq R^{\text{op}}$,
 - R is transitive iff $R \circ R \subseteq R$.
- 2. Prove that the isomorphism relation \cong between sets is an equivalence relation.
- 3. Prove that the identity relation id_A on a set A is an equivalence relation and that $A_{/id_A} \cong A$.
- 4. Show that, for a positive integer m, the relation \equiv_m on \mathbb{Z} given by

 $x \equiv_m y \iff x \equiv y \pmod{m}$.

is an equivalence relation.

5. Show that the relation \equiv on $\mathbb{Z} \times \mathbb{N}^+$ given by

 $(a,b) \equiv (x,y) \iff a \cdot y = x \cdot b$

is an equivalence relation.

6. Let B be a subset of a set A. Define the relation E on $\mathcal{P}(A)$ by

$$(X,Y) \in E \iff X \cap B = Y \cap B$$
.

Show that E is an equivalence relation.

1.7 On surjections

- 1. Give three examples of functions that are surjective and three examples of functions that are not.
- 2. Prove that the identity function is a surjection, and that the composition of surjections yields a surjection.
- 3. From surjections $A \twoheadrightarrow B$ and $X \twoheadrightarrow Y$ define, and prove surjective, functions $A \times X \twoheadrightarrow B \times Y$ and $A \uplus X \twoheadrightarrow B \uplus Y$.

1.8 On injections

- 1. Give three examples of functions that are injective and three of functions that are not.
- 2. Prove that the identity function is an injection, and that the composition of injections yields an injection.

1.9 On images

- 1. What is the direct image of \mathbb{N} under the integer square-root relation $R_2 = \{ (m, n) \mid m = n^2 \} : \mathbb{N} \longrightarrow \mathbb{Z}$? And the inverse image of \mathbb{N} ?
- 2. For a relation $R: A \longrightarrow B$, show that

(a)
$$\overrightarrow{R}(X) = \bigcup_{x \in X} \overrightarrow{R}(\{x\})$$
 for all $X \subseteq A$, and
(b) $\overleftarrow{R}(Y) = \{a \in A \mid \overrightarrow{R}(\{a\}) \subseteq Y\}$ for all $Y \subseteq B$

3. For $X \subseteq A$, prove that the direct image $\overrightarrow{f}(X) \subseteq B$ under an injective function $f: A \rightarrow B$ is in bijection with X; that is, $X \cong \overrightarrow{f}(X)$.

1.10 On indexed sets

1. Prove the isomorphisms of the Calculus of Bijections, II.

2 Advanced exercises

2.1 On induction

- 1. Prove that for all natural numbers $n \ge 3$, if n distinct points on a circle are joined in consecutive order by straight lines, then the interior angles of the resulting polygon add up to $180 \cdot (n-2)$ degrees.
- 2. Prove that, for any positive integer n, a $2^n \times 2^n$ square grid with any one square removed can be tiled with L-shaped pieces consisting of 3 squares.
- 3. The set of *(univariate) polynomials* (over the rationals) on a variable x is defined as that of arithmetic expressions equal to those of the form $\sum_{i=0}^{n} a_i \cdot x^i$, for some $n \in \mathbb{N}$ and some $a_1, \ldots, a_n \in \mathbb{Q}$.
 - (a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and $p(x) \cdot q(x)$.
 - (b) Deduce as a corollary that, for all $a, b \in \mathbb{Q}$, the linear combination $a \cdot p(x) + b \cdot q(x)$ of two polynomials p(x) and q(x) is a polynomial.
 - (c) Show that there exists a polynomial $p_2(x)$ such that, for every $n \in \mathbb{N}$, $p_2(n) = \sum_{i=0}^{n} i^2 = 0^2 + 1^2 + \cdots + n^2$.¹ Hint: Note that for every $n \in \mathbb{N}$,

$$(n+1)^3 = \sum_{i=0}^n (i+1)^3 - \sum_{i=0}^n i^3$$
. (†)

(d) Show that, for every $k \in \mathbb{N}$, there exists a polynomial $p_k(x)$ such that, for all $n \in \mathbb{N}$, $p_k(n) = \sum_{i=0}^n i^k = 0^k + 1^k + \dots + n^k$. Hint: Generalise

$$(n+1)^2 = \sum_{i=0}^n (i+1)^2 - \sum_{i=0}^n i^2$$

and (\dagger) above.

2.2 On sets

- 1. For $\mathcal{F} \subseteq \mathcal{P}(A)$, let $\mathcal{U} = \{ X \subseteq A \mid \forall S \in \mathcal{F}. S \subseteq X \} \subseteq \mathcal{P}(A)$. Prove that $\bigcup \mathcal{F} = \bigcap \mathcal{U}$. Analogously, define $\mathcal{L} \subseteq \mathcal{P}(A)$ such that $\bigcap \mathcal{F} = \bigcup \mathcal{L}$. Also prove this statement.
- 2. Prove that, for all collections of sets \mathcal{F} , it holds that

$$\forall \text{ set } U. \bigcup \mathcal{F} \subseteq U \iff (\forall X \in \mathcal{F}. X \subseteq U)$$

3. Prove that for all collections of sets \mathcal{F}_1 and \mathcal{F}_2 ,

$$(\bigcup \mathcal{F}_1) \cup (\bigcup \mathcal{F}_2) = \bigcup (\mathcal{F}_1 \cup \mathcal{F}_2)$$

State and prove the analogous property for intersections of non-empty collections of sets.

¹Chapter 2.5 of *Concrete Mathematics: A Foundation for Computer Science* by R.L. Graham, D.E. Knuth, and O. Patashnik looks at this in great detail.

2.3 On relations

- 1. Let $\mathcal{F} \subseteq \mathcal{P}(A \times B)$ be a collection of relations from A to B. Prove that,
 - (a) for all $R: X \to A$,

$$\left(\bigcup \mathcal{F}\right) \circ R = \bigcup \left\{ S \circ R \mid S \in \mathcal{F} \right\} : X \longrightarrow B ,$$

and that,

(b) for all $R : B \to Y$, $R \circ (\bigcup \mathcal{F}) = \bigcup \{ R \circ S \mid S \in \mathcal{F} \} : A \to Y$.

What happens in the case of big intersections?

2. For a relation R on a set A, let

$$\mathcal{T}_R = \left\{ Q \subseteq A \times A \mid R \subseteq Q \land Q \text{ is transitive} \right\}$$

For $R^{\circ +} = R \circ R^{\circ *}$, prove that (i) $R^{\circ +} \in \mathcal{T}_R$ and (ii) $R^{\circ +} \subseteq \bigcap \mathcal{T}_R$. Hence, $R^{\circ +} = \bigcap \mathcal{T}_R$.

2.4 On partial functions

- 1. Show that $(PFun(A, B), \subseteq)$ is a partial order.
- 2. Show that the intersection of a non-empty collection of partial functions in PFun(A, B) is a partial function in PFun(A, B).
- 3. Show that the union of two partial functions in PFun(A, B) is a relation that need not be a partial function. But that for $f, g \in PFun(A, B)$ such that $f \subseteq h \supseteq g$ for some $h \in PFun(A, B)$, the union $f \cup g$ is a partial function in PFun(A, B).

2.5 On functions

- 1. Let $\chi : \mathcal{P}(U) \to (U \Rightarrow [2])$ be the function mapping subsets S of U to their characteristic (or indicator) functions $\chi_S : U \to [2]$.
 - (a) Prove that, for all $x \in U$,
 - $\chi_{A\cup B}(x) = (\chi_A(x) \text{ OR } \chi_B(x)) = \max(\chi_A(x), \chi_B(x)),$
 - $\chi_{A \cap B}(x) = (\chi_A(x) \text{ AND } \chi_B(x)) = \min(\chi_A(x), \chi_B(x)),$
 - $\chi_{A^{c}}(x) = \operatorname{NOT}(\chi_{A}(x)) = (1 \chi_{A}(x)).$
 - (b) For what construction A?B on sets A and B it holds that

 $\chi_{A?B}(x) = \left(\chi_A(x) \text{ XOR } \chi_B(x)\right) = \left(\chi_A(x) +_2 \chi_B(x)\right)$

for all $x \in U$? Prove your claim.

2.6 On equivalence relations

- 1. Let E_1 and E_2 be two equivalence relations on a set A. Either prove or disprove the following statements.
 - (a) $E_1 \cup E_2$ is an equivalence relation on A.
 - (b) $E_1 \cap E_2$ is an equivalence relation on A.
- 2. For an equivalence relation E on a set A, show that $[a_1]_E = [a_2]_E$ iff $a_1 E a_2$, where $[a]_E = \{ x \in A \mid x E a \}.$
- 3. For a function $f: A \to B$ define a relation \equiv_f on A by the rule

$$a \equiv_f a' \iff f(a) = f(a')$$

for all $a, a' \in A$.

- (a) Show that for every function $f: A \to B$, the relation \equiv_f is an equivalence on A.
- (b) Prove that every equivalence relation E on a set A is equal to \equiv_q for q the quotient function $A \twoheadrightarrow A_{/E} : a \mapsto [a]_E$.
- (c) Prove that for every surjection $f: A \twoheadrightarrow B$,

$$B \cong (A_{/\equiv_f})$$

2.7 On countability

- 1. For an infinite set S, prove that if there is a surjection $\mathbb{N} \to S$ then there is a bijection $\mathbb{N} \to S$.
- 2. Prove that:
 - (a) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable sets.
 - (b) The product and disjoint union of countable sets is countable.
 - (c) Every finite set is countable.
 - (d) Every subset of a countable set is countable.
- 3. For an infinite set S, prove that the following are equivalent:
 - (a) There is a bijection $\mathbb{N} \to S$.
 - (b) There is an injection $S \to \mathbb{N}$.
 - (c) There is a surjection $\mathbb{N} \to S$
- 4. For a set X, prove that there is no injection $\mathcal{P}(X) \to X$.

$\mathbf{2.8}$ On images

1. For a relation $R: A \rightarrow B$, prove that

(a)
$$\overrightarrow{R}(\bigcup \mathcal{F}) = \bigcup \{ \overrightarrow{R}(X) \mid X \in \mathcal{F} \} \in \mathcal{P}(B) \text{ for all } \mathcal{F} \in \mathcal{P}(\mathcal{P}(A)), \text{ and}$$

(b) $\overleftarrow{R}(\bigcap \mathcal{G}) = \bigcap \{ \overleftarrow{R}(Y) \mid Y \in \mathcal{G} \} \in \mathcal{P}(A) \text{ for all } \mathcal{G} \in \mathcal{P}(\mathcal{P}(B)).$

2. Show that, by inverse image,

every map $A \to B$ induces a Boolean algebra map $\mathcal{P}(B) \to \mathcal{P}(A)$.

That is, for every function $f: A \to B$,

• $\overleftarrow{f}(\emptyset) = \emptyset$

•
$$\overleftarrow{f}(X \cup Y) = \overleftarrow{f}(X) \cup \overleftarrow{f}(Y)$$

- $\bullet \ \overleftarrow{f}(B) = A$ • $\overleftarrow{f}(X \cap Y) = \overleftarrow{f}(X) \cap \overleftarrow{f}(Y)$ • $\overleftarrow{f}(X^{c}) = (\overleftarrow{f}(X))^{c}$

for all $X, Y \subseteq B$.

3. Prove that for a surjective function $f: A \twoheadrightarrow B$, the direct image function $\overrightarrow{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ is surjective.

2.9On indexed sets

1. Prove that if X and A are countable sets then so are A^* , $\mathcal{P}_{\text{fin}}(A)$, and $(X \Longrightarrow_{\text{fin}} A)$.